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We theoretically investigate the strong coupling between a single molecule and a single metallic nanopar-
ticle. A theory suited for the quantum-mechanical description of surface plasmon polaritons �SPPs� is devel-
oped. The coupling between these SPPs and a single molecule, and the modified molecular dynamics in the
presence of the nanoparticle are described within a combined Drude and boundary-element-method approach.
Our results show that strong coupling is possible for single molecules and metallic nanoparticles and can be
observed in fluorescence spectroscopy through the splitting of emission peaks.
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I. INTRODUCTION

Quantum optics has recently made its way to the field of
plasmonics.1,2 This is due to the rapid progress in nanofabri-
cation and measurement techniques. Recent experiments
have demonstrated the controlled coupling of single mol-
ecules with metallic nanoparticles2–5 �MNPs� and metallic
surfaces,6 of coupled nanoparticles,7,8 and of donor and ac-
ceptor molecules across metal films.9 Possible applications
of such hybrid molecule–MNP systems range from
biosensing10,11 to active plasmonic devices.12

A key element of the quantum-optics toolbox is the strong
coupling between a quantum emitter and a resonator, where
excitation energy is coherently transferred between emitter
and resonator. Strong coupling was first observed for single
atoms in high-finesse optical resonators,13,14 and more re-
cently for various solid state systems, such as semiconductor
quantum dots15,16 or superconductor circuits.17 Although
strong coupling between ensembles of molecules, e.g., J ag-
gregates of dyes, with plasmons has been reported,18 it is
unclear whether the strong coupling regime can be reached
for single molecules coupled to MNPs. The reason for this
lies in the intricate interplay of the molecule-MNP coupling
strength with the molecular relaxation dynamics, which be-
comes heavily altered in the vicinity of the nanoparticle.

It is the purpose of this paper to theoretically investigate
the strong coupling regime between a single quantum emit-
ter, such as a molecule or collodial quantum dot, and a single
MNP. We start by developing a theory suited for the
quantum-mechanical description of surface plasmon polari-
tons �SPPs�, the coupling between these SPPs and single
molecules, and the modified molecular dynamics in the pres-
ence of the MNP. We employ a Drude framework for the
description of the metal dynamics and compute the quantized
SPP modes within a boundary-element-method approach.19,20

Our results show that strong coupling is possible for mol-
ecules and MNPs and could be observed in fluorescence
spectroscopy through the splitting of emission peaks.

We have organized this paper as follows. In Sec. II, we
show how to compute surface plasmon modes within a
boundary-element-method approach, and we introduce a
suitable quantization scheme for the surface plasmons. We
also present details of the theoretical description of the
coupled molecule-MNP system in the presence of scatter-

ings. Section III presents the results of our model calcula-
tions. We explore the strong-coupling regime for a single
molecule coupled to a MNP and identify the pertinent param-
eters for strong coupling. We also discuss the limitations of
our model. Finally, in Sec. IV, we summarize and draw some
conclusions.

II. THEORY

A. Plasmon quantization

Although SPPs are generally considered as bosonic qua-
siparticles, most theoretical work do not explicitly rely on
such description. In linear response, one can employ the
fluctuation-dissipation theorem to relate the dielectric re-
sponse to the dyadic Green tensor of Maxwell’s theory,21,22

where all the details of the metal dynamics are embodied in
the dielectric function, which can be obtained from either
experiment23 or first principles calculations. This approach is
no longer applicable in nonlinear response. Also the neglect
of plasmon relaxation at small time scales, as proposed in
other work,24 is not suited for the investigation of strong
coupling, which critically depends on the relative importance
of coupling and SPP dephasing. In this work, we thus follow
the seminal work of Ritchie,25 where the electron dynamics
in the metal is described within the hydrodynamic model.26

For the transition metals Ag and Au, electrons with particle
density n0 are assumed to move freely in a medium with
background dielectric constant �0, which accounts for the
screening of d-band electrons.27,28

The energy of a classical electron plasma is the sum of
kinetic and electrostatic energy25,26

