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We present the results of band structure calculations for ACr2X4 �A=Zn, Cd, Hg and X=O, S, Se� spinels.
Effective exchange coupling constants between Cr spins are determined by fitting the energy of spin spirals to
a classical Heisenberg model. The calculations reproduce the change of the sign of the dominant nearest-
neighbor exchange interaction J1 from antiferromagnetic in oxides to ferromagnetic in sulfides and selenides.
It is verified that the ferromagnetic contribution to J1 is due to indirect hopping between Cr t2g and eg states via
X p states. Antiferromagnetic coupling between third Cr neighbors is found to be important in all the ACr2X4

spinels studied, whereas other interactions are much weaker. The results are compared to predictions based on
the Goodenough–Kanamori rules of superexchange.
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I. INTRODUCTION

Chromium spinels provide unrivalled possibilities for
studying magnetic interactions in solids. In these compounds
with a general formula ACr2X4, where A is a divalent non-
magnetic cation �Mg, Zn, Cd, or Hg� and X is a divalent
anion �O, S, or Se�, a Cr3+ ion is in the 3d3 configuration. Its
three 3d electrons occupy the majority-spin states of a com-
pletely spin polarized t2g subshell leading to the total spin
S=3 /2. Although charge and orbital degrees of freedom in
the ACr2X4 spinels are frozen, these compounds show wide
variety of magnetic properties ranging from those of a
strongly frustrated antiferromagnet to a Heisenberg ferro-
magnet. Depending on the chemical composition their effec-
tive Curie–Weiss temperature ��CW� varies from −400 K in
oxides to 200 K in selenides,1,2 which indicates that the sign
of the dominant exchange interaction changes from antifer-
romagnetic �AFM� to a ferromagnetic �FM� one.

In the ACr2O4 spinels, AFM nearest-neighbor interactions
between Cr spins residing on a pyrochlore lattice are geo-
metrically frustrated. The magnetic ground state of a frus-
trated antiferromagnet is highly degenerate which leads to
unusual low-temperature properties.3,4 Cr oxide spinels re-
main paramagnetic with the Curie–Weiss form of the mag-
netic susceptibility down to temperatures well below ��CW�
of 398, 71, and 32 K for A=Zn, Cd, and Hg. ZnCr2O4 �TN

=12.5 K� and CdCr2O4 �TN=7.8 K� undergo a first order
phase transition of the Spin–Peierls type into a magnetically
ordered Néel state at temperatures much lower than the char-
acteristic strength ��CW� of the interaction between Cr
spins.5,6 The transitions are accompanied by cubic to tetrag-
onal structural distortions; however, the sign of the distor-
tions and the magnetic order below TN are different. In
ZnCr2O4, the lattice contracts along the c axis �c�a� and the
Néel state has a complex commensurate spin structure with
four characteristic wave vectors. In contrast, the lattice of
CdCr2O4 expands below TN �c�a� and its ordered state is
incommensurate with a wave vector Q= �0,� ,1� with �
�0.09.7 HgCr2O4 also undergoes a transition to a magneti-
cally ordered state at TN=5.8 K but the symmetry of the
lattice lowers to orthorhombic.8 Recently, a metamagnetic

transition and a wide magnetization plateau with the mag-
netic moment equal to one-half of the full Cr moment have
been observed in CdCr2O4 and HgCr2O4.6,8–10

In ACr2S�e�4 spinels, dominant ferromagnetic interactions
are not geometrically frustrated. Nevertheless, Cr spins in
ZnCr2S4 and ZnCr2Se4 form helical spin structures below
15.5 and 18 K, respectively.11–13 In ZnCr2S4, the helical
structure coexists at low temperatures with a collinear AFM
one. The transitions into helically ordered state are supposed
to occur because of competing FM nearest-neighbor interac-
tion and AFM interactions between more distant Cr neigh-
bors. Recently, it has been shown that CdCr2S4 and HgCr2S4
exhibit ferroelectric behavior with strong increase of the di-
electric constant below the temperature of magnetic
ordering.14,15

The diversity of magnetic properties of the ACr2X4 spinels
can hardly be explained without understanding the mecha-
nism of exchange interactions between Cr spins, their range,
and relative strengths. So far, theoretical analyses of the
effective exchange interactions in Cr spinels were mostly
based on the Goodenough–Kanamori rules of
superexchange.16,17 Goodenough in Ref. 18 explained the
FM sign of the nearest-neighbor coupling J1 in ACr2S�e�4 by
indirect hopping between half-filled Cr t2g and empty eg
states via p states of X anions. Dwight and Menyuk19,20 ana-
lyzed various superexchange paths for interactions between
up to sixth Cr neighbors and concluded that AFM coupling
constants J3 between third neighbors and even weaker FM J4
and J6 may be relevant alongside J1. Then, the estimated Jn
were used to examine the stability of different spiral ground
states in ZnCr2Se4. To our knowledge, the only attempt to
obtain the values of Jn from ab initio band structure calcula-
tions was made in Ref. 21 where the coupling constants J1-J3
were calculated by comparing the total energies of several
simple spin configurations.

The aim of the present work is to compare electronic band
structures of ACr2X4 �A=Zn, Cd, Hg and X=O, S, Se�
spinels calculated within the local spin-density approxima-
tion �LSDA� and LSDA+U and to estimate exchange cou-
pling constants between Cr spins by fitting the calculated
energy of spin spirals to a classical Heisenberg model. The
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paper is organized as follows. The spinel crystal structure is
shortly described in Sec. II. Some details of the calculational
procedure are given in Sec. III. In Sec. IV, the band struc-
tures of the ACr2X4 spinels calculated using LSDA and
LSDA+U are compared and their dependence on the chemi-
cal composition is analyzed. The results on the exchange
coupling constants Jn are presented in Sec. V. The compari-
son of calculated Jn to experimental data and the discussion
of their origins are given in Sec. VI. Finally, the results are
summarized in Sec. VII.

II. CRYSTAL STRUCTURE

ACr2X4 compounds considered here belong to a large
family of A2+B2

3+X4
2− spinels which crystallize to a cubic

Fd3̄m �N227� structure, with A, B, and X ions occupying 8a
�1 /8,1 /8,1 /8�, 16d �1 /2,1 /2,1 /2�, and 32e �x ,x ,x� Wyck-
off positions, respectively. The experimental values of the
lattice constant �a0� and fractional coordinates �x� are col-
lected in Table I. The spinel crystal structure plotted in Fig. 1
can be considered as built of distorted Cr4X4 cubes which
share a Cr site. Cr and X ions that belong to the same cube
form two regular tetrahedra with a common center, which
coincides with the center of the cube. Each cube is linked via
X ions to four regular AX4 tetrahedra. The centers of the
Cr4X4 cubes and AX4 tetrahedra form two diamond lattices
shifted by a vector �1 /4,1 /4,1 /4�. Finally, Cr ions are ar-
ranged along chains running in the �110� directions and form
the so-called pyrochlore lattice which consists of corner-
sharing regular tetrahedra.

As the ionic radius of a A2+ cation increases in the row
Zn2+→Cd2+→Hg2+, X ions are pushed further away from
the center of a AX4 tetrahedron. This leads to lattice expan-
sion and corresponding increase of Cr-Cr distances. The dis-
tortion of Cr4X4 cubes also increases in order to avoid too
strong elongation of Cr-X bonds and manifests itself in the
increase of the x parameter. When O2− ions are replaced by

S2− or Se2−, which have significantly larger ionic radii, the
length of both A-X and Cr-X bonds increases. This results in
even stronger increase of the lattice constant. The nearest
Cr-Cr �dCr−Cr�, Cr-X �dCr-X�, and A-X �dA-X� distances are
summarized in Table I.

Each Cr site is surrounded by a trigonally distorted X6
octahedron, with all Cr-X distances in the octahedron being
equal. The degree of the trigonal distortion is determined by
the value of the fractional coordinate x. For x�0.25, the
octahedron is expanded along one of the �111� directions and
becomes regular for x=1 /4.

