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Quantum antidot, a small potential hill introduced into a two-dimensional electron system, presents an
attractive tool to study quantum mechanics of interacting electrons. Here, we present experiments on electron
resonant tunneling via a quantum antidot on the integer i=1, 2, 3, 4, 5, and 6 quantum Hall plateaus. Several
features are reported. First, as a function of magnetic field, we observe up to six quasiperiodic resonant
tunneling peaks within the fundamental flux period: When flux h /e is added to the area of the antidot, there are
i peaks on the ith integer plateau when i spin-polarized Landau levels are occupied. Corresponding backgate
voltage data show one peak per added charge e on all integer plateaus. Second, we observe tunneling dips in
four-terminal resistance �“forward scattering”� on the even i=2, 4, and 6 plateaus when the populations of both
spins are nearly equal. We also report an internal structure observed within the h /e period: On the i=3
spin-split plateau, two of the three resonant tunneling peaks are higher and/or closer than the third. Puzzlingly,
in this regime, when the backgate voltage is swept, the tunneling peaks are grouped in pairs. These results are
attributed to the dominance of the electron-electron Coulomb interaction, effectively mixing the Landau level
occupation, and to the self-consistent electrostatics of the antidot.
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I. INTRODUCTION

The integer quantum Hall effect1 can be understood in
terms of electron transport by edge channels corresponding
to an integer number of fully occupied Landau levels.2,3 Near
an integral Landau level filling �� i, the Hall resistance is
quantized exactly to h / ie2 because the chemical potential lies
in the gap of localized bulk states, and the current is carried
by dissipationless edge channels. Dissipative transport oc-
curs when current is carried either by extended bulk states of
the partially occupied topmost Landau level between the pla-
teaus or by quantum tunneling between the extended edge
states. Such interpretation of the integer quantum Hall effect
in terms of edge channels is straightforward for noninteract-
ing electrons when the edge channels are formed in one-to-
one correspondence with the bulk Landau levels defined in
the single-electron density of states.2,3 However, under
nearly all experimental conditions, the electron-electron in-
teraction is not small compared to single-particle energies
involved, and the effects of interaction are subjects of intense
experimental and theoretical research.

Quantum antidots �QADs� present a fascinating tool to
study fundamental many body quantum mechanics. For ex-
ample, a QAD electrometer has been used in the direct ex-
perimental observation of a fractionally quantized electric
charge of Laughlin quasiparticles.4–6 Other earlier studies of
antidots performed in the integer quantum Hall regime fo-
cused on the demonstration of the Aharonov-Bohm effect in
the edge channel circling the antidot,7–9 the detection of the
variation of the charge state of the antidot when one electron
is added or subtracted,10 and a detailed investigation of the
line shape of a single resonant tunneling peak and its tem-
perature dependence in the limit where the tunneling peaks
are well separated.11 QADs were also studied in the frac-
tional quantum Hall regime; in particular, the line shape of

the tunneling peaks has been studied in detail,12 and the ab-
solute energy scale of the QAD-bound states was determined
via the technique of thermal activation.13 An experimental
observation of a coherent QAD “molecule”14 has led to a
proposal of an anyonic quantum computation scheme based
on the adiabatic transfer of Laughlin quasiparticles in arrays
of coupled QADs.15

In this paper, we report several features observed in reso-
nant tunneling experiments through a single QAD placed in a
constriction in the integer quantum Hall regime. First, we
observe up to six quasiperiodic tunneling peaks when the
flux h /e is added to the area of the antidot: i peaks on the ith
integer plateau when i spin-split Landau levels are occupied.
Second, we report observations of tunneling dips in four-
terminal resistance �“forward scattering”� on the even i=2, 4,
and 6 plateaus when both spin-up and spin-down electron
populations are nearly equal. We also report an internal
structure within the fundamental h /e period: On the i=3
spin-split plateau, two of the three resonant tunneling peaks
are higher and/or closer than the third. Puzzlingly, the peri-
odicity is different when the backgate voltage is swept: The
tunneling peaks group in pairs.