H = 1
2 � �n0����2 + ���d3r . �1�

Here, ��r� is the charge density displacement from equilib-
rium, ��r� is the electrostatic potential induced by ��r�, and
��r� is the velocity potential, whose derivative gives the
velocity density v=−��.26 Throughout we use Gauss and
atomic units �e=m=�=1�. For the SPPs of our present con-
cern, we consider surface charge distributions � which are
nonzero only at the surface of the MNP. As detailed in the
Appendix, the Hamilton function �1� can be rewritten in a
boundary-element-method �BEM� approach19,29 as
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H =
1

2n0
��̇T�2� + F�−1G�̇ + 	p

2�T�2���0 + �b�

+ ��0 − �b�F�−1G�� . �2�

Here, � is the vector of the surface charges within the dis-
cretized surface elements �see inset of Fig. 1�, G is the free
Green function matrix which connects two surface elements,
F is the corresponding surface derivative,19,29 	p= �4�n0�1/2

is the plasma frequency, �0 is the background dielectric con-
stant of the metal,28 and �b is the dielectric constant of the
embedding medium. We can now determine the eigenmodes
of Eq. �2� and quantize the plasma oscillations via a canoni-
cal transformation following the standard procedure outlined
in Refs. 25 and 26. Within such an approach, we obtain the
plasmon Hamiltonian Hpl=�
	
a


†a
 in second-quantized
form, with 	
 being the energy and a


† the creation operator

for the plasmon mode 
. The field operator for the SPPs is of
the form

��r� = �



	 2n0

	
�


1/2

u
�r��a
 + a

†� , �3�

where u
�r� is the plasmon eigenfunction and �
 the corre-
sponding normalization constant.

B. Molecule–metallic nanoparticle coupling

With the SPP quantization, we have now opened the
quantum-optics toolbox. This allows us to study strong cou-
pling according to the standard prescription.30 As for the de-
scription of the molecule, we follow Refs. 31 and 32 which
considered a generic few-level system. This approach is also
best suited for other quantum emitters, such as collodial
quantum dots. The inset of Fig. 1�b� shows the level scheme
used in our calculations. It consists of the molecule ground
state 0 and two excited states 1 and 2. We assume that an
external pump laser brings the molecule into the excited state
2, where it decays nonradiatively with a given rate �m to the
optically active state 1. This indirect process allows us to
separate the excitation dynamics, which is not modified in
the presence of the MNP, from the relaxation dynamics of
state 1, which becomes strongly modified if the molecule and
SPP are in resonance. The coherent part of the molecule-
MNP dynamics is described by the Hamiltonian

H = Hmol + Hpl + Hmol-pl + Hpump. �4�

Here, Hmol and Hpl describe the molecular states and the SPP
modes, respectively, Hmol-pl is the coupling between the mo-
lecular dipole and the surface charge �3�, and Hpump is the
interaction of the molecule with the pump laser. The last two
terms in Eq. �4� are described within the usual rotating-wave
approximation.30 In addition, we account for the incoherent
part of the dynamics through a master equation of Lindblad
form30,33

�̇ = − i�H,�� − 1
2�

i

�Li
†Li� + Li

†Li� − 2Li�Li
†� , �5�

where � is the density matrix of the coupled molecule-SPP
system. The Lindblad operators Li describe the various scat-
tering channels of molecular decay, plasmon decay through
Landau damping, and radiative decay.28

III. RESULTS

In our calculations, we consider the cigar-shaped Ag MNP
shown in Fig. 1. Other MNP shapes and metals will be dis-
cussed at the end. Figure 1�a� shows the spectra computed
within our BEM approach20 for the Ag dielectric function of
Ref. 23 �solid line� and the Drude framework28 �dashed line�.
Both spectra are in good agreement, thus justifying the use of
the Drude model. The energies of the SPP eigenmodes are
indicated by triangles. Figure 1�b� reports the nonradiative
and radiative decay rates of the molecule as a function of
molecule-MNP distance, which we compute in the weak-
coupling regime according to the prescription of Refs. 3 and