The local symmetry of a Cr site is D3d. It is worth noting
that since six Cr ions nearest to a Cr site form a trigonal
antiprism, the symmetry remains trigonal even when x is
equal to the ideal value of 1 /4.

III. COMPUTATIONAL DETAILS

The calculations of the electronic band structure of the
ACr2X4 spinels were performed for the experimentally ob-

TABLE I. Experimental lattice constants a0 �Å� and fractional coordinate x of X ions used in the calcu-
lations and the shortest Cr-Cr, Cr-X, and A-X distances �Å�. The last column contains experimental values of
�CW taken from Ref. 2.

Compound a x dCr-Cr dCr-X dA-X �CW

ZnCr2O4
a 8.327 0.2616 2.944 1.990 1.970 −398

CdCr2O4
b 8.600 0.2682 3.041 2.006 2.133 −71

HgCr2O4
b 8.661 0.2706 3.062 2.003 2.184 −32

ZnCr2S4
c 9.982 0.2619 3.529 2.383 2.367 7.9

CdCr2S4
d 10.240 0.2647 3.620 2.419 2.478 90

HgCr2S4
e 10.256 0.267 3.626 2.402 2.523 140

ZnCr2Se4
f 10.484 0.2599 3.707 2.522 2.450 155

CdCr2Se4
g 10.735 0.2642 3.795 2.540 2.588 184

HgCr2Se4
e 10.737 0.264 3.796 2.543 2.585 200

aReference 22.
bReference 10.
cReference 23.
dReference 24.

eReference 2.
fReference 11.
gReference 25.

A

Cr

X

FIG. 1. �Color online� The crystal structure of ACr2X4 spinels
with an A ion shifted to the origin. Distorted Cr4X4 cubes and AX4

tetrahedra are plotted by thick �red� and thin �green� lines,
respectively.
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served lattice constant and X fractional coordinates �Table I�
on the base of the local spin-density approximation26 to the
density functional theory27,28 using the linear muffin-tin or-
bital �LMTO� method29 with the combined correction terms
taken into account. In order to decrease the overlap between
atomic spheres, three sets of empty spheres �E� were added
at 8b �0,0,0�, 16c �3 /8,3 /8,3 /8�, and 48f �x� ,1 /8,1 /8� Wy-
ckoff positions. Muffin-tin orbitals with angular momentum
l�2 for A, Cr, and X spheres and l�1 for empty spheres
were included into the basis set. The Perdew–Wang
parametrization30 for the LSDA exchange-correlation poten-
tial was used. Brillouin zone �BZ� integrations were per-
formed using the improved tetrahedron method.31

Calculations for spiral spin structures based on the gener-
alized Bloch theorem32 were performed under the assump-
tion that the direction of the magnetization m is constant
within each atomic sphere. Inside a sphere at t+R, where t
defines its position in a unit cell and R is a lattice vector, the
magnetization direction is determined by an angle �t between
the spin moment and z axis, the wave vector q of a spiral,
and a phase �t,

m�rt� = m�rt��cos��t + q · R�sin �t

sin��t + q · R�sin �t

cos �t
� , �1�

with rt=r− t−R.
When performing LMTO calculations for spin spirals, it is

convenient to split the LSDA exchange-correlation potential
into a spin- and q-independent part V= �V↑+V↓� /2 and an
effective exchange field B= �V↑−V↓� /2, where V↑ and V↓ are
exchange-correlation potentials for majority- and minority-
spin electrons defined in the site-dependent local spin frame,
in which the spin-density matrix for a given site is diagonal.
In the present calculations, spin-independent LMTO basis
functions were constructed starting from the solution of the
Kohn–Sham equation with only the spin-independent part V
of the exchange-correlation potential included to the LSDA
one electron potential. Matrix elements of the spin-
dependent part of the LMTO Hamiltonian,

HB = 	
t,R

B�rt� · �

= 	
t

B�rt�� cos �t
sin �t	

R
e−i��t+q·R�

sin �t	
R

ei��t+q·R�
− cos �t

� ,

�2�

where � is a vector of Pauli matrices, were included at a
variational step. Radial matrix elements of B�r� between the
solution of the Kohn–Sham equation inside a sphere �	�r�
and/or its energy derivative �̇	�r� were calculated by numeri-
cal integration.

The diagonal in spin indices matrix elements of HB cal-
culated between two Bloch wave functions with wave vec-
tors k and k� do not depend on q and, as usual, are nonzero
only if k=k�. In the absence of the spin-orbit coupling, the

only off-diagonal in spin indices terms of the Hamiltonian
are HB

↓↑�q� and HB
↑↓�q� given by Eq. �2�, which couple the

states with k�−k= 
q. Then, the LMTO Hamiltonian matrix
can be written in the following block form:

H = 
Hk−q/2,k−q/2
↓↓ Hk−q/2,k+q/2

↓↑

Hk+q/2,k−q/2
↑↓ Hk+q/2,k+q/2

↑↑ � . �3�

Thus, for a spin spiral with an arbitrary q one needs to diag-
onalize one 2N�2N matrix instead of two N�N matrices,
one for each spin channel, in conventional spin-polarized
calculations.32 If, however, the spin-orbit coupling term is
included into the Hamiltonian, it additionally couples
majority- and minority-spin states with the same k and the
Hamiltonian matrix becomes infinite.

Most calculations reported in Sec. V were performed for
planar spin spirals with all �t=� /2. Then, for a given q, the
magnetization direction inside a sphere is defined solely by
the phase �t. The phases at Cr sites were fixed by requiring
that �t=q · t. At other atomic and empty sites, they were
determined self-consistently. At each iteration of a self-
consistency loop, a rotation to the local spin frame in which
the spin-density matrix becomes diagonal was found and the
corresponding rotation angles were used to determine new
magnetization direction for the next iteration.33 Iterations
were repeated until self-consistency in the electron spin den-
sity as well as in the magnetization direction in each atomic
sphere was achieved.

Finally, in order to account for correlation effects in the
Cr 3d shell, we adopted the LSDA+U method34 in the rota-
tionally invariant representation.35,36 The so-called atomic
limit37 was used for the double counting term. The effective
screened Coulomb repulsion U between 3d electrons was
considered as a parameter of the model and varied from
2 to 4 eV. For the on-site exchange integral JH, the value of
0.9 eV estimated from the LSDA calculations was used.

IV. COMPARISON OF THE ELECTRONIC STRUCTURES
OF O-, S-, AND S-BASED SPINELS

A. Spin-restricted local density approximation results and
hopping matrix elements

The effect of the chemical composition on the electronic
structure of ACr2X4 spinels can be analyzed by comparing
the densities of Cr d and X p states obtained from spin-
restricted LDA calculations for ACr2X4 �Fig. 2�. Since site-
resolved densities of states �DOSs� for the ACr2S4 spinels
show the same trends as those for ACr2Se4, only DOSs cal-
culated for ACr2O4 and ACr2Se4 compounds are presented in
Fig. 2.

In all the ACr2X4 spinels considered in the present work,
occupied bands in the energy range down to −10 eV below
the Fermi level �EF� originate from A d, Cr d, and X p states.
A d states in the sulfides and selenides as well as Cd 4d states
in CdCr2O4 form a narrow group of bands below the bottom
of X p states. Zn 3d and Hg 5d bands in the corresponding
oxides cross the bottom of O p states and hybridize strongly
with the latter which results in the appearance of wide peaks
of d DOS between −9 and −7 eV. The A d states are com-
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pletely occupied and lie well below EF so that they have no
effect on the magnetic properties of the ACr2X4 spinels.

O p-derived bands in ACr2O4 spread over the energy
range from −8 to −3 eV and are separated by a gap of
�1.5 eV from Cr 3d states which give prevailing contribu-
tion to the bands crossing the Fermi level and a prominent
DOS peak at EF. Because of the decrease of the binding
energy of valence p states with the increase of the X atomic
number S 3p and Se 4p states in ACr2S�e�4 spinels move
closer to EF and form bands between −6.5 and −0.5 eV. In
contrast to oxides the top of X p bands overlaps with the
bottom of Cr d ones and the gap between X p and Cr d states
closes.