II. ISOLATED ANTIDOT

In this section, we outline a noninteracting electron theory
of an isolated quantum antidot and discuss its inadequacy
under experimental conditions. An antidot is created when a
small potential hill U�r� is introduced into a two-dimensional
electron system �2DES� in the presence of quantizing mag-
netic field �Fig. 1�. As is well known, two-dimensional elec-
trons in a strong perpendicular B=Bẑ form Landau
levels.2,3,16 The Hamiltonian can be written as
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H = �
j
� 1

2m*
�p j + eA�r j��2 − �Bg*S j · B − eU�r j��

+ �
j�k

e2

4���0	r j − rk	
, �1�

where the jth electron with charge −e, effective GaAs con-
duction band mass m*=0.067me, and spin Lande factor g*

=−0.44 experiences the vector potential A�r j�= 1
2 �B�r j� �in

the symmetric gauge� and the antidot bare potential U�rj�,
which is assumed to be rotationally symmetric. The two-
dimensional electrons are described by radius vector r j, mo-
mentum p j, and spin S j operators. The double sum gives the
contribution of the interelectron Coulomb interaction in a
host medium with dielectric constant �.

First, neglecting electron-electron interaction and the an-
tidot bare potential U�r�, in the symmetric gauge, single-
particle orbitals �m in each Landau level can be chosen to be
eigenstates of the angular momentum operator L=r�p with
eigenvalues 	m, where quantum numbers m=0,1 ,2 , . . .. For
an electron in the lowest Landau level �Landau level index
N=0� these orbitals are,

�m�r,
� = rm exp�im
 − r2/4�/
2�2mm!, �2�

where r is in units of magnetic length �=
	 /eB and 
 is the
azimuthal angle. Analogous basis wave functions �m,N,� can
be written for all Landau levels. In each spin-polarized Lan-
dau level, all eigenenergies are equal: Em,N,�=	�C�N
+1 /2�
 �1 /2��BgB does not depend on m. That is, the states
�m,N,� are all degenerate for a given N and spin. As is easy to

see, for m�1, the probability density 	�m	2 is sharply peaked
at r=rm=
2m�, and the area within a circle of radius rm is
Sm=2�m�2=mh /eB. In other words, the semiclassical area
of the orbital �m,N,� in each Landau level encloses precisely
m�h /e� of the magnetic flux, independent of N and spin,
known as the Aharonov-Bohm quantization condition.4–6

The main effect of the antidot bare potential U�r� is to lift
the massive degeneracy of the antidot-bound electron states
�m in each Landau level �Fig. 1�. When the gradient of U�r�
is small, it can be treated as a perturbation. The condition of
weakness of U�r� is that the potential energy acquired by an
electron displaced from rm+1 to rm must be small compared
to the energy separating successive Landau levels: ��U /�r�
��rm+1−rm��	�C=	eB /m*, so that the external potential
does not induce significant Landau level mixing. We note
that rm+1−rm=�2 /rm=� /2m�
B /B=1 /
B on a given quan-
tum Hall plateau �� i.

In the first order of the perturbation theory, each energy
Em,N,� is shifted by ��m,N,� 	U�r� 	�m,N,��=U�rm�, indepen-
dent of the Landau level index and spin. Thus, to the first
order, the noninteracting QAD-bound electron energy is

Em,N,� = �N + 1/2�	�C 
 �1/2��Bg*B + U�rm� . �3�

The lifting of degeneracy by U�r� allows us to change the
population of the antidot-bound states one particle at a time
by tuning an external parameter, such as the magnetic field or
a gate voltage, provided that the temperature, electromag-
netic background “noise,” and any applied excitation are low
enough. This, in turn, allows tunneling spectroscopy of the
antidot-bound electron states, the subject of this work.

The second order contribution17 to Em,N,� involves mixing
of Landau levels of the same spin and, for m�1, is approxi-
mately −���U /�r���2 /4m	�C. Linearizing U�r�, we obtain
the condition

Umax � 2	�CRQAD

2m/� � B3/2, �4�

where Umax is the height of the QAD potential hill and RQAD
is the characteristic radial size of the bare potential. This
condition is nearly always satisfied in experiments because
in GaAs, taking RQAD=300 nm �typical depth of the 2DES
layer from the surface�, we obtain Umax�0.64 eV at 1 T,
Umax�1.8 eV at 2 T, and Umax�9.4 eV at 6 T.10,11 Since
the interacting electrons screen the bare potential, the
screened value of �U /�r at the chemical potential should be
used above, further relaxing the condition on Umax �Eq. �4��.

