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Starting from a microscopic description of a system of strongly interacting electrons in a strong magnetic
field in a finite geometry, we construct the boundary low energy effective theory for a fractional quantum Hall
droplet taking into account the effects of a smooth edge. The effective theory obtained is the standard chiral
boson theory �chiral Luttinger theory� with an additional self-interacting term which is induced by the bound-
ary. As an example of the consequences of this model, we show that such modification leads to a nonuniversal
reduction in the tunneling exponent which is independent of the filling fraction. This is in qualitative agreement
with experiments, which systematically found exponents smaller than those predicted by the ordinary chiral
Luttinger liquid theory.
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I. INTRODUCTION

Quantum Hall effect �QHE� has been the subject of in-
tense research since 1980 when the first plateaux in the Hall
conductivity were observed for integer filling fractions.1 The
interest on these systems was then reinforced after the frac-
tional QHE �FQHE� was identified as a novel state of
matter.2 Since then, different approaches have been devel-
oped and applied to the study of these systems, such as the
successful variational ground-state wave function proposed
by Laughlin.3 This description led to the concept of fraction-
ally charged quasiparticles as a consequence of the strong
correlations in the system, which were in turn experimentally
observed.4 The composite fermion approach,5 which pro-
vides a description of the FQHE as a QHE where a quasi-
particle is built up as a bound state of an electron and a given
number of magnetic flux quanta, also provides a consistent
description. An alternative description of these systems,
based on the Chern-Simons topological action, also repro-
duces many of the experimentally observed features.6

In spite of the enormous success of all these descriptions,
a theory for the QHE derived systematically from a micro-
scopic description is still lacking. It is the purpose of the
present paper to give one step in this direction and provide
an effective description of the FQHE which is derived from a
first principles microscopic action describing interacting
electrons in a strong external magnetic field in a controlled
way. In doing this, we are able to complement previous de-
scriptions and provide a way to take into account the effects
of a smooth boundary. These effects have been already con-
sidered in Refs. 7 and 10–15; the main difference with our
approach is that our starting point is the microscopic model
and hence it does not rely on a phenomenological descrip-
tion.

The study of tunneling of electrons into incompressible
and compressible quantum Hall states has been the subject of
intense research from both the theoretical and experimental
sides �see Ref. 7 and references therein�. It is found that the

tunneling conductivity is non-Ohmic, I�V�, with � being a
function of the filling fraction �. This behavior can be under-
stood within the chiral Luttinger liquid description of the
edge physics advanced by Wen.9 Although tunneling experi-
ments in FQHE systems have shown certain degree of agree-
ment with the theoretical predictions obtained from the chiral
Luttinger liquid picture,9 there remain certain discrepancies
which have been addressed by different authors.7,10–15 In par-
ticular, a reduction of the order of 10% from the theoretical
prediction for the tunnelling exponent has been observed ex-
perimentally, as well as the absence of the theoretically pre-
dicted plateaux structure of this exponent.10,13,15 These issues
have been the subject of intense debate.7

Here we present an alternative derivation of the boundary
effective action, by including higher order terms in the low
energy expansion which are induced by the smoothness of
the edge. This paper can be considered as a formal derivation
of the model first presented in Ref. 8. In our calculations, the
presence of a smooth boundary shows to be crucial, e.g., in
the computation of tunneling exponents. The effects of the
edge shape and the confining potential on these observables
have been recently addressed using numerical exact
diagonalization,12 where it was found that the result could
deviate from the chiral Luttinger liquid universal predictions.
Our results are in agreement with these findings.

In the simplest case of an almost sharp edge, the effective
action we obtain corresponds to a self-interacting chiral bo-
son. Using this improved effective action we compute the
tunneling exponent which, to one loop order, receives a small
nonuniversal negative correction depending on the electron
density and the short distance cutoff �the “effective size” of
the particles�.

The paper is organized as follows: In Sec. II, we present
the model which corresponds to a microscopic description of
a fully polarized self-interacting electron gas in a transverse
magnetic field. The action is invariant under relabeling of
particles, a symmetry that plays an important role in the con-
tinuum limit �corresponding to the low energy description� as
we show in Sec. IV. In Sec. III we rewrite the action by
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making a boost transformation to eliminate the external elec-
tric field and we discard terms quadratic in the particle ve-
locities. This last approximation is justified due to the pres-
ence of a strong external magnetic field. We show that as a
result of the interactions, the system is projected into the
fundamental state and that this projection corresponds to the
imposition of a constraint �Sec. III B� which defines the ef-
fective degrees of freedom as the fluctuations along the flat
directions of the potential. In Sec. IV we construct the low
energy effective action by going to the continuum limit and
show that the resulting action is topological. We show that
the original symmetry under relabeling of particles corre-
sponds to the invariance under area preserving diffeomor-
phisms of the effective action. A condition which arises from
the solution of the constraint is that our analysis is applicable
to incompressible states �Sec. IV D�. Although the constitu-
ent particles are fermions, the collective degrees of freedom,
which correspond to fluctuations along the flat directions of
the interaction potential, are described by bosonic fields.