Cr d states are split by the cubic component of the crystal
field at a Cr site into a triplet t2g �dxy, dzx, and dyz� and a
doublet eg �d3z2−1 and dx2−y2�. In a Cr X6 octahedron, the t2g

and eg states form relatively weak pd�- and much stronger
pd
-type bonds with the X p states, respectively. Bonding
Cr d-X p combinations participate in the formation of the
X p-derived bands which is evidenced by the rather high den-
sity of Cr d states in this energy range �see Fig. 2�. These
states are completely filled and stabilize the Cr X6 octahe-
dron. In all the ACr2X4 spinels considered here, the partially
occupied bands crossing EF are formed by antibonding com-
binations of the Cr d t2g and X p states with the dominant
contribution of the former. These states, filled with three
electrons, play the crucial role in the formation of Cr mag-
netic moments and effective exchange interactions between
them. The Cr d states of the eg symmetry which form anti-
bonding pd
 combinations with the X p states are shifted to
higher energies and separated by an energy gap from the
antibonding Cr t2g-X p states. For the sake of brevity, in the
following, these bands are referred to simply as Cr d t2g and
eg bands.

As the local symmetry of a Cr site is lower than cubic the
t2g states are additionally split into a singlet and a doublet
which transform according to a1g and eg representations of
the D3d group. We denote this doublet as eg

� in order to
distinguish it from the doublet formed by d3z2−1 and dx2−y2

orbitals �eg

� which transforms according to the same eg rep-

resentation. The densities of the Cr d states of a1g, eg
�, and eg




symmetries are shown in Fig. 3.
The trigonal splitting between the a1g and eg

� states is
much smaller than their bandwidths, with the center of grav-
ity of the former being about 0.05 eV lower. The correspond-
ing DOS curves in ACr2O4 are, however, remarkably differ-
ent. The total width of the Cr t2g subband is determined by
the eg

� states. Their DOS curve is very asymmetric with low
DOS at the bottom and a huge DOS peak at the top of the t2g
bands. The a1g states are significantly narrower. They are
responsible for the DOS peak at EF but contribute also to the
high-energy eg

� DOS peak. This strong suppression of the
width of the a1g DOS is a characteristic feature of 3d transi-
tion metal oxides with the spinel structure and a small ionic
radius of an A ion. Recently, two scenarios based on a strong
Coulomb interaction within V d shell and the localized be-
havior of V a1g states have been proposed to explain heavy-
fermion-like properties in LiV2O4.38,39

An analysis using Slater–Koster integrals40 shows that the
narrowing of a1g DOS is caused by the competition of direct
d-d hopping matrix elements tdd between the Cr t2g states and
an effective indirect hopping tdd

p via O p states. The latter is
of the order of tpd

2 / ��d−�p�, where tpd is a Cr d-O p hopping
and �p and �d are the energies of the Cr d and O p states, and
is very sensitive to the deviation of the fractional coordinate
x from the ideal value of 1 /4, i.e., the degree of the distortion
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FIG. 2. �Color online� Densities of Cr d �red solid lines�, X p
�blue dashed lines�, and A d �green dotted lines� states in ACr2O4

and ACr2Se4. Zero energy is chosen at the Fermi level.
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FIG. 3. �Color online� Symmetry-resolved densities of the Cr d
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Fermi level.
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of CrO6 octahedra. As it was shown for LiV2O4 in Ref. 41
and verified for ZnCr2O4 in the present work, the densities of
a1g and eg

� states calculated for a hypothetical spinel structure
with x=1 /4 are of the same width, whereas for experimental
values of x�0.26–0.27, the competition between the direct
and indirect contributions to the effective d-d hopping leads
to reduction of the a1g bandwidth relative to the width of eg

�

states. Finishing the discussion of the d-d hybridization, we
have to mention strong hopping matrix elements between t2g
and eg


 states which appear as a result of either direct hopping
between, for instance, dxy and d3z2−1 orbitals in the 
110�
direction or indirect one via px and py states of two X ions
closest to the Cr-Cr bond, which is allowed already in an
undistorted Cr4X4 cube. The direct and indirect contributions
are of opposite signs which may lead to strong suppression
of effective t2g−eg


 hopping matrix elements.
Let us come back to the results of band structure calcula-

tions shown in Figs. 2 and 3. As Zn is replaced by a larger
Cd or Hg ion, the width of the Cr t2g states decreases from
1.8 eV in ZnCr2O4 to 1.6 eV in HgCr2O4. The narrowing of
the bands can be explained by the reduction of the strength
of both d-d and Cr d-O p hopping matrix elements caused by
the lattice expansion �see Table I�. The shape of a1g and eg

�

DOS, however, also varies considerably. This indicates the
change of relative strengths of the direct d-d and indirect
d-O p-d hoppings between Cr t2g states.

Cr eg

 states are affected much stronger by the change of

the chemical composition because of their interaction with s
bands of an A ion. In ZnCr2O4, eg


 bands cross just the bot-
tom of a Zn 4s band near the BZ center. Cd 5s and, espe-
cially, Hg 6s bands shift to lower energies and overlap with
Cr eg


 bands. In CdCr2O4, the hybridization with a Cd 5s
band is responsible for a low energy tail of Cr eg


 DOS. In
HgCr2O4, the bottom of a Hg 6s band comes so close to
Cr t2g bands that it starts to hybridize via O p states with
Cr a1g bands, which is evidenced by the appearance of no-
ticeable density of a1g and eg


 states in the energy gap be-
tween t2g- and eg


-derived bands.
Symmetry-resolved densities of Cr d states in selenides,

presented on the right hand side of Fig. 3, are strikingly
different from the corresponding DOS curves in oxides. The
densities of a1g and eg

� states do not differ so much as in
oxides, with the top of the eg

� bands being shifted to some-
what higher energies. The huge DOS peak found at the very
top of the t2g states in ZnCr2O4 and slightly lower in the two
other oxides shifts in selenides closer to the center of the t2g
bands. The energy difference between the Cr eg


 and t2g states
is somewhat smaller than in oxides. The eg


 DOS curves be-
come wider and more symmetric. Another important distinc-
tion of the ACr2S�e�4 electronic structure is the enhanced
weight of the eg


 states in the Bloch wave functions of Cr t2g
bands, which is revealed by noticeable density of the eg




states in the corresponding energy range.
The difference between the dispersions of Cr d bands in

the oxides and selenides is illustrated in Fig. 4 which shows
“fat” bands calculated for ZnCr2O4 and ZnCr2Se4, with the
size of filled circles and squares being proportional to the
partial weight of Cr a1g and eg


 states, respectively, in the
Bloch wave function at a given k point.

The above-mentioned differences in the band dispersions
and DOS suggest that the effective d-d hopping matrix ele-
ments should also be significantly different, which is not
surprising taking into account the increase of the lattice con-
stants in ACr2S�e�4 as compared to ACr2O4 �Table I�. The
increase of Cr-Cr distances leads to strong reduction of the
direct d-d hopping matrix elements which fall off as 1 /dCr-Cr

5 .
It should be noted, however, that a tight binding analysis of
the band structure of CdCr2S4 performed in Ref. 42 showed
that the direct hopping between Cr d states is not negligible
even in sulfides and selenides. The contribution of the indi-
rect hopping via X p states to the effective d-d hoppings,
which is proportional to tpd

2 / ��d−�p�, does not change much
because �i� S 3p and Se 4p states are significantly more spa-
tially extended than O 2p states and, although dCr-X also in-
creases in ACr2S�e�4, Cr d-X p hoppings tpd remain approxi-
mately of the same strength as in ACr2O4, and �ii� the energy
difference �d−�p in sulfides and selenides is smaller than in
oxides.

Similar to oxides the Cr t2g states in selenides become
narrower with the increase of the A ionic radius. The hybrid-
ization of Cr eg


 states with Hg 6s bands leads to sharpening
of a DOS peak near the bottom of the eg


 subband.