The effect of the electron-electron interaction is to mix the
occupation of the basis orbitals �m,N,� belonging both to the
same spin-polarized Landau level and to different Landau
levels, so that the Landau level index N is no longer a good
quantum number. The many-electron ground states of defi-
nite spin �� or �� and the total angular momentum M	 are
constructed as

�M,� = �
m,N

cm,N,��m,N,�. �5�

These �M,� involve superposition of a number of the basis
orbitals in a number of Landau levels of a given spin.

FIG. 1. �Color online� An isolated quantum antidot. �a� Neglect-
ing electron-electron interaction, the three lowest Landau levels
shown follow the bare potential U�r� hill. At a low temperature, the
chemical potential � separates the occupied and empty electron
states. �b� A view of QAD-bound electron orbitals in the 2D elec-
tron plane for a weak, rotationally symmetric U�r�. The mth orbital
of radius rm encloses mh /e of the magnetic flux. The occupied
states �rm�r�� are shown by thicker circles.
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When electron-electron interaction dominates, an analogy
with the fractional quantum Hall effect16,18 suggests that total
energies of QAD-bound electrons EM,� behave as illustrated
in Fig. 2. Energies EM,� exhibit a cusp down at integer val-
ues of M, and one of these cusp-down values is the global
ground state of the system at a given B. When magnetic field
is increased, at some B the energies EM,� and EM+1,� cross,
and the total angular momentum of the ground state is in-
creased by 1. When EM,� and EM+1,� are equal, it costs no
energy to add an electron to the system at the chemical po-
tential, so that electrons at � can tunnel resonantly between
the two edges via the QAD, and a conductance peak occurs.
This is similar to tunneling dynamics in Coulomb-blockade
systems.

Gauge invariance arguments16,19 require that when fluxoid
��=h /e is inserted adiabatically at the center of the antidot
�where there are no electrons�, the electron system returns to
the initial microscopic state. Thus, for quantum antidots,
��=h /e is the fundamental flux period. As discussed in Sec.
V, on the ith quantum Hall plateau, the addition of flux h /e
increases M by i to M + i, so that there are i tunneling peaks
expected within the fundamental flux period. For large M
�1, when r� is nearly fixed by the self-consistent confine-
ment potential, the corresponding field interval is �B
=h /e�r�

2 .
In 2D electron samples realized in GaAs /AlGaAs hetero-

structures for electron density n=1�1011 cm−2 at 1 T, the
characteristic energies are cyclotron 	�C=1.7 meV and Zee-
man �Bg*B=0.025 meV, while the interelectron Coulomb
interaction e2n1/2 /4���0=3.6 meV dominates. Hartree-Fock
calculations20 for up to 300 electrons forming an i=2 “maxi-
mum density droplet” and density functional calculations21

in antidot geometry demonstrate some of the qualitative fea-
tures of the interacting 2D electrons discussed above.

III. EXPERIMENTAL TECHNIQUE

The quantum antidot samples were fabricated from a very
low disorder GaAs /AlGaAs heterojunction material. The 2D
electron layer �320 nm below the surface� with “bulk” elec-
tron density nB=1.2�1011 cm−2 is prepared by exposure to

red light at 4.2 K. The two independently contacted front
gates and the antidot were defined by electron beam lithog-
raphy on a pre-etched mesa with Ohmic contacts. After a
shallow, 150–180 nm wet chemical etching, a 50 nm thick
Au /Ti gate metal was deposited in etch trenches, followed
by lift-off. Samples were mounted on sapphire substrates
with In metal, extending over the entire GaAs chip, which
serves as a global backgate. The QAD sample reported in
this paper has a nominal lithographic antidot diameter of
180 nm and an antidot front-gate distance of 750 nm. It was
measured in several cooldown cycles over three years; dur-
ing this time, surface depletion of the etched GaAs was af-
fected to some extent by oxidation in room air, but the per-
tinent tunneling and transport features reported here were
observed to persist.

Samples were cooled to 12 mK in the mixing chamber tail
of a top loading into mixture 3He-4He dilution refrigerator.
Four-terminal resistance RXX
VX / IX was measured by pass-
ing a 100–500 pA �larger current on i�1 plateaus�, 5.4 Hz
ac current through contacts 1 and 4, and detecting the voltage
between contacts 2 and 3 �see Fig. 3� by a lock-in-phase
technique. An extensive cold filtering cuts the integrated
electromagnetic noise environment incident on the sample to
�5�10−17 W, which allows us to achieve a very low elec-
tron temperature of 18 mK in a mesoscopic sample.12

The antidot and the two front gates are deposited into etch
trenches. Even when voltages applied to the front gates

M3M2M1

B1 < B2 < B3

B3

B2

B1

T
ot
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en
er
gy

E
M

Total angular momentum M

FIG. 2. Qualitative dependence of total energy EM vs total an-
gular momentum M	 for interacting QAD-bound electrons at three
applied magnetic fields. The ground state of the electron system
shifts from M1 at B1 to M2 at B2, and to M3 at B3.