In Sec. V we first solve the constraint by performing a
gradient expansion on the coordinate fields and then, by
boosting back to the original �laboratory� coordinate system,
we arrive at one of our main results, which is the effective
action �5.5�. In Sec. VI we look in more detail into the ef-
fective action close to a smooth boundary, which requires to
recover the discrete structure along the direction perpendicu-
lar to the boundary, as expected. This leads generically to a
boundary effective theory of N coupled chiral bosons, with
N=W /a, a being the mean interparticle distance and W the
effective width of the edge �6.1�. By integrating out the in-
ternal degrees of freedom, we finally obtain the effective
action for the boundary modes, which corresponds to that of
a chiral self-interacting bosonic field. From this action, we
compute the correction to the tunneling exponent, the result
being in qualitative agreement with experiments. The result
obtained for the exponent is nonuniversal, which is a direct
consequence of the inclusion of a smooth edge.16 A higher
loop computation together with a renormalization group
analysis should be done, but this is out of the scope of the
present paper. The main aim here is to obtain an effective
field theory, starting from a microscopic description of the
real problem and which includes the effects of smooth
boundary, a feature present in almost all experiments. The
observed edge reconstruction effect14 could be in principle
recovered within our approach by including the effects of the
fluctuation fields perpendicular to the flat directions of the
interaction potential �field � in Eq. �4.12��. This is the sub-
ject of future investigations. We conclude in Sec. VII with a
discussion of the results and open perspectives.

II. POLARIZED ELECTRON GAS IN A TRANSVERSE
MAGNETIC FIELD

A. Action

The most general action for a system of N interacting
electrons is given by

S =� dt��
p

N
m

2
ẋp

i 2 − V�xq
i , ẋq

i ��, i = 1,2, p,q = 1, . . . ,N ,

�2.1�

where the degrees of freedom of the system are represented
by the 2N functions xp

i �t�, i.e., the positions of the electrons
in a Cartesian coordinate system. These functions will be our
dynamical variables. For our purposes it is enough to con-
sider spinless fermions in two space dimensions since, as
explained later, typical experiments are performed in the
presence of strong magnetic fields.

Note that this action is completely generic and makes no
simplification. The electrons interact with the background
and with each other by means of a general potential
V�xp , ẋp�. This potential may depend simultaneously on the
positions and velocities of all particles �i.e., all p=1, . . . ,N�,
and to keep this in mind we write its argument in square
brackets.

We split the interaction into an external part and an
electron-electron interaction part V�xp , ẋp�=Vext�xp , ẋp�
+Vint�xp , ẋp�. Since electrons interact independently with the
external field, the external part can be written as a sum of a
single term per electron Vext�xp , ẋp�=�p

NVext�xp , ẋp� and we
then have

S =� dt	�
p

N �m

2
ẋp

i 2 − Vext�xp
i , ẋp

i �� − Vint�xq
i , ẋq

i �
 ,

�2.2�

where the first term corresponds to the kinetic contribution.
Since the system is nonrelativistic, the external potential

Vext�xp
i , ẋp

i � can be expanded in powers of velocities as

Vext�xp
i , ẋp

i � = u�xp
i � + eAj�xp

i �ẋp
j + 1

2�m�xp
j �xp

i2 + O�ẋp
i 3� ,

�2.3�

the first two terms representing the electric and magnetic
coupling to the external field. The quadratic order in veloci-
ties represents a position dependent correction to the mass
that can be reabsorbed in the kinetic term, while higher or-
ders have been discarded.

On the other hand, the expansion of the interparticle in-
teraction Vint�xp

i , ẋp
i � reads

Vint�xp
i , ẋp

i � = Vint�xp
i ,0� + �

q

N
�Vint

�ẋq
j �xp

i ,0�ẋq
j

+ �
q

N

�
r

N
�2Vint

�ẋq
j �ẋr

k �xp
i ,0�ẋq

j ẋr
k + O�ẋi3� .

�2.4�

The resulting terms can be grouped according to the power
of velocities involved, resulting in a masslike �particle mix-
ing� term, a magnetic term linear in velocities, and an elec-
tric potential term
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S =� dt�1

2�
p,q

N �„m + �m�xp
j �…�pq −

�2Vint

�ẋp
j �ẋq

k �xr
i ,0��ẋp

j ẋq
k

− �
p

N �eAj�xp
i � +

�Vint

�ẋp
j �xq

i ,0��ẋp
j − �

p

N

u�xp
i � − Vint�xp

i ,0�� .

�2.5�

This is the action of our system. Up to this point no approxi-
mation has been made �other than the nonrelativistic limit�
and the action has been kept completely general.

B. Important symmetry

Since the particles are identical, the action is naturally
invariant under arbitrary permutations of the particle indices.
We will call this property invariance under relabeling of the
particles. This can be formally formulated as follows: the
redefinition

p → p� = p��p� �2.6�

acts in the dynamical variables as

xp
i = xp�p��

i � xi�p�
, �2.7�

leaving the action unchanged.

III. INTERACTIONS AND THE RESULTING PROJECTION
INTO THE FUNDAMENTAL STATE

The general expansion for the external potential �2.3� re-
sulted in an electromagnetic interaction in three space-time
dimensions. We define the corresponding external magnetic

field as B� =Bž, with B=�iAj�
ij and we assume it is constant

and homogeneous in all space to conform with the typical
experimental-setup. Moreover, we take it to be very strong so
as to completely polarize the particle spin in the ž direction,
justifying in this way our choice of spinless fermions in two
dimensions to represent the electrons. The electric field on
the other hand is defined as Ei=−�iu. It is assumed to be zero
in the interior of the region of space occupied by the sample,
and smoothly growing at the edge of that region.