B. Effect of spin polarization

When in spin-polarized LSDA calculations Cr d states
with two spin projections are allowed to have different oc-
cupations, the strong on-site exchange interaction splits the
half-filled Cr t2g shell into occupied majority-spin t2g↑ and
unoccupied minority-spin t2g↓. The densities of Cr d and X p
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FIG. 4. �Color online� “Fat” bands calculated along some sym-
metry lines in the fcc BZ for ZnCr2O4 �lower panel� and ZnCr2Se4

�upper panel�. The size of filled �red� circles and �blue� squares is
proportional to the partial weight of Cr a1g and eg


 states in the
Bloch wave function, respectively. Zero energy is chosen at the
Fermi level.
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states in ACr2O4 and ACr2Se4 obtained from spin-polarized
calculations with the FM alignment of Cr moments are
shown in Fig. 5. Majority- and minority-spin fat bands cal-
culated for ZnCr2O4 and ZnCr2Se4 are presented in Figs. 6
and 7.

In all the spinels studied here, the exchange splitting of
Cr d states is about 2.7 eV which gives an estimate of 0.9 eV
for the on-site Hund’s exchange coupling JH. The exchange
and crystal field splittings are of comparable strengths, so
that Cr t2g↓ states are found at the same energy as eg↑


 . In the
oxides, t2g↑ states remain separated by an energy gap from
O p bands. In ZnCr2O4 and CdCr2O4, the FM solution is
insulating with completely occupied t2g↑ and empty t2g↓
states. In HgCr2O4, the bottom of a minority-spin Hg s band
hybridized with Cr a1g↓ states crosses t2g↑ bands leading to a
metallic solution.

In contrast to the oxides, in the ACr2S�e�4 spinels, t2g↑
states move below the top of the X p states �Fig. 7�. As a
result, the highest occupied majority-spin bands are formed
mainly by X p states strongly hybridized with Cr eg↑

� . In the
Zn and Hg spinels, they overlap with the very bottom of
mostly unoccupied t2g↓ bands, while for CdCr2S4 and
CdCr2Se4, insulating solutions with a tiny gap were obtained.
The LSDA band structures and DOS calculated for CdCr2S4
and CdCr2Se4 are in good agreement with the results of pre-
vious calculations.42,43 In the present work, however, the FM
solution for CdCr2S4 is insulating, whereas in Ref. 42, me-
tallic FM solutions were obtained for both compounds. A
possible cause for the difference is that in Ref. 42 structural
data with the S fractional coordinate x=1 /4 were used.

A Cr spin magnetic moment defined as a volume integral
of the spin density over a Cr atomic sphere varies from

2.86�B in ZnCr2O4 to 3.15�B in CdCr2Se4, which agrees
with a good accuracy with the value of 3�B expected for the
completely polarized t2g shell filled with three electrons. The
hybridization with Cr d states induces weak negative spin-
polarization of X p states. It is, however, partially compen-
sated by a positive contribution coming from the “tails” of
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FIG. 5. �Color online� Cr d �red solid lines� and X p �blue
dashed lines� DOS in ACr2O4 and ACr2Se4 obtained from spin-
polarized calculations with FM alignment of Cr magnetic moments.
Zero energy is at the Fermi level.
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Cr d states that have the d symmetry inside an X atomic
sphere. The net spin magnetic moment MX induced on X ions
is small and negative with MO�−0.01�B, MS�−0.05�B,
and MSe�−0.09�B. The moment induced on A ions is less
than 0.05�B.

The self-consistent FM solution discussed above can be
obtained for any of the nine spinels but it does not necessar-
ily have the lowest total energy. If the coupling between Cr
spins is AFM, then, because of geometrical frustrations in-
trinsic to the pyrochlore lattice formed by Cr ions, any con-
figuration of classical spins such that the sum of four spin
vectors sitting in the corners of each tetrahedron is equal to
zero is the ground state of the Heisenberg Hamiltonian with
nearest neighbor interactions.4 The requirement of zero total
spin in each tetrahedron is satisfied, for example, if Cr spins
are aligned ferromagnetically along the 
1
10� chains and
antiferromagnetically along 
01
1� and 
10
1� ones or, in
other words, if Cr spins in each �001� plane are parallel but
the spins in consecutive planes along the 
001� direction are
antiparallel to each other. In the following, this spin configu-
ration will be denoted as AFZ. It is easy to check that in this
case only four of six Cr-Cr bonds in each tetrahedron are
AFM, while the other two remain FM and the magnetic en-
ergy cannot be minimized for all six bonds simultaneously if
the coupling between Cr spins is antiferromagnetic.

Another spin configuration which gives zero total spin in
each tetrahedron and does not break the cubic symmetry of
the lattice is a noncollinear one with Cr spins directed along
the lines passing through the center of a tetrahedron, i.e.,
along one of the �111� directions, with all four Cr spins
pointing either to or away from the center. Self-consistent
band structure calculations performed with this configuration
of Cr spins gave for all the ACr2X4 spinels insulating solu-
tions with zero net magnetic moment, which in the following
is referred to as a ZM solution. Cr magnetic moments calcu-
lated in the local spin frame are about 0.1�B smaller than for
the corresponding FM solution but still close to 3�B. De-
pending on the magnetization directions of four Cr ions in a
Cr4X4 cube, the magnetizations in four X atomic spheres are
parallel or antiparallel to the vectors pointing to the center of
the cube so that small X magnetic moments also cancel each
other. With this arrangement of Cr and X moments, the spin
moments of A ions are equal to zero. It is worth noting that
for all the ACr2X4 compounds, the LSDA total energy differ-
ence between the AFZ and ZM solutions does not exceed
3 meV / f.u.

The comparison of the LSDA total energies of FM and
ZM solutions shows that in ZnCr2O4 the solution with zero
net moment is significantly more favorable, with the energy
difference per f.u. being 171 meV. In CdCr2O4, this differ-
ence decreases to 19 meV, whereas in HgCr2O4, the two
solutions are almost degenerate, the FM one being 2 meV
lower. In the sulfides and selenides, the FM solution becomes
more preferable. As Zn is replaced by a heavier ion, the
energy difference between the two solution increases from
43 to 118 meV / f.u. in sulfides and from 80 to 134 meV / f.u.
in selenides.

These results indicate that the change of the sign of domi-
nant exchange interactions from AFM in oxides to FM in
sulfides and selenides is captured already by LSDA band

structure calculations. Moreover, all the compounds show a
clear tendency to ferromagnetism as the lattice expands due
to the increase of the radius of A ions.

C. Local spin-density approximation plus U results

In ACr2X4, as well as in many other 3d compounds,
LSDA underestimates correlation effects in the rather local-
ized Cr 3d shell. The strong electronic correlations can be
accounted for, at least on a mean-field level, by using the
LSDA+U approach. Since Cr t2g states are split by the on-
site exchange interaction into occupied majority- and unoc-
cupied minority-spin states, charge and orbital degrees of
freedom are frozen already in LSDA. As a consequence,
LSDA+U band structures of the ACr2X4 spinels are qualita-
tively similar to the LSDA results.

When nonspherical terms of the Coulomb repulsion are
neglected, the orbital dependent LSDA+U potential Vi can
be approximated as Vi=U��1 /2−ni�, where ni is the occupa-
tion of ith localized orbital, U�=U−JH, and U is the effec-
tive screened Coulomb repulsion between 3d electrons. Tak-
ing into account that the orbital occupations ni of Cr t2g↑ and
t2g↓ states are close to 1 and 0, respectively, the main effect
of the LSDA+U potential is to shift the t2g↑ states to lower
and t2g↓ to higher energies by U� /2. Thus, the splitting be-
tween the t2g↓ and t2g↑ states increases from 3JH in LSDA
calculations to 3JH+U� in LSDA+U ones. In oxides, be-
cause of the downward shift of the t2g↑ states, they start to
overlap with O p bands. In ACr2S�e�4, the t2g↑ states move
further below the top of X p bands and their contribution to
the highest occupied majority-spin bands decreases. Due to
the increase of the t2g↓− t2g↑ splitting, ferromagnetic LSDA
+U solutions for all nine compounds considered in the
present work become insulating starting from U=3 eV.