FIG. 1. �Color online� �a� Spectrum of cigar-shaped Ag MNP.
The height of the particle is 40 nm and the height-to-diameter ratio
is 5:1. The solid and dashed lines show the calculated spectra for
the dielectric function of Ref. 23 and the Drude form �Ref. 28�,
respectively. The triangles at the bottom indicate the energies of the
plasmon modes �d� and �e�, and the arrow at �1.7 eV indicates the
energy of the molecular state 1. �b� Nonradiative �solid line� and
radiative �dashed-dotted line� decay rates for a molecule located at
a certain distance from the MNP �see �c�� in units of the radiative
free-space decay rate �r

0. The inset reports the level scheme used in
our calculations. �c� Discretized particle surface as used in our cal-
culations. ��d�–�f�� Surface charge distribution of SPP eigenmodes
of lowest energy. Only mode �d� has a nonzero dipole moment.
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20. One observes that the rates dramatically increase when
the molecule approaches the MNP. Here, the decay process
becomes strongly altered by the nanoparticle, which acts as a
supplemental antenna and converts part of the molecule’s
near field into radiation and Ohmic dissipation.

We next turn to the results of our master-equation ap-
proach. Figure 2 shows simulations based on the solution of
Eq. �5�, where the molecule is initially brought into the ex-
cited state 1. Let us first consider the larger molecule-MNP
distance of 8 nm �upper two lines�. Through the coupling
Hmol-pl, the lowest SPP mode becomes populated and subse-
quently decays through Landau damping and radiation. After
a transient at early times, both molecule and SPP population
decay monoexponentially with the same decay constant. In
this regime, the molecule drives the strongly damped plas-
mon mode and hereby constantly transfers energy to the
MNP. Things change considerably when the molecule is
brought closer to the MNP. For z=4 nm �lower two lines�,
one observes a pronounced population beating between the
molecule and the surface plasmon, superimposed on a sub-
picosecond decay due to efficient plasmon damping. This
beating behavior is a clear signature of strong coupling,30

which occurs in a regime where the molecule-MNP coupling
is stronger than the plasmon damping.

Although strong coupling is most apparent in the time
domain, spectroscopy appears to be a more suitable tool for
its experimental observation. We next turn to the study of the
setup shown in the inset of Fig. 1�b�, where a weak pump
laser brings the molecule to the excited state 2. This process
is followed by an internal decay into the optically active state
1 and a final relaxation to the ground state. Again, the last
process is strongly modified in the presence of the MNP. In
our calculations, we use the master equation �5� to compute
the steady state solution. Once a stationary condition is

reached, we can compute the fluorescence spectra from the
Wiener–Khinchin theorem by means of the quantum regres-
sion theorem.30,33 Figure 3 shows the results of our simula-
tions for three different molecular dipole moments. For the
smallest dipole moment of Fig. 3�a�, one observes that the
line broadens when the molecule is brought closer to the
MNP. We verified that the line broadening is precisely given
by the sum of radiative �r and nonradiative �nr decay rates
shown in Fig. 1�b�. For the larger dipole moments investi-
gated in Figs. 3�b� and 3�c�, we observe that at a distance of
a few nanometers the line splits, thus indicating the onset of
strong coupling. Here, excitation energy is coherently trans-
ferred between the molecule and the SPP.

In a generic model, where a quantum emitter is coupled to
a single cavity mode, the polariton eigenmodes 
� of the
coupled system are of the form34


� = 	0 −
i

4
��c + �m� ��g2 − 	�c − �m

4

2

. �6�

Here, 	0 is the energy of the isolated molecule and cavity,
which are assumed to be in resonance; �m and �c are the
decay rates of the molecule and cavity, respectively; and g is
the coupling constant. Strong coupling occurs for g
� 
�c−�m
 /4 and corresponds to the formation of a dressed
state with finite lifetime. It is an intrinsic property of the
coupling between the molecule and the cavity, and manifests
itself as a doublet splitting of the emission lines. Quite gen-
erally, for the coupled molecule-MNP system, Eq. �6� is too
simple, because the molecule couples not only to the MNP
dipole mode but also to all other modes, and one must use a
more refined description as we have done in this work. Nev-
ertheless, Eq. �6� allows us to estimate the pertinent param-
eters for strong coupling. From the plasmon decay rate �0
�30 fs for silver, we can estimate a critical coupling
strength of g��0 /4�5 meV for the onset of strong cou-
pling. Indeed, this value is in agreement with the results of
Fig. 3 �as can be inferred, e.g., from the line broadening in
Fig. 3�b� at the distance of 3 nm, where the emission line
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FIG. 2. �Color online� Simulation for molecule which is initially
in state 1 �inset of Fig. 1�b��. The solid and dashed lines show the
population of the molecular state 1 and the SPP dipole mode �Fig.
1�d��, respectively, for two different molecule-MNP distances. We
use a molecule dipole moment of 10 a.u., which corresponds to a
free-space decay time 1 /�r