A. Convenient coordinate system

In three dimensions, the 3�3 antisymmetric matrix rep-
resenting the electromagnetic tensor F	� has at least one zero
eingenvalue. Then it can be taken into its block diagonal
form by a curvilinear change of coordinates xi→ x̃i�x, t�. In
consequence, in the new coordinate system there is no elec-
tric field and we can choose a gauge in which u�x̃�=0. It can
be shown by a straightforward calculation that such change
of variables satisfies

�t̃x
i = −

1

B
�ij� ju � vi, �t̃t = 1. �3.1�

We can solve for the magnetic field in the boosted coordinate

system B̃ as

B̃ � B�1 −
��iu�2

2B2 � . �3.2�

The action in the new coordinate system reads

S =� dt�1

2�
p,q

N �„m + �m�x̃p
j �…�pq −

�2Vint

�ẋ̃p
j �ẋ̃q

k� ẋ̃p
j ẋ̃q

k

− �
p

N �eÃj�x̃p
i � +

�Vint

�ẋ̃p
j � ẋ̃p

j − Vint� , �3.3�

where Ãj�x̃p
i � is the external vector potential in the new co-

ordinates. Note that in this frame ũ�x̃p
i �=0 and the external

magnetic field B̃�x̃p
i � is nonhomogeneous. In other words, the

effects of the external electric field in the old coordinate

system x are now encoded in B̃�x̃p
i � in the new system x̃p

i .
This is very important since, as we will see, it turns out to
lead to localization of the excitations.

On the other hand, it is evident that the relabeling sym-
metry persists in the new variables, taking the same form as
before, i.e.,

x̃p
i = x̃�i

p�
. �3.4�

B. Projection constraint and a new form of the action

Due to the presence of a strong external magnetic field,
we can discard the kinetic terms quadratic in velocities, as
well as the magnetic interparticle interaction ��Vint /�ẋp

j �ẋp
j .

In a perturbative quantization approach, this approximation
corresponds to the projection into the lowest Landau level
�LLL�. The scrupulous reader can keep all the terms, then go
through a quantization procedure, and project the result into
the LLL.

The resulting effective Lagrangian is then linear in veloci-
ties and the resulting action for the degrees of freedom in the
ground state is

S =� dt��
p

N

eÃj�x̃p
i �ẋ̃p

j − Vint�x̃p
i �� , �3.5�

where we called Vint�x̃p
i �=Vint�xp

i ,0�. To be consistent, we
should supplement this action with the condition enforcing
the low energy projection, namely, that the system remains in
its ground state H=Emin. Within our approximation, this can
be written as

Vint�x̃p
i � = 0, �3.6�

where we have eliminated any nonvanishing contribution to
the ground-state energy by a shift in the potential. The con-
sequences of relaxing this assumption will be discussed later.
This constraint can be enforced at the action level by intro-
ducing a Lagrange multiplier 
�t� to obtain

S =� dt��
p

N

eÃj�x̃p
i �ẋ̃p

j − 
Vint�x̃p
i �� , �3.7�

the equations of motion being now obtained by varying the
action with respect to x̃p

i and the Lagrange multiplier 
�t�.
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This new form of the action is still invariant under the rela-
beling symmetry.

IV. CONTINUUM LIMIT AND THE RESULTING
TOPOLOGICAL FIELD THEORY

We assume that all the important physical scales involved
in our problem are large compared to the interparticle dis-
tance. These scales can be characterized in terms of the rel-

evant length of the external field B̃ /� jB̃. Since the derivatives
involved in this definition can differ significatively when
taken in different directions, so does the accuracy of this
assumption. In the present section we assume that it is valid
in any direction, an assumption which is well justified in the
bulk. We will come back to this point in the case in which
this assumption ceases to be valid, i.e., when analyzing
boundary effects in Sec. VI.

A. Continuum space

We take the continuum limit in the above system as fol-
lows: first we define our continuum space and functions liv-
ing on it by the following steps.

�1� We introduce an auxiliary two-dimensional space pa-
rametrized by variables ỹi.

�2� We set a �not necessarily regular� lattice ỹp
i in that

space by the condition ỹp
i =x̃p

i �0�, which will be useful later.
�3� We use the discrete quantities x̃p

i �t� of our problem to
define lattice functions x̃i�ỹp

j , t� on the auxiliary ỹp space by
means of

x̃i�ỹp
j ,t� = x̃p

i �t� . �4.1�

In other words, we label each particle p with their initial
position ỹp

i .
�4� We reinterpret these lattice quantities as the values at

the lattice points of some continuum fields x̃i�ỹ j , t�

x̃i�ỹp
j ,t� = x̃i�ỹ j,t�yi=yp

i . �4.2�

These continuum fields can be understood as an interpolation
of the discrete quantities representing the particle positions at
a given time in the intersticial region of ỹ space. There are
many interpolation methods that could be used for that;17

however, we do not need an explicit prescription for it. Note
that this reinterpretation is consistent with the initial condi-
tion on the continuum variables

x̃i�ỹ j,t = 0�ỹ j=ỹp
j = xi�ỹp

j ,0� = x̃p
i �0� = ỹp

i . �4.3�

It should be kept in mind that the continuum variables intro-
duced here are useful only as an approximation of the under-
lying discrete dynamics. Then it will make sense to identify
solutions of the equations of motions that differ in regions
smaller than the interparticle distance. In other words, wave-
lengths shorter than that distance should be interpreted as
unphysical, limiting the number of degrees of freedom intro-
duced by the continuum limit.

B. Resulting field theory

We now reformulate the dynamics in terms of the con-
tinuum variables introduced in Eq. �4.1� by starting from the

discrete action �3.7�. The procedure goes as follows.
�1� We make a simplicial decomposition of the ỹi plane

consistent with the lattice, i.e., having a single point ỹp
i for

each simplex. It is easy to convince oneself that this is al-
ways possible and that in two dimensions the simplices are
triangles that can be defined as having a lattice point at each
vertex. The easiest choice is a simplicial decomposition to-
pologically equivalent to the triangular lattice.

