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We present a dynamical theory of the Auger decay in one-dimensional metals described by the Tomonaga-
Luttinger model. An analytic expression of the Auger current is derived in the framework of the one-step
approach, where the finite lifetime of the initial core hole and the core-valence interaction are taken into
account. This allows us to capture typical dynamical features like the shake-down effect, in which the Auger
spectrum shows a nonvanishing weight above the two-step high-energy threshold. The obtained results give
also a hint to understand the sizable suppression of Auger spectral weight close to the Fermi energy recently
observed in carbon nanotubes with respect to graphite.
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I. INTRODUCTION

The dynamics of the core-valence-valence �CVV� Auger
transitions in strongly correlated solids has been extensively
studied during the past three decades.1 However, despite the
great interest devoted to this problem, several aspects are still
not well understood. The theoretical calculation of the Auger
spectrum of correlated solids is a challenging task because,
besides the intrinsic difficulty of dealing with a many-body
interacting system, the creation of the core-hole and the Au-
ger process itself are, in principle, coherent events, involving
virtual Auger transitions and incomplete relaxation
phenomena.2 The complete formulation of the theory de-
scribing the Auger decays has been provided in 1980 by
Gunnarsson and Schönhammer �GS�.2 In the framework of
the so-called one-step approach, they derived a general for-
mula for the Auger current by treating the decay of the initial
core hole to all orders. Unfortunately, such formulation can-
not be cast in terms of Green’s functions and is hard to
implement for practical purposes. A significant progress can
be done within the two-step approximation, where the pho-
toemission and the Auger decay are considered as indepen-
dent events. In this framework, Cini3 and Sawatzky4 �CS�
proposed a simple and elegant theory able to provide a quan-
titative understanding of the experimental Auger spectra of
transition metals with �almost� closed valence bands. An ad-
vantage of such theory is that it also provides a practical
scheme to estimate the value of the screened interaction from
the experimental spectra.5–7 This is particularly useful to sup-
port LDA+U calculations.8 In the case of open-band sys-
tems, the CS approach breaks down and no reliable theory is
currently available. Very recently, Seibold et al.9 presented a
theory of the dynamical two-particle response function in the
two-dimensional �2D� Hubbard model based on the time-
dependent Gutzwiller approximation. Although important ef-
fects are not treated there �e.g., the finite lifetime of the core
hole and the interaction of the core hole with the valence
electrons�, the theory provides a different tool to attack the
calculation of the Auger spectrum in correlated open-band
systems.

In this paper, we develop a dynamical theory of the CVV
Auger transitions in an ideal one-dimensional �1D� metal. In
the CVV Auger decay, two holes are left in the valence band

after the x-ray photoemission of a deep core hole. Here, as-
sume that the valence electrons form the so-called Luttinger
liquid �LL�, described by the Tomonaga-Luttinger model. We
also allow for the interaction between the core hole and the
valence electrons, and introduce a term responsible for the
Auger transition, which destroys the core hole and creates
the Auger electron together with the two valence holes �and
vice versa�. The corresponding Auger current is calculated
analytically by using the bosonization and equations of mo-
tion methods.

The paper is organized as follows. In Sec. II, we describe
in detail the model Hamiltonian used in the present work. In
Sec. III, we derive a closed analytic expression for the Auger
current in the framework of the one-step approach. In Sec.
IV, we discuss the relevant features emerging from the ob-
tained formula. In particular, we show that the theory ex-
posed here is able to capture some striking features recently
observed in the Auger spectra of carbon nanotubes. Finally, a
brief summary and the main conclusions are drawn in Sec. V.

II. MODEL

The LL is the prototype of interacting electrons confined
in one spatial dimension, characterized by striking phenom-
ena such as the so-called spin-charge separation and the
power-law dependence of observables in proximity of the
Fermi energy.10–15 In Tomonaga-Luttinger Hamiltonian, the
electrons have a linear dispersion relation around positive
�right� and negative �left� Fermi points and the electron-
electron �e-e� interactions act only between right and left
electron densities. The model is exactly solvable by means of
the bosonization technique, which allows us to write the
electron Hamiltonian in terms of boson operator16 b’s:

HLutt = �
q�0,�

vF

2
�q��b�

†�q�b��q� + b��q�b�
†�q��

+ �
q�0,�

g4

4�
�q��b�

†�q�b��q� + b��q�b�
†�q�

+ b�
†�q�b−��q� + b��q�b−�

† �q��

− �
q�0,�

g2

4�
�q��b�

†�q�b�
†�− q� + b��q�b��− q�
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+ b�
†�q�b−�

† �− q� + b��q�b−��− q�� , �1�

where �= ↑ ,↓ is the spin index, �b��q� ,b��
† �q���=��,���q,q�,

vF is the Fermi velocity, g4 is the interaction parameter be-
tween right-right �positive q� and left-left �negative q� elec-
tron densities, while g2 is the interaction parameter between
left and right densities.

The key point of the bosonization is that it is possible to
express the fermion fields in terms of boson fields. Here, it is
useful to introduce a chirality index �=R ,L to distinguish
between right and left electron modes. For instance, the
�=R fermion field is given by

��,R�x� =
�R,�

�2���1/2ei��,R�x�, �2�

where �R,� is an anticommuting Klein factor and

��,R�x� = �
q	0

�2�

qL
�1/2

e−�q/2�b�
†�q�e−iqx + b��q�eiqx� + 
0,R

+
2�xNR

L
, �3�

where NR is the total number of right electrons, �
0,R ,NR�
= i, and L is the length of the system. � is a short-distance
cutoff that must be introduced in order to have converging
integrals.17 In principle, the bosonization provides exact re-
sults in the limit �→0; however, for practical purposes, it is
useful to take a nonzero �small� � which introduces a finite
effective bandwidth �=vF /� in the system. By doing this,
we have to bear in mind that such procedure gives an accu-
rate physical description only in the low-energy part of the
spectrum.18

The coupling of valence electrons to the core hole is given
by2,19,20

H� =	2�

L
�
q�0

�
�

��q��b�
†�q� + b��q���1 − nc� , �4�

where ��q� is the core-valence coupling constant, L is the
volume of the system, cc

�†� is the annihilation �creation� op-
erator of the core electron, whose occupancy and energy are
nc=cc

†cc and 
c, respectively. In the following, we will take
��q�
�.

The term responsible for the Auger decay is more conve-
niently expressed in the fermionic representation and reads

HA = cp
†cc

†A + H.c., A = V�↑�0��↓�0� , �5�

where cp
�†� destroys �creates� the Auger electron and

�� = ��,R + ��,L. �6�

V is the so-called Auger matrix element, which, here, is taken
as a constant. Here, we are assuming for simplicity that the
CVV decay leaves the two final holes in the origin of the
system in a singlet configuration. This reflects the local na-
ture of the Auger process; however, such assumption is not
essential and could be relaxed.

As long as the interactions do not depend on spin, HLutt
can be diagonalized by introducing charge and spin boson

operators: bc,s
�†��q�= �b↑

�†��q��b↓
�†��q�� /	2, and performing a

Bogoliubov transformation in the charge sector: b̃c�q�
=cosh 
bc�q�+sinh 
bc

†�−q� and b̃c
†�q�=sinh 
bc�−q�

+cosh 
bc
†�q�, with tanh 2
= �g2 /�� / �vF+ �g4 /��� and

renormalized velocity v= ��vF+ �g4 /���2− �g2 /��2�1/2. In the
next section, we use the bosonization scheme sketched above
to compute the Auger spectrum of a 1D metal described
within the Luttinger liquid theory.

III. CALCULATION OF THE AUGER SPECTRUM

The one-step formulation of the Auger processes has been
provided by GS,2,21 who showed that the Auger current is
given by the following correlator:2,22

j��� =
��2

2



0

�

dt

0

�

dt�ei��t−t��f�t,t�� , �7�

where the factor ��2 /2 is chosen in order to have a normal-
ized spectrum and

f�t,t�� = �g�cc
†ei�H�0�+i�̂�t�ccA

†eiH�1��t−t��Acc
†e−i�H�0�−i�̂�tcc�g� .