Because of the strong Cr eg

-X p hybridization discussed

in Sec. IV A, the orbital occupations ni calculated for the
formally unoccupied Cr eg


 states are in the range of 0.28–
0.48 for the majority- and about 0.22–0.25 for the minority-
spin orbitals. As a result, the shift of the Cr eg


 states to
higher energies caused by the Coulomb repulsion U is some-
what smaller than for the t2g↓ states for which ni does not
exceed 0.07 and the splitting between eg↓


 and t2g↓ states de-
creases with the increase of U.

V. EFFECTIVE EXCHANGE COUPLING CONSTANTS

Effective exchange coupling constants Jn between Cr
spins were determined by performing band structure calcula-
tions for spiral spin structures with a varying wave vector q.
Then, the q dependence of the energy of the spin spirals was
mapped onto a classical Heisenberg model. In order to get
reliable estimates for Jn, one needs to perform calculations
for a sufficiently large number of q. Since self-consistent
calculations for spin spirals are much more time consuming
than conventional collinear spin-polarized calculations, the q
dependence of their energy was calculated using the so-
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called local force theorem �LFT�.44,45 According to this ap-
proach, the total energy difference between two spin configu-
rations can be approximated by the difference of their band
energies, provided that the calculations are performed start-
ing from the same electron spin densities and only the mag-
netization direction varies. Strictly speaking, this approxima-
tion is justified only for small deviations of the
magnetization direction from some collinear spin arrange-
ment, i.e., for small �q�, and before using it for short wave-
lengths, we have numerically checked its accuracy for the
case of the ACr2X4 compounds.

First, self-consistent calculations were performed for two
sets of planar spin spirals with the magnetization direction
inside a Cr sphere fixed by polar angles �=� /2 and �
=q · �t+R�, where t is the position of a Cr site in the unit cell
and R is a lattice vector. The wave vectors q= �0,0 ,q� and
q= �q ,q ,0� of the spirals varied along the �-X and �-K high
symmetry directions, respectively, in the range 0�q�2 in
2� /a0 units. Obviously, the �0,0,0� spiral is the collinear FM
structure with the magnetization directed along the x axis,
whereas �2,2,0� and �0,0,2� spirals are equivalent to the col-
linear AFZ spin structure with zero net magnetization dis-
cussed in Sec. IV B. The magnetization directions in other
atomic spheres were determined self-consistently.

Then, band energies for the same spin spirals were calcu-
lated starting from self-consistent FM electron densities for
ACr2S�e�4 and from the densities for the ZM solution in the
case of oxides. When using LFT for spinels, one needs to
specify the magnetization direction not only for magnetic Cr
ions but also in A, X, and E spheres in which small but finite
magnetic moments are induced. In a general case, this direc-
tion is not uniquely determined by q but instead depends in a
nontrivial way on the orientation of Cr magnetic moments.
We found that good agreement between the q dependencies

of the total Etot�q� and band Ebnd�q� energies can be obtained
when the small exchange splitting in A, X, and E spheres is
completely neglected. Ebnd�q� curves calculated in this way
for some of the Cr spinels are compared to Etot�q� in Fig. 8.
Both energies are plotted relative to the energy of the FM
solution with q=0. The difference between Ebnd�q� and
Etot�q� does not exceed 5 meV and is much smaller than the
variation of the total energy with q even for CdCr2O4. Some-
what larger differences of about 8 meV are calculated for
sulfides �not shown in Fig. 8�. If the spin polarization inside
non-Cr spheres was not switched-off and the magnetization
directions obtained from self-consistent calculations were
used in LFT calculations, slightly larger differences between
the total and band energies were obtained. Below, when dis-
cussing exchange coupling constants between Cr spins, we
will drop the subscript bnd and denote the band energy cal-
culated with the spin polarization in A, X, and E spheres set
to zero simply as E�q�.

The calculations for spin spirals confirm the conclusion,
drawn in Sec. IV B on the base of comparison of the FM and
ZM total energies, that the energy of the zero net moment
solution �q=2� is lower than the FM one �q=0� in oxides,
whereas in ACr2S�e�4, the FM solution becomes more stable.
However, the shift of the minimum of E�q� curves to inter-
mediate values of q, most clearly seen for the �-K direction,
witnesses that alongside geometrical frustrations there is also
a competition between the nearest-neighbor exchange inter-
action and more distant ones. Only in CdCr2Se4 and
HgCr2Se4, the minimum is at q=0 and the FM solution has
the lowest energy.

Quantitative estimates for Jn up to the fourth shell of Cr
neighbors were obtained by mapping the energy of spin spi-
rals onto a classical Heisenberg model,
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FIG. 8. �Color online� The dependence of the total Etot�q� and band Ebnd�q� energies calculated within the LSDA on the wave vector of
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EH =
1

4	
i=1

4

	
n=1

4

	
j=1

zn

JnSi · S j , �4�

where i numbers Cr sites in the unit cell and j runs over zn
neighbors in the nth shell around the site i. Positive Jn cor-
respond to AFM coupling between Cr spins. Note that an
additional factor of 1 /2 appears in Eq. �4� because the mag-
netic energy is given per f.u. and there are 2 f.u. in the unit
cell. The length of the Cr spins Si was fixed to 3 /2. Then,
EH�q� depends only on the angle between a pair of Cr spins
which is uniquely determined by the wave vector q of a
spiral provided that for four Cr ions at positions ti in the unit
cell the phases are fixed by �i= ti ·q.

Some pairs of Cr ions coupled by J1-J4 are shown in Fig.
9. Each Cr site has six first �J1� and 12 second �J2� neighbors
at distances a0

�2 /4 and a0
�6 /4, respectively. The third shell

consists of 12 Cr sites at a0
�2 /2 which are split into two

inequivalent sextets. The corresponding coupling constants
are denoted as J3� and J3�. J3� couples Cr sites which lie on one
of the �110� chains and are actually the second Cr neighbors
along the chain. Cr sites coupled by J3� belong to parallel Cr
chains. For the spin spirals considered here, terms propor-
tional to J3� and J3� in Eq. �4� have the same q dependence so
that it was not possible to separate their contributions to the
magnetic energy and only their average J3= �J3�+J3�� /2 could
be determined from the fit. We will return to the discussion
of J3� and J3� later. Finally, in the fourth shell, there are 12 Cr
sites at the distance a0

�10 /4 �J4� which lie at the same
chains as the second Cr neighbors.

In order to get reliable values of Jn, additional LFT cal-
culations for spirals with wave vectors �q ,q ,q�, �1,q ,0�, and
�1,1 ,q� were performed. For the �1,q ,0� and �1,1 ,q� spi-
rals, the contributions to EH�q� proportional to J3 and J1,
respectively, do not depend on q, which allows us to deter-
mine these coupling constants with higher accuracy. Explicit

expressions for EH�q� for the above mentioned spin spirals
are given in the Appendix.

The results of a simultaneous least-squares fit of EH�q�
given by Eq. �4� to E�q� calculated within LSDA along the
five q directions are shown in Fig. 10 together with contri-
butions to EH�q� coming from different nearest neighbors
shells �En�. The values of Jn obtained from the fit are col-
lected in Table II. The dominant contribution to EH�q� is
provided by the nearest-neighbor coupling J1 which is AFM
in ACr2O4 and FM in ACr2S�e�4. In oxides, however, the
strength of AFM J1 decreases dramatically with the increase
of the A ionic radius: in CdCr2O4, J1 is more than five times
weaker than in ZnCr2O4, while in HgCr2O4, it becomes al-
most zero. In ACr2S�e�4, the strength of FM J1 tends to in-
crease in the row Zn→Cd→Hg but the changes are not as
strong as in the oxides, with the values of J1 calculated for
the Cd and Hg compounds being comparable.