�2� We call �Ãp the �small� area of the pth simplex and
multiply and divide by it the pth term in the action �3.7�.
This results in a Riemann approximation for the integral

�
p

N

eÃj„x̃�ỹp
i ,t�…�tx̃�ỹp

j ,t�

= �
p

N

�Ãp
1

�Ãp

eÃj„x̃�ỹp
i ,t�…�tx̃�ỹp

j ,t�

� � d2ỹ�̃�ỹ�eÃj�x̃�ỹi,t���tx̃�ỹ j,t�

+ O��
p

�i„e�̃Ãj�x̃��tx̃…�yp
i �ỹp,t��Ãp� , �4.4�

where the number density function �̃�ỹ� stands for the inter-

polation of �̃�ỹp��1 /�Ãp. This approximation of the sum
remains accurate as long as the jump on the argument when
going from one lattice point to another stays small. We have
kept terms up to linear order in these jumps and provided an
estimation of the error made in that process that will be use-
ful later. Even if we won’t write explicitly the error �4.4� on
the action in what follows, we will keep in mind that our
integrals make sense as long as it is small. Applying the
above steps explicitly we obtain the continuum low energy
effective theory

S =� dt�� d2ỹ�̃eÃj�x̃i��tx̃ − 
Vint�x̃�� , �4.5�

in terms of the continuum fields x̃i�ỹ , t� and the Lagrange
multiplier 
�t�.

We are interested in solutions x̃i�ỹ , t� of the field theory
�4.5� that are good approximations of the true solutions x̃p

i �t�
of the discrete microscopic system. In particular, this means
that the error estimated in Eq. �4.4� has to be small when
evaluated on them. In other words, we should discard those
solutions whose wavelengths are small compared to the in-
terparticle distance.

Note that the action contains a local velocity-dependent
term, coming from the external magnetic field, plus a nonlo-
cal potential constraint, coming from the interparticle inter-
action. The topological nature of the resulting field theory is
evident in view of the absence of any spatial derivatives.
Moreover, to make sense of the constraint, we should make
sure that it does not couple long wavelength �physical�
modes with short wavelength �unphysical� ones.

In this part of the calculation a new function �̃�ỹ� has
appeared. We need some suitable ansatz for the form of this
function. Since it represents the particle number density in
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the ground state, a judicious ansatz would be to choose it
consistently with the forces on these particles in that state. In
the ỹ plane, particles at rest experience no forces other than
their repulsive interaction, so we can safely choose �̃�ỹ� as a
constant �̃o in this plane.

C. Symmetry under area preserving diffeomorphisms and
gauge invariance

The relabeling symmetry �2.6�, �2.7�, and �3.4� is inher-
ited by the continuum limit theory, where it manifests as a
symmetry under area preserving diffeomorphisms. To see

this, we first note that the area �Ãp of the simplex associated
to the particle p becomes, after a relabeling,

�Ãp = �Ãp�p�� = �Ãp�
� . �4.6�

The second equality is evident from the fact that �Ãp be-
comes, after relabeling, the area of the simplex associated to
the particle p�.

In the continuum limit, the symmetry can be written as

y → ỹ� = ỹ��ỹ� , �4.7�

while the fields transform according to

xi��y�,t� = xi�y,t� . �4.8�

The equality �4.6� then implies that

d2ỹ = d2ỹ�. �4.9�

Then the transformation corresponding to the relabeling of
particles becomes an area preserving diffeomorphism in the
continuum theory

Due to the definition of �̃, the combination �̃d2ỹ is invari-
ant under any transformation. Then the kinetic term in the
action is obviously invariant under area preserving diffeo-
morphisms. The potential, on the other hand, inherits its in-
variance from the discrete case.

We conclude that our system has a continuous invariance.

In the case in which B̃ is constant, this corresponds to the
gauge invariance of the usual Chern-Simons description.9 On

the other hand, in the case in which B̃ is space dependent, the
only transformations leaving the action invariant are those
which are time independent. This implies that gauge invari-
ance is broken in our theory, in a similar way as the imposi-
tion of a boundary breaks gauge invariance in Ref. 9, enforc-
ing the introduction of the boundary chiral boson. In our
formulation this chiral boson theory arises naturally as a con-
sequence of the low energy constraint. This is an insight of
one of the main claims of this paper, i.e., that a smooth
boundary, represented by an external potential varying in
space, can be described by a theory whose qualitative behav-
ior is similar of that of the chiral boson.

D. Flat directions of the ground state and a simpler form of
the constraint

The Lagrange multiplier in the action imposes the con-
straint that forces the system to be in the ground state. To

obtain the remaining degrees of freedom we would then need
to solve this constraint. This seems impossible without
knowing explicitly the form of the potential, but we show in
this section that this is indeed simplified by the symmetry
under area preserving diffeomorphisms of our system. In
consequence we can replace the constraint for an explicit
one, without giving any details on the potential.

The condition �3.6� fixes all directions except those that
leave the potential invariant. In other words, particles can
move along the flat directions of the potential, while staying
in the ground state. These directions then correspond to the
remaining degrees of freedom. To determine them, let us
note that any small deformation x̃i�ỹ , t�=x̃o

i �ỹ , t�+�x̃i�ỹ , t�
around a given minimum of the potential x̃o

i �ỹ , t� can be writ-
ten in the form

�x̃i�ỹ,t� = Mij�ỹ,t�„� j��ỹ,t� + � jk�k�ỹ,t�… �4.10�

for suitable �� ,�, when M is a given invertible matrix field
that we choose for convenience as Mij =�ix̃o

j �ỹ , t�. With this
choice we can write

�x̃i�ỹ,t� = �ix̃o
j �ỹ,t�„� j��ỹ,t� + � jk�k�ỹ,t�… �4.11�

or in other words

x̃i�ỹ,t� = x̃o
i
„ỹ j + � j��ỹ,t� + � jk�k,t… , �4.12�

implying that any small deformation of the configuration
x̃o

j �ỹ , t� can be obtained by a small diffeomorphism on ỹ. The
� part represents dilatations of the ỹ plane, while the  part
corresponds to area preserving deformations. Going now to
the potential, this implies

V�x̃o�ỹ,t� + �x̃j�ỹ,t�� = V�x̃o�ỹ j + � j� + � jk�k,t��

= V�x̃o�ỹ j + � j��ỹ,t�,t�� , �4.13�

where in the last equality we use the invariance of the po-
tential under the area preserving diffeomorphism generated
by , �ỹi=�ij� j. We conclude that the condition �3.6� fixes
� and leaves  completely free. The flat directions of the
potential are then the variations of x̃o

i �ỹ , t� generated by area
preserving diffeomorphisms.