�8�

In the above expression, �g� is the ground state before the
x-ray photoemission, H�0,1� is the Hamiltonian of the sys-
tem H=HLutt+
c�1−nc�+H�, with nc=0 and 1, respectively,

and �̂ is an effective optical potential describing virtual Au-
ger transitions and relaxation processes.2 In order to proceed,
we make the following approximation:

f�t,t�� � �g̃�eiH̃�0�t�A†eiH�1��t−t��Ae−iH̃�0�t�g̃�e−i
c�t−t��e−��t+t��


 C�t,t��e−i
c�t−t��e−��t+t��, �9�

where the second line of the above equation is the core-hole
Green’s function with lifetime 1 /�, which is a c-number. �g̃�
denotes the ground state of HLutt �whose elementary excita-

tions are created by b̃c
† and bs

†�, describing the valence band

in the initial state, and H̃�0�
H�0�−
c. As noticed by GS,2

the strength of the effective optical potential is proportional
to the square of the Auger matrix element, and hence we can
replace V2 by �. C�t , t�� can be calculated exactly by using
the bosonization formulas in Eqs. �2� and �3� and the equa-
tions of motion method. After some algebra, one gets a com-
pact expression by introducing new variables �= t− t� and T
= �t+ t�� /2:

C��,T� =
�

2�
� �geh��,T�

�− i�v + ��g +
�l+1ek��,T�

�− i�v + ��l�− i�vF + ��� ,

�10�

where we have defined g=2�cosh2 
+sinh2 
� and l
= �cosh 
+sinh 
�2. The complex functions h�� ,T� and
k�� ,T� are reported in the Appendix. Finally, the Auger cur-
rent reads
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j�� − 
c� = 

−�

�

d�

0

�

dT ei��e−2�TC��,T� , �11�

where we refer the kinetic energy of the Auger electron �
with respect to the core-level energy 
c. Equations �10� and
�11� constitute the main finding of the present work. In the
next section, we discuss the most relevant features emerging
from Eqs. �10� and �11�, which give a hint to understand the
physics of the Auger transitions in 1D systems.

IV. DISCUSSION

We first observe that despite the LL nature of the valence
electrons, the correlator C�� ,T� does not obey a power law,
which is spoiled by the interaction � between the valence
electrons and the core hole. It is also interesting to study the
relationship of our solution with the two-step approach. This
is done in the limit �→0. As discussed by GS, if such limit
exists, one should recover the well-known two-step solution
since the Auger transition happens after the complete relax-
ation of the initial state. Such limit is carried out by observ-
ing that

lim
�→0

2�

0

�

dTe−2�Tez��,T� = lim
T→�

ez��,T�, �12�

with z=h and k. We note that for any finite �̃, the limit on the
right hand side does not exist, because for large T, we have

h�� ,T��k�� ,T����̃ /v�2iv� ln�vT /a�. This is a remarkable
result, showing that the two-step approach is not justified if
the valence band, is described by the LL. On the other hand,

if we set �̃=0, the one-step and two-step solutions do coin-
cide because the two-step spectrum is obtained from the two-
particle Green’s function describing the valence electrons
�holes� in the ground state of HLutt. The two-step approach is
often employed in typical Auger calculations and, therefore,
it is instructive to compare it with our one-step solution. The

two-step Auger current is readily obtained by setting �̃=0
and results in

jtwo-step�� − 
c� = 

−�

�

d�
ei��

4�
� �g

�− i�v + ��g

+
�l+1

�− i�v + ��l�− i�vF + ��� , �13�

which recovers the characteristic power-law suppression at
��0. The comparison between the Auger spectra calculated
with j��−
c� and jtwo-step��−
c� is shown in Fig. 1. As dis-
cussed above, it is seen that j does not approach jtwo-step for
small � �compared to ��. In particular, we note that for
�→0, the center of gravity 
g of j �stars and circles� is
shifted toward lower kinetic energies with respect to the cen-
ter of gravity of jtwo-step �triangles� with a logarithmic depen-

dence 
g��̃2 ln��a /v�.
Another interesting case is obtained in the limit �→�,

that is, for very short core-hole lifetime. In this case, 2�e−2�T

produces a Dirac delta in the T integration:

lim
�→�

2�

0

�

dTe−2�T ez��,T� = ez��,0�, �14�

with z=h and k. In this limit, the Auger transition occurs

when the initial state is still excited, since e−iH̃�0�t�g̃� is not an
eigenstate of H�1�. As a consequence, the excitations created
on emission of the initial core electron transfer their energy
to the Auger electron, which then has a kinetic energy ex-
ceeding the high-energy threshold 
c in the two-step model
�see Eq. �13� and Fig. 1 �boxes��. This phenomenon, known
as shake down, is a typical example of qualitative departures
from the predictions of the two-step model.