Another significant contribution to EH�q� comes from the
term proportional to J3 which is AFM in all the ACr2X4
spinels considered in the present work. It is the competition
between the J1 and J3 terms which shifts the minimum of the
�0,0 ,q� and �q ,q ,0� curves to incommensurate q vectors.
For q= �0,0 ,q�, EH�q� has the same q dependence as a linear
chain of classical spins with competing nearest J=J1 and
next-nearest J�=2J3 neighbor interactions. The ground state
of such a chain becomes incommensurate if the ratio J� /J is
larger than the critical value of 0.25. Since J3 is not very
sensitive to the size of A ion, the ratio 2J3 /J1, which is less
than 0.1 in ZnCr2O4, increases to 0.45 in CdCr2O4, while in
the Hg oxide J3 becomes the dominant magnetic interaction.
The values of J3 calculated for ACr2S�e�4 are more than two
times larger than in the oxides. The largest �2J3 /J1� ratios of
0.75 and 0.48 are found for ZnCr2S4 and ZnCr2Se4, in which
the FM nearest-neighbor interaction is the weakest. In other
two selenides, �2J3 /J1��0.26 is only slightly larger than the
critical value of 0.25.

According to the results of the least-square fit, the ex-
change interactions between the second and fourth Cr neigh-
bors are much weaker than J1 and J3. While the sign of J2
varies form one compound to another, J4 is always ferromag-
netic and somewhat larger in sulfides and selenides com-
pared to oxides.

The reliability of the fitted Jn was checked by comparing
the values obtained from the fit to the band energies calcu-
lated for all five spin spirals �Jn

�5�� to those fitted to �0,0 ,q�
and �q ,q ,0� results only �Jn

�2��. In the case of J1, the relative
uncertainty of the determination of Jn, defined as �n= �Jn

�5�

−Jn
�2�� /Jn

�5�, is less than 1%, except for HgCr2O4 where J1
itself is very small. The uncertainty in J3 values is about 1%
in ACr2S�e�4 and 10% in oxides. The values of �2�5% and
�4�10% are also smaller in ACr2S�e�4 than in the oxides, in
which they are about 30%. The largest uncertainties in the
LSDA values of J2−J4 were found in the case of ZnCr2O4. A
plausible reason is that the nearest-neighbors terms of the
order of �Si ·S j�2 in the expansion of the magnetic energy46

may become comparable to the contribution of weak cou-
plings between distant Cr neighbors. Neither the fitted values
of Jn nor the quality of the fit were noticeably affected if
exchange couplings between fifth Cr neighbors were in-

Cr

X

J1

J2

J3’

J3’’
J4

FIG. 9. �Color online� Exchange coupling constants Jn up to the
fourth Cr neighbors.
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cluded into the fit. Accounting for more distant sixth neigh-
bors allowed us to decrease the mean deviation between the
calculated and fitted energies for ACr2S�e�4 but the obtained
values of J6 were even smaller than J2 and J4 and could not
be determined reliably. Finally, significantly smaller values
of �n were obtained when fitting EH�q� to LSDA+U band
energies.

Jn obtained by fitting EH�q� to band energies calculated
using the LSDA+U approach with U=2, 3, and 4 eV are
presented in Table III. Both J1 and J3 derived from the
LSDA+U calculations with U=2 eV for ACr2O4 are weaker
than the corresponding LSDA values. The only exception is
HgCr2O4, in which J1 is weakly FM in LSDA and becomes
somewhat stronger in LSDA+U. In ZnCr2O4, the value of J1
rapidly decreases with the increase of U as it is expected if

J� t2 /U. In Cd and Hg spinels, on the other hand, the in-
crease of U tends to make J1 more ferromagnetic. It looks as
if there were two competing contributions of the opposite
signs to J1: as the AFM one is suppressed by U the ferro-
magnetic contribution wins. Comparable values of J1
=0.5 meV, J2�0 meV, and J3=0.15 meV were obtained
from LSDA+U calculations for CdCr2O4 in Ref. 21. These
calculations, however, were performed using theoretical lat-
tice parameters.

In ZnCr2S4, �J1� calculated with U=2 eV is slightly larger
than the LSDA value and continue to increase with the in-
crease of U, whereas in ZnCr2Se4, J1 is practically indepen-
dent of U. In other ACr2S�e�4 spinels, switching on U sup-
presses J1 but the increase of U from 2 to 4 eV has only
minor effect on its strength.
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FIG. 10. �Color online� The comparison of calculated band energies �Ebnd� and the results of the fit using Eq. �4� �Efit� for q= �0,0 ,q� �left
panels� and q= �q ,q ,0� �right panels�. Individual contributions En of the terms proportional to Jn are also plotted.
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In all the compounds, J3 obtained from the LSDA+U
calculations is AFM and weaker than in LSDA. In ACr2O4
and ACr2S4, its value decreases with the increase of U, while
in selenides, its U dependence is very weak. J2 remains van-
ishingly small but shows clear tendency to become more FM
as U increases. Finally, in ACr2O4 and ACr2Se4, the increase
of U affects J4 in opposite ways: In oxides, the strength of
FM J4 increases, whereas in selenides, �J4� decreases and for
U=4 eV, it changes sign.

In order to separate J3� and J3� contributions to EH�q�, we
performed calculations for noncollinear spin superstructures
in which Cr moments only in every second �001� plane, the
one that contains 
110� Cr chains, are oriented in the ab
plane, with their directions being determined as before by
�=� /2 and �=q · �t+R�. Cr moments in other planes, which

contain 
11̄0� chains, are aligned parallel to the c axis ��
=0� so that their directions do not depend on � and, conse-
quently, on q. In this case, the third Cr neighbors in the ab
plane that lie on the same 
110� chain �J3�� and on parallel
chains �J3�� give different contributions to the q dependence
of the energy of �q ,q ,0� and �q ,−q ,0� spin spirals, which
allows us to determine J3� and J3� separately provided that
other Jn are known. Calculations performed for ACr2O4 and
ACr2Se4 show that J3� and J3� are of comparable strengths.
The calculated J3� /J3� ratio is 0.6, 0.5, and 1.1 in Zn, Cd, and
Hg oxides, respectively, while for the selenides, the values of
0.8, 0.8, and 1.0 were obtained. It seems plausible that the
contribution of Hg 6s states to Cr d-X p-Cr d hybridization is
responsible for somewhat larger values of J3� in the Hg com-
pounds.

It should be mentioned that the values of Jn presented in
Table III are somewhat different from the preliminary results
published in Ref. 47 for the following reasons: �i� for
CdCr2O4, old structural data from Ref. 48 with the O frac-
tional coordinate x=0.260, which seems to be too small,
were used, �ii� the calculations for oxides in Ref. 47 were
performed with O s and p states only included in the LMTO
basis set �this gives smaller values of J1 compared to the
present calculations in which O d are also included into the
basis� and �iii� the calculations in Ref. 47 were performed for
�q ,q ,0� and �0,0 ,q� spirals only and the coupling constants

between third Cr neighbors along the �110� chains were in-
cluded into the fit instead of J4. Later, it was verified that
accounting for true J4 to fourth Cr neighbors improves the
quality of the fit and seems more physical. We have to stress,
however, that despite the differences in calculated values of
Jn the main conclusions of Ref. 47 concerning the relative
strengths of various exchange interactions and their origins
remain unaffected.

VI. DISCUSSION

The effective Curie–Weiss temperatures estimated from
the calculated Jn according to

�CW =
S�S + 1�

3 	
n

znJn, �5�

with S=3 /2 are given in the last column of Tables II and III.
The comparison of the estimated �CW to experimental values

TABLE II. Exchange coupling constants Jn /kB �K� and �CW �K�
obtained from the least-squares fit of EH�q� given by Eq. �4� to the
energy of spin spirals calculated within LSDA.