In particular, since x̃i�ỹ ,0�= ỹi, we conclude that the time
evolution map, going from ỹi to x̃i�ỹ , t�, is area preserving. In
other words, the Jacobian of the time evolution is unity, im-
plying that a physical configuration satisfies

�ix̃
j = 1. �4.14�

This constraint has a simple and intuitive interpretation: note
that the particle density �in x̃i space� at time t is given in
terms of the initial density �̃o by the formula

�̃�t, x̃� =
�̃o

�ix̃
j

� �̃o, �4.15�

i.e., our evolution is that of an incompressible fluid. For this
reason, we will concentrate in what follows in incompress-
ible states. To describe compressible states on the other hand,
we would have to consider the � degree of freedom, or in
other words relaxing the assumption �3.6�. Some insights on
this will be given later.
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It should be clear now that we can replace the constraint
�3.6� by the more explicit one �4.14�. In other words, we can
replace Eq. �4.5� by the completely local action

S =� dt� d2ỹ�̃o�eÃj�x̃i��tx̃ − 
��ix̃
j − 1�� , �4.16�

where now 
�ỹ , t� is a local Lagrange multiplier imposing
Eq. �4.14�.

As a conclusion, in this section we have been able to use
the symmetries to describe the low energy dynamics inde-
pendently of the explicit form of the interparticle potential.

E. Conserved charge and an immediate consequence

Since the action is invariant under the group of area pre-
serving diffeomorphisms in the ỹi plane, we can calculate the
corresponding Nœther charge. To do that, we write the in-
finitesimal transformation as

yi� = yi + �ij� j �4.17�

and the charge reads

Q =
e

2
� d2yB̃�x̃��ab�ij� jx̃

b�ix̃
a . �4.18�

Moreover, since this charge is conserved for any function ,
its integrand is conserved, i.e., the magnitude

B̃�x̃��ab�ij� jx̃
b�ix̃

a = 2B̃�x̃��ix̃
j = 2B̃�x̃� �4.19�

is conserved. Here in the last equality we used the constraint
�4.14�. We can fix its value according to the initial condition
as

B̃�x̃� = B̃�x̃�t=0 = B̃�ỹ� . �4.20�

Note that this relation implies that the value of the magnetic
field at the particle position is the same along all its motion.
In other words, the particle moves along the level lines of the

function B̃. Again, this may be interpreted as a behavior
analogous to that of the Chern-Simons theory, in which ex-
citations move along the boundary, and can be described by
a chiral boson. Since in our case the boundary has been
replaced by a smooth space-dependent external field, this
translates into a motion along the level lines of this external
field, and the corresponding chiral boson theory will neces-
sarily have to take this into account.

V. SOLUTION OF THE CONSTRAINT AND THE
RESULTING BOUNDARY THEORY

A. Solution of the constraint as a gradient expansion

The next step is to solve the constraint �4.14� and rewrite
the action in terms of the dynamical degrees of freedom.
Here and in what follows, we use as parameters the filling

fraction in the x̃ plane, defined as �̃= �̃ /eB̃, and the effective
�dimensionfull� parameter �=1 / �2��̃o� defined in Ref. 18 as
the square of the noncommutativity length.

Since our theory is defined only for wavelengths of the
field x̃k that are large compared to the interparticle distance,
it is natural to solve the constraint by a gradient expansion.
The solution can be obtained by performing on the initial
configuration x̃k= ỹk, an iteration of small area preserving
diffeomorphisms of the form �4.12� �with �=0�. Calling
��= we get

x̃k = ỹk + ��kl�l� +
�2

2
�kl�ij�i�� j�l� + O��3� , �5.1�

then Eq. �4.14� is solved up to order �3. This field represents
the effective degrees of freedom after projection into the
ground state. It can be interpreted to first order in � as rep-
resenting the coordinate fluctuations, i.e., the small displace-
ment of the system along the flat directions of the potential.
Incidentally we see in Eq. �5.1� that � is defined up to the
addition of an arbitrary function of time �→�+g�t�, which
is the usual gauge invariance of the chiral boson theory.

Replacing this solution in the action �4.16� we get

S =
1

8�2 � dtd2ỹ�̃−1�ij�� j���i�t�� +
�

3
� j��kl�k�t��i��l���

+ O��2� . �5.2�

B. Boost back

Note that the variables x̃i�ỹ , t� refer to the position of the
particle initially located at ỹ. This is the Lagrangian descrip-
tion of a fluid, where each fluid element is labeled with its
initial position and then followed along its motion through-
out the plane. However, the initial position ỹi is given in an
awkward coordinate system that is related to that of the labo-
ratory by the transformation discussed in Sec. III A. We
would like to refer things to the laboratory coordinate system
by going back on the original frame as yi=yi�ỹ�. Note that
for convenience we do not apply this operation to the x̃i

fields. They still correspond to the position at time t in the
tilted system, but now the fluid element is identified by its
initial position yi on the laboratory frame.