Finally, we show that our theory provides an explanation
of the sizable suppression of CVV Auger spectral weight
close to the Fermi energy observed in carbon nanotubes with
respect to graphite.23,24 This is a striking trend, since the
structure of the one-particle density of states �1PDOS� of the
two carbon structures would predict the opposite behavior. In
fact, while in metallic nanotubes the 1PDOS at the Fermi
energy is finite due to the 1D linear dispersion, in graphite it
is vanishing, due to the 2D conical dispersion. Therefore, we
expect that correlation effects have to be invoked in order to
revert the one-particle scenario.

Metallic carbon nanotubes are believed to be rather good
�although approximate� realizations of LL25–27 since in nor-
mal conditions the main correlation effects come from the
long-range part of the Coulomb repulsion. In nanotubes with
radius R, the backscattering interactions with large momen-
tum transfer suffer a 1 /R suppression.28,29 Therefore, we be-
lieve that typical metallic �10,10� nanotubes are well de-
scribed by the present theory. Concerning graphite, we use
the CS approach, which is known to give the Auger spectrum
in excellent agreement with experimental one.24,30 In order
to employ the CS approach, we must compute the two-
particle valence Green’s function within the bare ladder
approximation.34 This is accomplished starting from the non-
interacting valence 1PDOS

�10 �8 �6 �4 �2 0
Ω

0

0.0025

0.005

0.0075

0.01

0.0125

0.015

J�Ω�

FIG. 1. Auger current j��−
c� calculated numerically from Eq.
�11� for different values of the core-hole lifetime and core-valence
interaction: � /�=0.001 �stars�, � /�=0.01 �circles�, � /�=0.1
�crosses�, and � /�=� �boxes�. Here, we have taken g4=g2=4,
�=0.1, vF=1, a=1, and �=4 except in triangle curve, where �=0.
� is expressed in units of �. The vertical line denotes the two-step
high-energy threshold 
c, set equal to zero in the present figure.
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�0
2D��� = �−2��− �����e−���/�, �15�

which is obtained by imposing the 2D linear spectrum

�kx ,ky�=vF�kx

2+ky
2�1/2 and the momentum cutoff 1 /�. We

note in passing that �0
2D vanishes linearly at �=0, as it

should. The corresponding noninteracting two-particle
Green’s function G0

2D is obtained by self-folding �0
2D and by

Hilbert transforming:

G0
2D��� = �1/6���2 − ��/�� + 2��/��2 − ��/��3e�/���0,�/��� ,

�16�

where ��x ,y� is the incomplete gamma function. Thus, the
Auger spectrum of graphite according to CS theory is31

jCS
2D�� − 
c� = −

1

�
Im� G0

2D�− � + i0+�
1 − UG0

2D�− � + i0+�� , �17�

where U is the short-range screened repulsion felt by the two
valence holes in the final state. It is worthy to recall that our
model is suitable to represent the � electrons of nanotubes
and graphite, which are the ones involved in proximity of the
Fermi level �placed at �=0�. Therefore, only the low-energy
portion of the experimental Auger spectra can be addressed
within the present framework, while the high-energy spectral
region, corresponding to deep �p and �s states, cannot be
described here. A complete analysis including the missing �p
and �s states can be found in Ref. 24. However, in that paper,
the suppression of the Auger spectrum of nanotubes close to
the Fermi energy was reproduced by including some phe-
nomenological form factors which have been fitted with the
experimental data. Conversely, in the present work, the prob-
lem is treated starting from a fully microscopic theory with
no adjustable parameter.

In order to compare with the experiment, we use the
following realistic values for graphite and �10,10� metallic
nanotubes: vF�106 m /s, � such that �=vF /��10 eV,
��0.2 eV �Ref. 32� �i.e., � /�=0.02�, g4=g2
�2e2 ln�L /R� /��5vF,33,34 a�1 Å, U�2 eV,24,6 and leav-
ing the adimensional ratio � /	a� as free parameter. In Fig.
2, we see that the inclusion of e-e correlations in carbon

nanotubes according to the LL theory within the two-step
approach �black solid line� is not enough to reproduce the
suppression of j vs jCS

2D close to ��0. On the other hand, the
full one-step theory with finite � /	a�� provides results in
qualitative agreement with the experimental trend.35 This is a
quite reasonable finding, considering that the core-valence
repulsion is larger than �but of the same order of� the
valence-valence repulsion.