(b)

� �E >> kT

12

3 4

VFG1 VFG2

VBG
(a)

FIG. 3. �Color online� A quantum antidot sample. �a� The anti-
dot is in the constriction between two front gates �FG�. Numbered
rectangles are Ohmic contacts; the blue arrowed lines show an edge
channel. The red dashed lines show the resonant tunneling path.
The backgate �BG� extends over the entire sample on the opposite
side of the insulating GaAs substrate. �b� Self-consistent energy
diagram of one Landau level in the constriction. The energy spec-
trum is continuous at the extended edges and discrete at the antidot.
The arrows show tunneling at chemical potential �; the quantum
Hall gap forms the tunneling barriers. At a low temperature, tunnel-
ing between the left and right edges occurs via only one antidot-
bound state within kT of �.
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VFG=0, the GaAs surface depletion potential of the etch
trenches defines two constrictions in 2DES, separating the
front gates from the circular antidot. In this work, the VFG
�with respect to the 2D electron layer� are approximately
equal; the difference is used to fine tune for the symmetry of
the two constrictions. The depletion potential has a saddle
point in each constriction region, and so has the resulting
electron density profile. From the magnetotransport measure-
ments �see Sec. IV�, we estimate the saddle point density
value nC�0.9nB when VFG=0, which varies somewhat due
to the self-consistent electrostatics of the 2D electrons in the
presence of a quantizing magnetic field. Upon application of
a negative VFG�−1.3 V, the constriction saddle point den-
sity is reduced to nC�0.58nB.

IV. QUANTUM HALL MAGNETOTRANSPORT

The 2D electron system on a quantum Hall plateau i
opens an energy gap and is therefore an insulator. The quan-
tum Hall edge channels are formed following the equipoten-
tials, where the electron local density n is such that the Lan-
dau level filling factor �=hn /eB is equal to an integer i
=1,2 ,3 , . . .. While ��n /B is a variable, the quantum Hall
exact filling i, defined as the inverse of the value of the
quantized Hall resistance RXY in units of h /e2 �that is, i

h /e2RXY�, is a quantum number. In the 2D bulk, variation
of B from the exact �= i is accommodated by the creation of
quasiparticles ��� i� or quasiholes ��� i�. Here, the relevant
quasiparticles are electrons of charge e and Fermi statistics in
the next ��= i+1� partially occupied Landau level, and quasi-
holes are the missing electrons in the otherwise full �= i
Landau level.

The edge channels on the periphery of the 2DES have a
continuous energy spectrum because they are macroscopi-

cally long and are connected to a dephasing electron reser-
voir, an Ohmic contact. The transport current is carried by
the extended states in the edge channels near the chemical
potential, where low-energy excitation is possible. The par-
ticle states of the edge channel circling the antidot are of a
microscopic size and, if quantum coherent when the tem-
perature and excitation are sufficiently low, are quantized by
the Aharonov-Bohm condition, as discussed in Sec. II. Be-
cause of the finite gradient of the antidot potential U�r�, the
QAD-bound electron states have a nondegenerate energy
spectrum. Resonant tunneling between the extended edge
channels proceeds via the quantized antidot-bound states. On
a plateau, when the bulk is gapped, the tunneling is the only
transport mechanism giving rise to nonzero RXX, the quantum
Hall gap forming the tunneling barrier.