Under this transformation, the action becomes

1

8�2 � dtd2y�−1�ij�� j„��i��t − va�a��…

+
�

3
� j„�

kl�k��t − va�a���i��l�…� , �5.3�

where we defined the position dependent filling fraction in
the �physical� y plane as �=� /eB, and it satisfies

� =
�̃o

eB
�1 +

��iu�2

2B2 � . �5.4�

On the other hand, the velocity of the excitations is defined
as in Eq. �3.1�

In the special case in which � is constant the action is a
total derivative. The usual procedure is to assume this and
then impose a boundary to the region in which the fluid
moves. We choose a different way here, allowing the param-
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eter � to change in space and introducing through it the in-
formation about the geometry, without adding any boundary.
A further integration by parts gives

S = −
1

8�2 � dtd2yti���i��t − va�a��

+
�

3
�bc�b��t − va�a���i��c�� , �5.5�

where we defined the vector field ti�y�, tangent to the level
line of � at y, as

ti = �ij� j��−1� . �5.6�

We see that the degrees of freedom are localized at the po-
sitions at which the change of variables discussed in Sec.
III A is nontrivial, i.e., where the external electric field �iu is
nonconstant. Moreover they propagate in the direction of ti
along which E2 is constant.

Here we see that, wherever the sample is homogeneous,
the derivatives in front of each term vanish, leaving us with-
out any dynamics. On the other hand, the dynamical degrees
of freedom localize at places where there is a change in the
properties of the material �i.e., the filling fraction�. This is
precisely what happens at the edge of the sample, and it is at
the core of our argument.

To stress this point, let us suppose that the filling fraction
changes as a step function, then their derivatives will provide
delta functions leading us to a one-dimensional boundary
theory, which corresponds to a Chiral Luttinger liquid
description.9 Our treatment, however, is more general in the
sense that it includes the possibility of dealing with smooth
edges.

The action �5.5� is written completely in terms of the
dynamical degrees of freedom �. Note that this is not a
boundary theory because it is defined in the full two-
dimensional space. Nevertheless, the degrees of freedom are
bounded to the region in which there is a change in the
parameter � and, as predicted, propagate chirally along their
level surfaces.

VI. RECOVERING THE DISCRETE STRUCTURE NEAR
THE EDGE

When we approach the edge, the derivatives of the func-
tions entering into the action are no longer negligible. Then
the assumption we made when we took the continuum limit
�4.4� is not satisfied, and the solutions of the continuum
theory do not represent faithfully the underlying discrete sys-
tem. To go around this problem, we need to recover the
discrete structure near the edge. Calling y� the direction that
runs along the edge and y� the perpendicular direction, we
see that the y� derivatives become big in the edge region.
Since y� derivatives are still small, we can keep the y� inte-
gral while in the direction y� transverse to the edge, we
proceed as follows.

�1� Cut the space in the y� direction in N slices at y�
n of

width �y��a, where a is the mean interparticle distance.

�2� Replace the integral by a sum over the values of the
integrand evaluated at each slice, and define �n�y��
���y� ,y�

n �.
�3� Replace all the y� derivatives by its finite difference

approximation

����y�,y�
n � = ���y�,y�

n � − ��y�,y�
n−1��/�y�.

With this method we obtain an effective theory for the
fields �n�y�� living on each slice n, with action

S = −
1

8�2 � dtdy��
n=0

N

��nLF��n� + �n�„LS��n�

+ LI��n,�n−1�…� , �6.1�

where we have defined the free, self-interaction, and interac-
tion Lagrangians as

LF��n� = �n����t − vn����n,

LS��n� = �n��t − vn�������n�2,

LI��n,�n−1� = − �n−1��t − vn�������n�2, �6.2�

and the constants �n and �n� are given by

�n =
1

�n
−

1

�n−1
, �n� =

�

2�y�

� 1

�n
−

1

�n−1
� . �6.3�

It is important to note that the field �n will enter into the
action only when the constants �n and �n� are nonvanishing,
i.e., if there is a change in the properties of the sample be-
tween the slices n and n+1.

The gauge invariance is now �n→�n+g�t� adding the
same g�t� to all the �’s.

Note that when the sample has a sharp edge, i.e., if the
density changes within a region whose width W is smaller
than the slicing length �y�, i.e., W��y��a, then the
whole procedure is not applicable and the boundary theory
corresponds to the usual chiral boson theory.9

Let us suppose that the edge is wider than the slicing
length, so that we have to keep a finite number of terms of
the sum in Eq. �6.1�, n=1, . . . ,N.

We have then a single nondynamical field ���−1 in the
interaction term LI��0 ,�−1�, all other fields appearing in the
LI��n ,�n−1� terms being dynamical. The integration of this
multiplier field will enforce a constraint on the field �0 to
which it is coupled. When solved, �0= f�y� +v0t�, and re-
placed in the action, it implies that the interaction term with
�1 takes the form

−
1

8�2�1�� dtdy�f�y� + v0t���t − v1�������1�2, �6.4�

which is different from zero provided that the two velocities
are not equal. Since we have assumed that the electric field in
the edge zone is approximately constant in regions of size
a��y�, hence v0�v1 and we can discard this term within
the present approximation.

We have then obtained an action very similar to the origi-
nal one but without any Lagrange multiplier
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S = −
1

8�2 � dtdy��
n=1

N

��nLF��n�

+ �n�„LS��n� + ��n1 − 1�LI��n,�n−1�…� , �6.5�

where the lower bound of the sum has changed and the co-
efficient ��n1−1� ensures that there is no interaction term for
the field �1.