V. SUMMARY AND CONCLUSIONS

Traditional photoemission and inverse photoemission ex-
periments which probe one-particle dynamical responses
provide a well-established tool for the understanding of
strongly correlated 1D systems. A great amount of theoretical
work devoted to this problem has been published in the past,
enlightening the role of the LL concept to explain several
features.10–15

Surprisingly, the study of the 1D Auger transitions, which
are related to the two-particle dynamics, has been only
poorly addressed. On the other hand, the Auger spectroscopy
is a powerful experimental technique which permits the char-
acterization of the correlations in solids and, therefore, is of
crucial importance in the study of strongly correlated sys-
tems.

In the present work, we have developed a dynamical
theory of the Auger processes in 1D metals described within
the LL theory. Our theory includes the finite core-hole life-
time and the valence-valence and the core-valence interac-
tions as well. A typical one-step feature is observed in the
limit of small core-hole lifetime, in which the valence elec-
trons cannot relax before the Auger transition, and the shake-
down phenomenon occurs. Remarkably, it is shown that the
two-step approximation is not valid for any finite core-
valence interaction, which also spoils the low-energy power-
law behavior typically expected in the LL. Only for vanish-
ing core-valence interaction, the power-law is recovered.
Finally, we have shown that our one-step theory is able to
reproduce the low-energy suppression of Auger spectral
weight observed in carbon nanotubes with respect to graph-
ite.
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APPENDIX: FUNCTIONS h„� ,T… AND k„� ,T…

The final expression for C�t , t�� in Eq. �10� has been ob-
tained by employing the bosonization formulas in Eqs. �2�
and �3� and the equations of motion method. In order to
perform the sum over q, we used q=2�n /L and took the
large-L limit. When doing this, it is useful to set L=aN,
where N is the number of sites of the 1D system and a is the
lattice constant, and send N→�. The functions h�� ,T� and
k�� ,T� obtained in this way read

�14 �12 �10 �8 �6 �4 �2 0
Ω

0

0.005

0.01

0.015

0.02

0.025

J�Ω�

graphite

Λ�����aΓ � 7

Λ�����aΓ � 6

Λ�����aΓ � 5

Λ�����aΓ � 4

Λ�����aΓ � 3

Λ�����aΓ � 0

FIG. 2. Comparison between the calculated Auger current for
graphite jCS

2D��−
c� �crosses curve� and �10,10� single-walled nano-
tubes j��−
c� according to Eq. �11� for different values of the
core-valence interaction. � is expressed in units of �, and 
c is set
equal to zero.
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h��,T� = −
�̃

v
2i	��cosh 
 − sinh 
��	3� + 2iv�T +

�

2
� +	3� − 2iv�T +

�

2
� −	3� + 2iv�T −

�

2
� −	3� − 2iv�T −

�

2
��

+ � �̃

v
�2�− 4� ln�2�

a
� + 2�2� − iv��ln�2� − iv�

a
� + �� − iv�T −

�

2
��ln�� − iv�T −

�

2
�

a
�

− �� + iv�T −
�

2
��ln�� + iv�T −

�

2
�

a
� − �� − iv�T +

�

2
��ln�� − iv�T +

�

2
�

a
�

+ �� + iv�T +
�

2
��ln�� + iv�T +

�

2
�

a
�� �A1�

and

k��,T� = � �̃

v
�2�− 4� ln�2�

a
� + 2�2� − iv��ln�2� − iv�

a
� + �� − iv�T −

�

2
��ln�� − iv�T −

�

2
�

a
�

− �� + iv�T −
�

2
��ln�� + iv�T −

�

2
�

a
� − �� − iv�T +

�

2
��ln�� − iv�T +

�

2
�

a
�

+ �� + iv�T +
�

2
��ln�� + iv�T +

�

2
�

a
�� , �A2�

with �̃=�	2�cosh 
−sinh 
�.
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