J1 /kB J2 /kB J3 /kB J4 /kB �CW

ZnCr2O4 109 1.8 4.8 −0.1 −916

CdCr2O4 18 −0.3 3.8 −0.9 −172

HgCr2O4 −1 1.8 5.4 −0.8 −92

ZnCr2S4 −37 2.8 13.8 −1.5 49

CdCr2S4 −74 0.6 12.0 −1.7 392

HgCr2S4 −86 2.8 13.3 −1.7 432

ZnCr2Se4 −54 0.9 13.0 −2.2 228

CdCr2Se4 −88 −0.7 11.7 −2.1 526

HgCr2Se4 −86 0.0 11.6 −2.6 509

TABLE III. Exchange coupling constants Jn /kB �K� and �CW

�K� obtained from the least-squares fit of EH�q� given by Eq. �4� to
the energy of spin spirals calculated using the LSDA+U approach
with U=2, 3, and 4 eV.

ACr2X4

U
�eV� J1 /kB J2 /kB J3 /kB J4 /kB �CW

ZnCr2O4 2 61 0.3 2.9 −0.3 −500

3 40 0.0 2.3 −0.4 −328

4 25 −0.2 1.9 −0.5 −209

CdCr2O4 2 6 −0.3 2.2 −0.4 −64

3 −4 −0.4 1.7 −0.4 12

4 −9 −0.4 1.4 −0.4 62

HgCr2O4 2 −7 1.2 3.3 0.0 −14

3 −14 0.6 2.4 −0.1 59

4 −18 0.3 1.9 −0.2 104

ZnCr2S4 2 −43 1.7 8.5 −0.6 175

3 −48 0.8 7.2 −0.8 267

4 −52 0.1 6.4 −0.7 306

CdCr2S4 2 −62 0.4 7.2 −0.9 367

3 −65 −0.2 6.2 −0.9 416

4 −66 −0.6 5.7 −0.7 433

HgCr2S4 2 −72 1.6 8.0 −0.9 412

3 −74 0.5 6.6 −0.9 464

4 −74 −0.2 5.8 −0.7 481

ZnCr2Se4 2 −49 0.5 8.3 −0.9 246

3 −52 −0.5 7.8 −0.6 286

4 −52 −1.1 8.1 0.0 286

CdCr2Se4 2 −70 −0.5 7.1 −0.9 432

3 −69 −1.1 7.1 −0.4 434

4 −67 −1.4 7.6 0.2 410

HgCr2Se4 2 −69 −0.1 7.5 −0.9 422

3 −68 −1.0 7.2 −0.2 420

4 −66 −1.4 7.8 1.1 384
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from Ref. 2 �Table I� shows that the LSDA calculations re-
produce the opposite signs of �CW in ACr2O4 and ACr2S�e�4
but strongly overestimate its magnitude, which is not surpris-
ing as one can expect that LSDA underestimates correlation
effects in the rather localized Ce 3d shell. Since the absolute
values of �CW calculated for oxides rapidly decrease with
the increase of U in the LSDA+U calculations, it is possible
to adjust the value of U so as to reproduce the experimental
�CW. This, however, would require to use different values of
U for the Zn, Cd, and Hg oxospinels. In ACr2S�e�4, the es-
timated values of �CW, which are too high already in LSDA,
further increase when the LSDA+U approach is used. As the
dominant contribution to �CW is provided by J1, it seems
that the tendency to ferromagnetic coupling between nearest
Cr neighbors is overestimated in the LSDA+U calculations.

The comparison of the calculated Jn to experimental esti-
mates for the exchange coupling constants in ZnCr2S4 �J1
=2.66 K, J2=−1.15 K, J3=0.29 K, and J4=0.13 K�12 and
CdCr2S4 �J1=13.25 K and J3=−0.915 K�49 also shows that
the calculations overestimate the strength of the exchange
interactions between Cr spins. Note that the experimental
values of Jn should be multiplied by a factor of 2 because of
the different definitions of the magnetic energy 
see Eq. �2�
in Ref. 12�, while their signs should be inverted since in
Refs. 12 and 49 the positive sign of Jn corresponds to FM
coupling. Also it is worth mentioning that Jn are not directly
measurable quantities and in order to determine them from
experimental data additional assumption should be made.
The experimental wave vector qexp= �0,0 ,0.79� of the heli-
magnetic structure in ZnCr2S4 is very close to qmin
= �0,0 ,0.82� at which the LSDA energy of the �0,0 ,q� spin
spiral has a minimum. Under assumption that J2 and J4 are
much smaller than J1 and J3, this gives the J1 /J3 ratios of
0.39 and 0.37 in the experiment and theory, respectively. For
ZnCr2Se4, LSDA gives the minimum of E�q� along the �-X
at qmin= �0,0 ,0.65� which is larger than the experimental
wave vector qexpt= �0,0 ,0.466�.11 In the LSDA+U calcula-
tions, however, the minimum shifts toward smaller q values.

In order to understand better the dependence of the calcu-
lated exchange coupling constants on the chemical composi-
tion and on the value of the parameter U in LSDA+U cal-
culations, let us for simplicity consider a pair of Cr3+ ions
with occupied t2g↑ states at zero energy, unoccupied t2g↓
states at the energy �↑↓, and an effective t2g-t2g hopping ma-
trix element t. The splitting �↑↓ is close to 3JH in the LSDA
and 3JH+U� in the LSDA+U calculations. Cr eg


 states with
both spin projections are unoccupied and also split by �↑↓�
which in LSDA is equal to 3JH. The LSDA energy difference
�e−t between eg


 and t2g states with the same spin projections
is equal to the crystal field splitting �CF which is of the same
order as �↑↓� as is evidenced by the results presented in Sec.
IV B.

Hybridization, either direct or indirect via X p states, be-
tween the half-filled Cr t2g states results in AFM exchange
coupling provided that the t2g bandwidth is less than �↑↓.
Indeed, if Cr moments are aligned ferromagnetically, the hy-
bridization between the t2g states gives no gain in the kinetic
energy as in the majority-spin channel both bonding and an-
tibonding combinations with energies �↑

b=−t and �↑
ab= t are

occupied, whereas in the minority-spin channel, both of them
��↓

b,ab=�↑↓
 t� are empty �see Fig. 11�. If the magnetizations
of two Cr ions are antiparallel, an occupied t2g↑ state can
hybridize only with the unoccupied t2g state with the same
spin projection of another ion lying at the energy �↑↓. In this
case, only their bonding combination with the energy �↑

b�
−t2 /�↑↓ is occupied. Since the energy of the bonding state
with the opposite spin projection is exactly the same, this
gives

EFM − EAFM � 2JAFMS2 � 2t2/�↑↓ �6�

for the energy difference of the FM and AFM configurations.
Cr eg states with both spin projections are unoccupied and

t2g-eg

 hybridization �t�� lowers the energy of the FM as well

as AFM configuration because in both cases only the bond-
ing combination is occupied �see Fig. 12�. The energy of the
bonding state �↑

b�−t�2 / ��eg
−�t2g

� is, however, lower if the
magnetizations of two Cr ions are parallel. In this case, the
eg


 partner with the same spin as the occupied t2g state has
lower energy �eg

=�e−t vs �eg
=�e−t+�↑↓� in the AFM case, so

that

EFM − EAFM � 2JFMS2 � −
2t�2�↑↓�

�e−t��e−t + �↑↓� �
, �7�

and the effective coupling JFM is ferromagnetic. It should be
mentioned that these estimates for the effective exchange

FM

∆

t2g

t2g

AFM

t2g

t2g

FIG. 11. �Color online� A sketch of bonding and antibonding
states between Cr t2g state for FM �left� and AFM �right� alignments
of Cr magnetizations. The Fermi level is plotted by a horizontal
dotted line.