Figure 4 shows the directly measured four-terminal RXX as
a function of applied magnetic field B. The two features seen
are the quantized RXX plateaus, discussed below, and the

2.0 2.2 2.4 2.6

0.5

1.0

iC = 1

RXX

(h/e2)

B (Tesla)

FIG. 5. �Color online� Resonant tunneling data for the i=1 pla-
teau in the QAD constriction.
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FIG. 4. �Color online� Four-terminal RXX vs B. The two traces were obtained with two slightly different biases on one of the front gates,
VFG1. Note that the bulk filling does not depend on front-gate bias.
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resonant tunneling regions, presented in detail in the next
section. The local Landau level filling factor �
hn /eB is
proportional to n�r�, and the electron density in the constric-
tions nC is appreciably less than nB in the bulk. There are two
regimes possible: one when the two quantum Hall plateaus,
iC in the constrictions and iB in the 2D bulk, overlap in a
range of B, resulting in a quantized RXX= �h /e2��1 / iC

−1 / iB� plateau.22,23 Several such examples are seen in Fig. 4.
Increasing the magnetic field, a transition iB→ iB−1 is seen
as a step down �RXX�B� decreases� and a transition iC→ iC

−1 is seen as a step up �RXX�B� increases fast�. This can also
occur for a fractional quantum Hall plateau, for example,
iC=1, fB=5 /3 and fB=4 /3 in Fig. 4. The second possibility
is when �B�1.5 or 2.5 occurs on a well-developed iC=1 or
iC=2 plateau. Here, the bulk RXY�B��h /�e2 is approxi-
mately linear and is seen as a negative slope straight line in
the four-terminal RXX�B�, B�3.2 T ��B�1.5, iC=1�, and B
�1.4 T ��B�3.5, iC=2�. Thus, an observation of a quan-
tized plateau in RXX�B� implies quantum Hall plateaus for
both the constriction region and the bulk and, in practice,
provides definitive values for both iC and iB.

V. RESONANT TUNNELING

When the constriction is on a quantum Hall plateau, no
dissipative conduction is possible between the right and left
edges, conductance G=0 in the limit of low temperature and
excitation, except that the electrons can tunnel resonantly via
the QAD-bound states, giving rise to quasiperiodic tunneling
conductance GT peaks. A peak in GT occurs when a QAD-
bound state crosses the chemical potential �see Fig. 3� and
therefore signifies the change in QAD occupation by one
electron. The directly measured RXX vs B data on constriction
iC=1–6 plateaus, obtained at 12 mK, are shown in Figs.
5–10.

Near the center of the plateau, the tunneling is weak, GT
�e2 /h. The amplitude of the RXX peaks on a given quantum
Hall plateau is expected to increase �monotonically� with
decreasing � �increasing B or decreasing VBG� because r�

increases and also the front-gate edge channels move closer
to the antidot �see Fig. 3�, so that the tunneling distance

decreases. For the same reason, the amplitude of the RXX dips
increases with increasing �. In addition, smooth nonmono-
tonic modulation of the peak amplitude has been attributed to
“mesoscopic effects,”8,9 such as the modulation of the tun-
neling amplitude by the residual disorder potential. Another
interesting feature seen in some data is likely due to mesos-
copic effects: For example, in the i=4 upper trace of Fig. 8,
every seventh peak is smaller than its neighbors; such behav-
ior, however, is sensitive to a small variation of front-gate
voltage. In contrast, the i=3 subperiodic structure is more
robust; it is discussed further in the next section.

The RXX dips are observed on the low-B side ��� i� of the
even-filling plateaus �Figs. 6, 8, and 10�. These dips are often
attributed to forward scattering, that is, to tunneling across

0.7 0.8 0.9 1.0

0.3

0.4

0.5 iC = 2

RXX

(h/e2)

B (Tesla)

FIG. 6. �Color online� Resonant tunneling data for i=2 in the
constriction. The RXX peaks are seen at constriction filling �C�2,
and the RXX dips for �C�2.
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FIG. 7. �Color online� Resonant tunneling data for i=3 in the
QAD constriction. Note the internal structure within the fundamen-
tal flux period, which contains three tunneling peaks.
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FIG. 8. �Color online� Resonant tunneling data for i=4 in the
QAD constriction. The RXX peaks are seen at �C�4, and the RXX

dips for �C�4.
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the constriction, perpendicular to the “backscattering” direc-
tion shown in Fig. 3�a�. Since the filling in the bulk is greater
than in the constriction, it is possible to have two edge chan-
nels between the constriction and the bulk, on either side of
the antidot-containing constriction. The forward scattering is
visualized as proceeding via the two tunneling links, cou-
pling the two bulk edge channels, on either side of the anti-
dot. Provided that the two tunneling amplitudes are nearly
equal, resonant tunneling conductance peaks will result. For
forward scattering, edge-network models predict the four-
terminal RXX dipping by �GT / �ie2 /h�2 below the quantized
plateau value.