VII. APPLICATION OF THE MODEL: TUNNELING
EXPONENTS

Let us consider the case of an almost sharp boundary, in
which the density can be well approximated by choosing
N=1. In that case the action is

S = −
1

8�2 � dtdy�„������t − v���� + �����t − v��������2
… ,

�7.1�

where we have dropped the subindices since we have a
single field. This is a chiral boson theory with a cubic higher
derivative self-interaction, the latter arising essentially from
the smoothness of the edge. To see the effect of this last term
in the physical properties, we compute the propagator since
it is directly related to the tunneling exponent.9

In Fourier space we write for the Feynman propagator

G�p,�p� =
2�

�p��p − vp� + i�
, �7.2�

while the vertex is proportional to

− ����p + q + r���p − vp�qr . �7.3�

Then, the one loop corrected propagator reads

G��p,�p� =
2�

�p��p − vp� − �G�p,�p�
. �7.4�

We consider those Feynmann diagrams whose contribution
to the corrected propagator is

�G�p,�p� = �2��2

�2 ��p − vp�p , �7.5�

where  is a momentum cutoff. Replaced in Eq. �7.2� this
gives

G�p,�p� =
1

�� + ���p��p − vp�
, �7.6�

where the nonuniversal correction to the level is given by

�� = − �
��2

�2 2. �7.7�

Note that the effective coupling is ��n
2 /�n

2=�2 /4�x�
2 , being

independent of the details of the boundary. A nonvanishing
correction to the velocity arises from the remaining diagrams
but it produces no physical consequences.

Since the tunneling exponent is directly related to the
level by ���, the appearance of a correction for the latter

implies, to first order, a correction to the tunneling exponent.
It should be stressed at this point that the correction is nega-
tive, in qualitative accordance with the experimental results.
This is the main result of this section.

To estimate the magnitude of this correction, we need to
relate the momentum cutoff  to the minimal space distance
measurable a, which naturally leads to the identification 
=� /a. Using Eq. �6.3� we then get for this choice of the
cutoff

�� = −
�

�4a2�̃o�2 = −
�

16
� − 0.196, �7.8�

where we have further identified �̃o=1 /a2. The predicted de-
pendence on the density of this nonuniversal correction
could in principle be tested experimentally.

Putting it all together leads to a linear dependence of the
tunneling exponent � as a function of 1 /� which is very
close to the experimental fit presented in Ref. 10 �see, for
example, Fig. 3 of this reference�. However, it should be kept
in mind that our present result is valid for incompressible
situations. It can be observed that the departure of our result
from the experimental data becomes greater for increasing
1 /�, which could be attributed to the need to work with N
�1 in Eq. �6.5�. This could in turn be related to the need to
consider a wider boundary region. The analysis of the higher
N case will be presented separately.19

VIII. CONCLUSIONS AND OUTLOOK

To summarize, we have constructed an effective field
theory that describes the boundary region of a fractional
quantum Hall effect droplet, starting from the microscopic
description. We included the interplay between the granular-
ity of the fluid �the interparticle distance a� and the effects of
a smooth boundary. This extended boundary has been de-
fined by means of a nonvanishing electric field that leads to
a space-dependent filling fraction within this region. The
physical excitations of the system are localized at the bound-
ary, and are described by a system of self-interacting chiral
bosons.

All the approximations we made along our calculations
are under control: by taking the nonrelativistic limit in the
strong magnetic field regime, we enforced the projection into
the LLL. Keeping the interaction between particles com-
pletely generic, this low energy projection results in a con-
straint on the dynamical degrees of freedom of the model.
With the help of the symmetries of the system, we were able
to replace this constraint by an equivalent one that implies
incompressibility and is completely independent of the de-
tails of the interaction potential.

As an example of the possible applications of our ap-
proach, we have computed the correction to one loop order
of the tunneling exponent to lowest order in the boundary
width, which is in qualitative agreement with experimental
results.

The results presented here can in principle be improved in
a systematic way. Wider boundary regions can be easily
treated within the present approach, by simply taking higher
values of N in Eq. �6.5�. In this case, we get a new self-
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interacting chiral boson on each slice, which is coupled to
the immediately inner slice. For example, for two slices we
have

S = −
1

8�2 � dtdy���1LF��1� + �2LF��2� + �1�LS��1�

+ �2�„LS��2� − LI��2,�1�…� . �8.1�

If we want to evaluate as before the correction to the level of
the chiral boson that lives on the outer slice, we would now
have additional diagrams coming from the interaction with
the inner boson. It is easy to see that the resulting diagrams
involve only corrections to the velocity, and do not affect the
level. In particular, this implies that tunneling exponents re-
main unchanged.

Higher loop computations could also be envisaged; how-
ever, they would involve the solution of the constraint to
higher orders in �. Indeed, a two loop computation includes
powers of �4, which were discarded when solving the con-
straint by formula �5.1�. A consistent calculation then needs
the inclusion of these terms in Eq. �5.1�, which will in turn
give rise to additional terms in the Lagrangian. This is out of
the scope of the present paper.

As a further improvement, one can describe compressible
situations by including the effects of the degrees of freedom
transverse to the flat directions of the potential �described by
� in Eq. �4.13��. To this end, instead of writing the incom-
pressibility constraint �4.14� and solving it by Eq. �5.1�, we
can simply parametrize a small deviation of the system from
its ground state as

x̃i�ỹ,t� = ỹ j + ��� jk�k� + � j�� + O��2� , �8.2�

where ��=�. This parametrization is completely general,
since it includes deviations � that are transverse to the flat
directions of the potential. Higher orders in � can be included
as in Eq. �5.1�, even if for simplicity we will not write them
in what follows. The resulting form of the action is