0 of approximately 1 ns. In weak cou-
pling �corresponding to the 8 nm distance�, the nonradiative decay
rate can also be estimated from time-dependent perturbation theory,
�nr�
g

2 /�0, where g
 is the coupling constant between the mol-
ecule and the resonant plasmon mode. The dotted line in the figure
shows the resulting decay. In our simulations, we include the 40
plasmon modes of lowest energy.
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FIG. 3. �Color online� Fluorescence spectra of the molecule in
the vicinity of the MNP for different molecular dipole moments,
given in a.u. The moments correspond to free-space decay rates
1 /�r

0 of approximately �a� 0.1 �s, �b� 4 ns, and �c� 1 ns. In the
weak-coupling regime of �a�, the line broadens with decreasing dis-
tance but does not split. In the strong-coupling regime of �b� and
�c�, the line splits at a given distance into two lines.
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starts to split�. For a coupling of the order of a few meV, the
approximation of a two-level system is justified for both
molecules and quantum dots, although the true line shape
might be additionally influenced by internal degrees of free-
dom �e.g., vibrations� of the quantum emitter.

When the molecule is brought even closer to the MNP, the
oscillator strength of the high-energy line vanishes and the
low-energy line becomes strongly redshifted. In this regime,
where the energy renormalization is of the order of several
tens of meV, the description of the quantum emitter in terms
of a generic few-level system is expected to break down. The
strong redshift of the emission peaks is due to the attractive
interaction between the molecule and the MNP, which is
strongly enhanced at small distances, and the different oscil-
lator strengths are associated with the different dipole mo-
ments of the predominantly MNP- and moleculelike polar-
iton modes at lower and higher energies, respectively. We
also found that moderate detunings between the molecule
and SPP energies do not drastically change the behavior
shown in the figures. Figure 4 shows that a similar behavior
is found for other MNP shapes and materials. We have also
performed calculations for spherical nanoparticles. Unfortu-
nately, for both silver and gold, the resulting surface plas-
mons have energies in a spectral region where d-band scat-
terings set in,27 and where the Drude description becomes
questionable. Our results �not shown� indicate that for nano-
spheres, strong coupling occurs at smaller distances than for
the particle shapes shown in Fig. 4, which might be due to
the larger number of plasmon modes to which the molecule
can couple.22

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have studied the strong coupling be-
tween a single molecule and a metallic nanoparticle within a
fully quantum-mechanical approach. We have demonstrated
that strong coupling is possible for realistic molecule and
nanoparticle parameters, despite the strong plasmon damp-
ing, and should be observable in fluorescence spectroscopy
through the splitting of emission peaks. Strong coupling is an
important ingredient for future plasmonic-based quantum in-

formation schemes and might play a significant role in bio-
sensor applications.
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APPENDIX

In this appendix, we derive Eq. �2� and show how to
quantize the SPP modes. Our starting point is the energy of a
classical plasma, Eq. �1�. Let us first consider the first term
on the right-hand side which describes the kinetic energy.
From the relation v=−�� between the velocity field v and
�, we obtain for the continuity equation

�tn = − n0 � v = n0�
2� , �A1�

which gives us the relation between the density displacement
n and the velocity potential �. In the following, we consider
surface charge distributions � which are nonzero only at the
surface of the MNP. Integration of the continuity equation
�A1� over a small cylinder 
 �height h→0 and base �S�,
which encloses a small surface element, then gives for the
right-hand side of Eq. �A1�

�



n0�
2�dV = �

�


n0n̂ · ��dS � n0
��

�n̂
�S . �A2�

Here, ��
�n̂ = n̂ ·�� denotes the surface derivative of the veloc-

ity potential. Together with the left-hand side of Eq. �A1�, we
find the link between � and �,

n0
��

�n̂
= �̇ . �A3�

Using Green’s first identity, we can rewrite the term for the
kinetic energy in Eq. �1� as

�



����2dV = �
�


�
��

�n̂
dS − �




��2�dV . �A4�

As evident from the continuity equation �A2�, for a pure
surface charge distribution, �2� is zero inside the metallic
nanoparticle and the second term on the right-hand side of
Eq. �A4� thus vanishes. We can now use the boundary-
element method19,22,29 to relate � to ��

�n̂ . Our starting point is

��r� = �
�

	G�r,s��

���s��
�n̂

−
�G�r,s��

�n̂
��s��
dS�

4�
,

�A5�

where G�r ,r��=1 / 
r−r�
 is the free-space Green function.
Performing the limit r→s in Eq. �A5� according to the pre-
scription given in Refs. 19, 22, and 29 and using the same
notation as in these references, we obtain

2�� = G�� − F� . �A6�

Here, �� and F are the surface derivatives of the velocity
potential � and the Green function G, respectively, and G, F

FIG. 4. �Color online� Line positions and oscillator strengths of
polariton modes for cigar-shaped �two lines on left-hand side� and
disk-shaped �two lines on right-hand side� nanoparticles and Ag and
Au. In Au, the lines split at smaller distances because of the stron-
ger plasmon damping �Ref. 28�. We use d=10 a.u..
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and �, �� are assumed to be convoluted in space.
At this point, it is convenient to switch to the boundary

elements of the discretized MNP surface �see also the inset
of Fig. 1�: � and � are vectors of the length of the number of
surface elements, and G and F are matrices connecting the
different surface elements. We can thus solve Eq. �A6�
through inversion �= �2�+F�−1G��. Together with the re-
lation �A3�, the term for the kinetic energy can then be
brought into the final form

1
2n0�

�


�
��

�n̂
dS → 1

2n0�̇T�2� + F�−1G�̇ . �A7�

Here, �T denotes the transposed surface charge vector.
For the potential energy of Eq. �1�, we follow the proce-

dure given in Ref. 19. We start from a relation similar to Eq.
�A5�, but with the velocity potential � replaced by the elec-
trostatic potential �. Taking the surface derivative inside and
outside the MNP, we obtain

�2� + F�� = G�1�,

�2� − F�� = − G�2�.

Here, �1� and �2� denote the surface derivatives of the poten-
tial inside and outside the MNP. Multiplying the first equa-
tion with the dielectric constant �0 of the metal and the sec-
ond one with the dielectric constant �b of the embedding
medium gives, after substraction,

�2���0 + �b� + ��0 − �b�F�� = G��0�1� − �b�2�� = 4�G� .

�A8�

To arrive at the last term of Eq. �A8�, we have used the
boundary condition n̂ · �D2−D1�=−�b�2�+�0�1�=4�� of

Maxwell’s equation. Putting all above results together, we
finally get Eq. �2�.

To obtain the eigenmodes, we first rewrite Eq. �2� in the
shorthand notation

H =
1

2n0
��̇TB�̇ + �TA�� , �A9�

where the explicit form of the matrices A and B can be in-
ferred from Eq. �2�. The matrices A and B are symmetric and
thus can be diagonalized simultaneously. Let 	


2 and u
 de-
note the eigenvalues and eigenvectors of the generalized ei-
genvalue problem

Au
 = 	

2Bu
. �A10�

The eigenvectors u
 can be chosen real and are orthogonal in
the sense

u

TBu
� = �
�

�. �A11�

We can thus expand the surface charge distribution in terms
of these eigenfunctions, viz.

� = �



�
ei	
ta
u
. �A12�

Here, �
=�2n0 /	
�
, and a
 is an expansion coefficient for
the eigenmode 
. Inserting this expression into Eq. �2� and
performing the standard quantization procedure via a canoni-
cal transformation,25,26,35 then, brings us to the plasmon
Hamiltonian in second-quantized form

Hpl = �



	
a

†a
, �A13�

with a

† being the creation operator for the plasmon mode 
.
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