However, several experimental aspects are puzzling if
such resonant forward scattering is the origin of the RXX dips.
First, the magnetic field period of the dips is 20–30% greater
than that for the peaks on the same plateau. This indicates a
noticeably smaller area associated with the dips than with the
peaks, which is hard to reconcile with the forward scattering
edge path having to enclose a larger area in the antidot ge-
ometry. Second, the imperfection of the antidot lithography
has to be compensated for by tuning the front-gate bias so as
to achieve resonance in the two tunneling amplitudes. It is
very difficult to believe that both forward- and backscatter-
ing amplitudes become nearly equal under the same condi-
tions �e.g., front-gate voltage�. In addition, front-gate bias
allows us to shift the resonant tunneling structure, both RXX

peaks and dips, relative to the bulk quantum Hall plateau.
Experimentally, both peaks and dips are not affected much
by the bulk filling, as in Fig. 8, where the dips continue over
two different bulk plateaus and the transition region. Such
robustness is puzzling for forward scattering since the pre-
cise position of the bulk-constriction edge channel should
definitely be affected somewhat by the changing bulk filling,
and the tunneling amplitude is exponentially sensitive to the
tunneling distance.

VI. ANALYSIS AND DISCUSSION

We calculate tunneling conductance from the directly
measured RXX vs B data by subtracting the quantized longi-
tudinal resistance and inverting the resulting matrix,

GT = �RXX − RL�/��RH
2 � − RH�RXX − RL�� , �6�

where Hall RH=h / iCe2 �since iC� iB� and longitudinal RL
= �h /e2��1 / iC−1 / iB�.4,11,12,24 Note that both RXX peaks and
dips �back- and forward-scattering� result in conductance
peaks. Thus obtained tunneling conductance data are plotted
in Figs. 11–17 and are discussed below.

A. Magnetic flux period

Figure 11 shows that on the ith integer quantum Hall pla-
teau, the magnetic field interval containing i tunneling peaks,
�B�11 mT, is approximately constant. In other words, the
separation between the two neighboring peaks on different
plateaus is proportional to 1 / i. This experimental observa-
tion leads us to conclude that �B corresponds to the funda-
mental antidot flux period ��=�BS�. This, in turn, allows us
to determine the antidot area S� and, assuming a circular
antidot, its radius r�= �h /�e�B�1/2�350 nm.

Excepting a phase transition,25 the states �M,� of the in-
teracting electrons are adiabatically connected to the corre-
sponding states of the noninteracting system. For noninter-
acting electrons, the total angular momentum of the electron
system M is the sum of the angular momenta �m�N of occu-
pied orbitals in all 0�N� i−1 spin-polarized Landau levels
on the ith plateau. The M increases by 1 going from one
tunneling peak to the next, and, since the addition of flux h /e
increases the number of antidot-bound orbitals by 1 in each
Landau level, there are a total of i tunneling peaks in the
fundamental period ��=h /e, as seen in Fig. 11.

The exact position and relative amplitude of the i peaks
within the period ��=h /e depend on the particulars of the
antidot-bound electron system. The two limiting cases can be
considered. For noninteracting electrons, tunneling peaks oc-
cur at magnetic fields such that the single-particle energy
levels Em,N,� cross the chemical potential �. The positions of
the peaks then depend on the details of the confining poten-
tial and are not expected to be equally spaced, in general.
Since the several Landau levels cross � at different positions
at the edge, so that the tunneling distance is different for each
Landau level, the amplitudes of the GT peaks within the pe-
riod ��=h /e would be expected to exhibit exponentially
large variation.
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FIG. 9. �Color online� Resonant tunneling data for i=5 in the
QAD constriction.
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FIG. 10. �Color online� Resonant tunneling data for i=6 in the
QAD constriction. The RXX peaks are seen at �C�6, and the RXX

dips for �C�6.
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In the other limit, when Coulomb interaction dominates,
e2n1/2 /4���0�	�C, the various many-electron ground
states �M,� within a period have nearly equal occupation
amplitudes cm,N,�, for m�1 �see Eq. �5��. Then, the peaks
within the period ��=h /e are expected to be equally spaced,
and the amplitudes of the GT peaks are not expected to ex-
hibit large variation. The experimentally observed GT vs B
data seem to correspond to the strongly interacting limit, as
could be expected, because at 1 T the characteristic energies
are 	�C=1.7 meV and �Bg*B=0.025 meV, and the inter-
electron Coulomb interaction e2n1/2 /4���0=3.6 meV
dominates.