1

8�2 � dtd2y�ti
„��i��t − va�a�� + ��i��t − va�a��…

+ 2�−1�i��i��t − va�a��

−� d2y�f ij�y,y���i��y�� j��y��� . �8.3�

We see that the first two terms are proportional to ti and
hence localized at the boundary, while the third integrates
over the whole sample. The last nonlocal term comes from a
functional expansion of the interaction potential V�x̃� in pow-
ers of �, where f ij�y ,y��=�2V /�xi�y��x j�y��. Even if it is
evident that this is a very complicated system, we will try to

convince the reader that it deserves further investigation. We
will specialize it to a straight boundary as before, and ex-
plore the simple case of a static configuration with vanishing
�. Taking advantage of the isotropy of the interparticle inter-
actions we write f ij�y ,y��=�ij f�y ,y��. Moreover, we can ex-
pand this nonlocal potential in powers of its typical nonlo-
cality range � as f�y ,y��= fo���y−y��+�2�2��y−y��+ ¯ �.21

The equations of motion in this limit read

t���v���� − �−1�2�v���� = 0,

− tv��
2� + fo��2� + �2�2�2�� = 0, �8.4�

here t and v are the moduli ti, and va, respectively. The first
equation is solved by �=��y��. The second equation imme-
diately imply �2��sin��y�+��. This result becomes sugges-
tive when we note that under the small deviation of the in-
compressible ground state parametrized by �, the density
scales as �= �̃o�1+�2��. Then as we move in the direction
transverse to the boundary, we see an oscillating behavior of
the density that may in principle be related to the so-called
boundary reconstruction effect. These are very preliminary
results, and should be intended not as a proof but just as an
insight of the possibilities of the present approach.

Other approaches to include a boundary in a Chern-
Simons description of a quantum Hall droplet have been
proposed.20 In this context, it would be interesting to study
their connection to our model.

It should be mentioned that the experimental data in Ref.
10 were reanalyzed in Ref. 13 in view of the results of Ref.
15, and certain degree of agreement with the plateau struc-
ture was obtained. Here we propose an alternative descrip-
tion which provides a reasonable agreement with the raw
experimental data as presented in Ref. 10. It would be inter-
esting to study the higher order theory that we have con-
structed in the present paper along the lines of the approach
presented in Ref. 15. This could provide a closer agreement
between theoretical and experimental results.

It would be also interesting to analyze the consequences
of the higher order corrections induced by the smoothness of
the boundary that we have obtained here in the transition
between plateau states.

ACKNOWLEDGMENTS

We thank A. Dobry, E. Fradkin, J. Polonyi, P. Pujol, G. L.
Rossini, and G. Silva for helpful discussions. N.E.G. is grate-
ful to SISSA and ICTP for hospitality and financial support
during the early stages of this work. This work was partially
supported by ECOS-Sud Argentina-France collaboration
�Grant No. A04E03� and PICS CNRS-CONICET �Grant No.
18294�, and ISF grant INSTANS.

EFFECT OF THE BOUNDARY SHAPE IN THE EFFECTIVE… PHYSICAL REVIEW B 77, 115107 �2008�

115107-9



*cabra@lpt1.u-strasbg.fr
†grandi@fisica.unlp.edu.ar
1 K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494

�1980�.
2 D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.

48, 1559 �1982�.
3 R. B. Laughlin, Phys. Rev. Lett. 50, 1395 �1983�.
4 R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bu-

nin, and D. Mahalu, Nature �London� 389, 162 �1997�.
5 J. K. Jain, Phys. Rev. Lett. 63, 199 �1989�.
6 S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62,

82 �1989�; S. Girvin, R. E. Prange, and S. M. Girvin, The Quan-
tum Hall Effect �Springer-Verlag, Berlin, 1990�; E. Fradkin Field
Theories of Condensed Matter Systems �Addison-Wesley, Read-
ing, MA, 1991�.

7 A. M. Chang, Rev. Mod. Phys. 75, 1449 �2003�.
8 D. C. Cabra and N. E. Grandi, arXiv:cond-mat/0511674 �unpub-

lished�.
9 X.-G. Wen, Adv. Phys. 44, 405 �1995�.

10 M. Grayson D. C. Tsui, L. N. Pfeiffer, K. W. West, and A. M.
Chang, Phys. Rev. Lett. 80, 1062 �1998�.

11 K. Yang, Phys. Rev. Lett. 91, 036802 �2003�.

12 X. Wan, F. Evers, and E. H. Rezayi, Phys. Rev. Lett. 94, 166804
�2005�.

13 A. M. Chang, M. K. Wu, C. C. Chi, L. N. Pfeiffer, and K. W.
West, Phys. Rev. Lett. 86, 143 �2001�.

14 A. Würtz, R. Wildfeuer, A. Lorke, E. V. Deviatov, and V. T.
Dolgopolov, Phys. Rev. B 65, 075303 �2002�; Y. N. Joglekar, H.
K. Nguyen, and G. Murthy, ibid. 68, 035332 �2003�; D. B.
Chklovskii, B. I. Shklovskii, and L. I. Glazman, ibid. 46, 4026
�1992�; D. B. Chklovskii, ibid. 51, 9895 �1995�.

15 C. de C. Chamon and E. Fradkin, Phys. Rev. B 56, 2012 �1997�.
16 C. de C. Chamon and X.-G. Wen, Phys. Rev. B 49, 8227 �1994�;

D.-H. Lee and X.-G. Wen, arXiv:cond-mat/9809160 �unpub-
lished�.

17 William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery, Numerical Recipes �Cambridge University
Press, Cambridge, 2007�.

18 L. Susskind, arXiv:hep-th/0101029 �unpublished�.
19 D. C. Cabra and N. Grandi �unpublished�.
20 A. P. Polychronakos, J. High Energy Phys. 0104, 011 �2001�.
21 That this is the correct expansion can be checked by Fourier

transforming the double integral and expanding in powers of the
wave number.

D. C. CABRA AND N. E. GRANDI PHYSICAL REVIEW B 77, 115107 �2008�

115107-10