B. Backgate (charge) period

We use the backgate technique4–6 to directly measure the
charge of the QAD-bound particles in the quantum Hall re-
gime. Figures 12, 13, 15, and 16 show GT vs backgate volt-
age VBG data �at a fixed B� for antidot on the i=1, 2, 3, and
4 plateaus. All except that for i=3 show approximately
equally spaced GT peaks. The i=3 data show a systematic

pairing of the peaks, that is, two alternating peak separations,
one consistently less than the other.

Because the global backgate is remote, separated from the
2DES by a d=0.430 mm thick GaAs substrate, the voltage
needed to attract one electron to the area of the antidot is
large, VBG�1.5 V, and the classical electrostatics dominates
the small quantum corrections.13,26 Measuring �B and �VBG

,
the magnetic field and the backgate voltage separation of the
two matching tunneling peaks allow us to determine the par-
ticle charge. In this limit, the experimentally determined
magnitude of the charge of the QAD-bound particles is

q =
��0

d
· �h/e� ·

�VBG

�B
, �7�

where �=12.74 is the low-temperature GaAs dielectric
constant.27 In practice, accuracy of the measurement is im-
proved by averaging over several ��10� matching GT peak
pairs.

The origin of the puzzling internal structure in the i=3
data is not fully understood. If the antidot were much
smaller, so that the number of the QAD-bound electrons was
small, one would expect a nonperiodic behavior, like in few-
electron quantum dots.28,29 However, such behavior would
be expected to be even more pronounced for i=1 and 2,
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h /e�. The fundamental magnetic flux period ��=h /e tunneling
peaks on the ith integer quantum Hall plateau.
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which is not the case. Another possibility is the effect of
quantum Hall edge reconstruction for i=3 when the spin-
split quantum Hall gap is small. The temperature dependence
of the conductance peaks at i=3 presented in Fig. 14 shows
that all peaks have similar behavior. All conductance peak

amplitudes reduce by a factor of 2 when the temperature is
raised to �50 mK. This seems to rule out unequal “addition
energies” for the QAD-bound states as the origin of the
structure. Future numerical modeling of this regime will
hopefully elucidate the physical origin of this interesting ef-
fect.

For the wide i=1 and 2 plateaus, we have investigated the
dependence of the �VBG

/�B ratio on the position on the pla-
teau, that is, on the filling factor �. At several � on each
plateau, we took high-resolution B-sweep data fixing VBG
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FIG. 13. �Color online� Tunneling conductance as a function of
magnetic field B at VBG=0 �lower panel� and backgate voltage
VBG=0 at B=0.789 T �upper panel�. The fundamental period ��

=h /e contains three conductance peaks, and the apparent backgate
period 2�VBG

contains two peaks �each GT peak corresponds to the
change of QAD occupation by one electron�.
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=0; then, at several B, we took the corresponding VBG-sweep
data. The periods are determined as the average separation of
between six to ten regularly spaced consecutive GT peaks,
with a “phase slip,” “jump,” or other irregular data excluded.
The results are summarized in Fig. 17, which also shows the
tunneling charge q calculated using Eq. �7�. The �VBG

/�B

ratio remains constant within a standard deviation of 0.7%,
which we interpret as evidence that the ratio indeed measures
the charge of the antidot-bound particles.

An alternative interpretation that the ratio might be pro-
portional to the filling factor is clearly not supported by our
experiments. Note that the position of a given GT peak may
indeed approximately correspond to a fixed �, so that the
peak positions form a �=const fan diagram on a B vs VBG
plot. The fan diagram, however, contains different informa-
tion compared to the �VBG

/�B ratio, where the consecutive
GT peak separations �the periods� are compared. These two
different measurements would be compatible, assuming that
the GT peak separation on a given plateau is proportional to
��1 /B, as expected for noninteracting electrons. Such an
assumption is not supported by our B-sweep data over a wide
interval of � on a given plateau, for example, in Fig. 5 and in
Ref. 5; we find a much weaker dependence of the peak spac-
ing on B. The accuracy of the reported30 B vs VBG fan dia-
grams is not sufficient to establish whether the peak positions
follow straight lines with �B=0, n=0� intercepts of the con-
stant filling �=hn /eB.

C. Tunneling peak line shape and thermal excitation

Figures 12, 13, 15, and 16 show the low-bias, linear reso-
nant tunneling conductance at a low T. A high-resolution
study of the line shape of a well-separated tunneling peak
and its temperature evolution were reported in Ref. 11. The-
oretical models consider several limiting regimes, depending
on the relative magnitude of the tunneling rates �L,R and the
antidot-bound level energy spacing �E.31,32 Any degeneracy
in antidot-bound states is assumed to be lifted by the
electron-electron interaction, as discussed in Sec. II, consis-
tent with the best experimental results.11,12 In the intrinsic
broadening regime, when kT��L,R��E so that only one
nondegenerate state is involved in tunneling, an isolated,

single tunneling peak conductance does not depend on tem-
perature and has a Lorentzian line shape,

GT =
e2

h
�L�R

1

�� − E0�2 + �2 , �8�

where �= 1
2 ��L+�R�, � is the chemical potential, and E0 is

the energy of the resonant QAD-bound state through which
the tunneling occurs.

In the thermal broadening regime, when ��kT��E and,
again, when only one nondegenerate antidot-bound state is
involved in tunneling, the tunneling peak line shape is given
by the energy derivative of the Fermi-Dirac distribution,

GT = GP�cosh�� − E0

2kT
��−2

, �9a�

GP =
e2

h

��L�R

4kT�
. �9b�

In the classical Coulomb-blockade regime, when � ,�E
�kT, the tunneling proceeds through many nearly degener-
ate states, and

GT = GP
�� − E0�/kT

sinh��� − E0�/kT�
, �10a�

GP =
e2

h

��L�R

2�
, �10b�

where � is the density of the QAD-bound states at �.
The analysis of the experimental data is described in more

detail in Ref. 11. The important conclusions are as follows.
Both the peak line shape and the temperature dependence are
consistent with resonant tunneling via one nondegenerate
antidot-bound state. As discussed in Sec. II, this is a many-
electron ground state of the system. Thermal excitation
probes the energy scale of the excited �many-electron� states.
The parameter �=56.6 �eV /V gives the “addition energy”
level spacing of ��VBG

�150 �eV for the data of Ref. 11,
which can be compared to 30 �eV obtained for the sample
of Ref. 13. These energies are sizable fractions of the rel-
evant quantum Hall �tunneling� gaps of �1.5 meV; never-
theless, the tunneling gap contains many excited antidot-
bound states.

These energies can be thought about as the increment of
the self-consistent �screened� confining potential at the
chemical potential over the distance separating two consecu-
tive basis orbitals, −�rm+1−rm���U /�r�, where rm=r�, as il-
lustrated in Fig. 3�b�. In Ref. 21, �U /�r is calculated for a
quantum antidot geometry similar to that in Ref. 10 within a
density functional theory in the local spin density approxi-
mation. Their results for i=2 in Fig. 2 give −�rm+1−rm�
���U /�r��90 �eV at r��280 nm, in a reasonable agree-
ment with experiment.

VII. CONCLUSIONS

In conclusion, we have experimentally studied electron
transport in quantum antidots in the integer quantum Hall
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FIG. 17. �Color online� The experimental period ratio �VBG
/�B

as a function of � on two quantum Hall plateaus. The dotted line
gives the unit slope �VBG

/�B=� / i. The dashed horizontal line gives
constant charge q=e. It is evident that the period ratio �VBG

/�B is
not proportional to � and indeed gives q.
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regime. In these devices, the antidot-bound electron states
are probed by resonant tunneling. On the constriction pla-
teaus i=1–6, we find that the tunneling peak spacing is ap-
proximately proportional to 1 / i, so that the fundamental flux
period ��=h /e contains i tunneling peaks. The correspond-
ing magnetic field period �B comprises an addition of i
single-electron basis states to the antidot area, resulting in i
tunneling peaks. The backgate charging period �VBG

corre-
sponds to an addition of one electron per tunneling peak
within the quantum Hall fluid comprising the antidot-bound
electrons. This is interpreted as evidence of the dominance of
the electron-electron interaction in the 2DES surrounding the
antidot, which mixes the single-particle Landau level occu-

pation. We also analyze the temperature evolution of a well-
separated tunneling peak and find the data to be consistent
with tunneling through one nondegenerate antidot-bound
state.
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