FM

∆ e
-t

∆’

t2g

eg

t2g

eg
AFM

∆ e
-t

+
∆’

t2g

eg

t2g

eg

FIG. 12. �Color online� A sketch of bonding and antibonding
states between an occupied Cr t2g↑ state and an unoccupied eg


 state
with the same spin projection for FM �left� and AFM �right� align-
ments of Cr magnetizations. The Fermi level is plotted by a hori-
zontal dotted line.
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couplings are in agreement with the well known
Goodenough–Kanamori rules.19

Thus, the strength and even the sign of J1 in ACr2X4 are
determined by the competition of two contributions of oppo-
site signs, JAFM and JFM, which depend on the strength of the
t2g-t2g and t2g-eg hybridizations, respectively. In ZnCr2O4,
JAFM dominates because of the strong direct hopping of dd

type between the Cr t2g states. This conclusion has been con-
firmed numerically by the results of test LSDA calculations
in which the hybridization between Cr d states was switched
off. J1 derived from a fit to band energies calculated in this
way is about 1 K, whereas for other Jn, the values compa-
rable to those given in Table II were obtained. With the in-
crease of the lattice constant in the row Zn→Cd→Hg, the
strength of the direct d-d hopping and, as a consequence, of
JAFM rapidly decreases so that in HgCr2O4 according to the
LSDA results JAFM and JFM almost exactly compensate each
other. The dependence of J1 on the value of the parameter U
in the LSDA+U calculations can be explained by weakening
of JAFM caused by the increase of the denominator in Eq. �6�
which in this case is given by �↑↓�2JH+U.

In ACr2S�e�4 spinels, the distance between Cr nearest
neighbors �see Table I� is much larger than in ACr2O4 and
the contribution of the direct t2g-t2g hopping to J1 becomes
less significant. For ZnCr2Se4, for instance, calculations with
switched-off Cr d-d hybridization give the value of FM J1
which is only 5% larger than the LSDA one. Thus, the indi-
rect hybridization via X p states between the half-filled t2g
and empty eg states split by the on-site exchange interaction
provides the dominant contribution to FM J1 as was pro-
posed by Goodenough in Ref. 18. A direct numerical proof is
provided by test calculations in which an external orbital-
dependent potential Veg was added to Cr eg↑


 states, with its
strength Veg�3JH being equal to the LSDA exchange split-
ting of the eg


 states. Then, the energies of Cr eg

 states with

both spin projections are equal so that �↑↓� �0 and the nomi-
nator in expression �7� for JFM becomes zero. J1=15 K esti-
mated from such calculations for ZnCr2Se4 changes its sign
to AFM and its absolute value is significantly smaller than
�J1�=54 K obtained from the LSDA calculations. This indi-
cates that the indirect t2g-X p-t2g hybridization also contrib-
ute to J1 but it is much weaker than JFM. Similar calculations
for ZnCr2O4 result in substantial increase of the strength of
AFM J1 which means the FM contribution is present also in
oxides but JAFM wins due to direct d-d hybridization.

In order to explain the weird behavior of J1 in LSDA
+U calculations, one needs to analyze in more details vari-
ous parameters entering Eq. �7�. Recalling that the orbital
dependent part of the LSDA+U potential can be approxi-
mated as Vi=U��1 /2−ni� with U�=U−JH, one gets

�↑↓� = 3JH + U��n↑ − n↓� , �8�

�e−t = �CF + U��1 − n↑� , �9�

where n↑ and n↓ are the occupation numbers of eg↑

 and eg↓




states, respectively. Here, we neglected the small ��0.05�
deviation of the occupation numbers of the minority-spin t2g
states from unity. Then, Eq. �7� can be written as

2JFMS2 � −
2t�2
3JH + U��n↑ − n↓��

�CF + U��1 − n↑�
1

�CF + U��1 − n↓� + 3JH
.

�10�

If the occupations of the Cr eg

 were equal to zero, Eq. �10�

would become

2JFMS2 � −
6t�2JH

��CF + U����CF + U� + 3JH�
, �11�

which would lead to fast decrease of JFM with the increase of
U�. However, since n↑�0.45 and n↓�0.25 were calculated
for ACr2S�e�4, the appearance of the term proportional to
U��n↑−n↓� in the nominator of Eq. �10� slows down the de-
crease of JFM. Also the terms proportional to n↑ and n↓ in the
dominator of Eq. �11� effectively decrease U�, thus leading
to the increase of JFM as compared to purely ionic model
with zero occupations of the eg


 states. This is one of possible
reasons why the FM contribution to J1 in overestimated in
the LSDA+U calculations.

The calculated behavior of J2, J3, and J4 follows the pre-
dictions made by Dwight and Menyuk 19,20 on the base of the
Goodenough–Kanamori rules of superexchange.16,17 Hybrid-
ization paths Cr d-X p-X p-Cr d responsible for these interac-
tions include an intermediate hopping between p states of
two X ions. This reduces the strength of the superexchange
interactions but does not change the signs of t2g-t2g and t2g-eg
contributions to Jn, which remain antiferromagnetic and fer-
romagnetic, respectively. Indirect t2g-t2g and t2g-eg hoppings
give comparable contributions to J2. Being of opposite signs,
these contributions compensate each other. This explains the
smallness of J2 and the variation of its sign in the ACr2X4
spinels. Similar hybridization paths between d states of third
neighbors, with the dominant contribution of the indirect
t2g-t2g hopping, lead to the appearance of AFM J3� and J3�. In
the real structure, the distance between the pair of X ions
along the J3� path is smaller than along the J3� one, the differ-
ence being proportional to the deviation of the positional
parameter x from 1 /4. This may explain why the calculated
values of J3� are somewhat larger than J3�. On the other hand,
since the J3� pair of X ions belongs to the same AX4 tetrahe-
dron, J3� is more sensitive to A s-X p hybridization, which
may be responsible for the increase of the J3� /J3� ratio in the
Hg-containing spinels. Finally, indirect hybridization be-
tween t2g and eg states gives dominant contribution to the
superexchange between fourth neighbors19 which leads to
FM J4.

VII. SUMMARY AND CONCLUSIONS

The LSDA�+U� band structure calculations performed for
some ACr2X4 spinels reproduce the change of the sign of the
nearest-neighbor exchange interaction between Cr spins
from AFM in ACr2O4 compounds to FM in ACr2S�e�4 ones.
It has been verified that the strength and the sign of J1 de-
pend on relative strengths of two contributions of opposite
signs, AFM and FM, which are due to Cr t2g-t2g and t2g-eg
hybridizations, respectively. In ZnCr2O4 JAFM dominates be-
cause of the strong direct hopping between the Cr t2g states.

ELECTRONIC BAND STRUCTURE AND EXCHANGE… PHYSICAL REVIEW B 77, 115106 �2008�

115106-13



As Zn is replaced by Cd or Hg, the strength of the direct
hopping rapidly decreases with the increase of the Cr-Cr
separation. As a result, J1 in the corresponding oxides is
much weaker than in ZnCr2O4. In the ACr2S�e�4 spinels, the
FM contribution originating from the indirect hopping be-
tween half-filled t2g and empty eg states, split by the on-site
exchange interaction, becomes dominant. However, the mag-
nitude of the FM contribution to J1 seems to be overesti-
mated by the calculations. The strongest among more distant
exchange couplings are J3� and J3� to two sextets of third Cr
neighbors. These interactions are always AFM and of com-
parable strengths. The couplings to second and fourth Cr
neighbors are significantly weaker than J1 and J3. The ob-
tained results are in accordance with the analysis of the ex-
change couplings in Cr spinels based on the Goodenough–
Kanamori rules of superexchange and may be helpful for
understanding the magnetic properties not only of Cr spinels
but also Ti �MgTi2O4� and V �ZnV2O4, CdV2O4� ones, in
which orbital degrees of freedom come into play.50–52
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APPENDIX

Below explicit expressions for the difference EH�q�
−EH�0�, where EH�q� is given by Eq. �4� and

EH�0� = 6J1 + 12J2 + 6J3 + 12J4, �A1�

are written as a functions of the angle �=q� /2 for some
directions of the wave vector q of spin spirals,

q= �0,0 ,q� ��−X�:

E��� = 4J1�cos � − 1� + 4J2�2 cos � + cos 2� − 3�

+ 8J3�cos 2� − 1� + 4J4�cos � + cos 3� − 2� ,

�A2�

q= �q ,q ,0� ��−K�:

E��� = J1�4 cos � + cos 2� − 5� + 2J2�2 cos � + cos 2�

+ 2 cos 3� − 5� + 2J3�4 cos 2� + cos 4� − 5�

+ 2J4�2 cos � + cos 2� + 2 cos 3� + cos 4� − 6� ,

�A3�

q= �q ,q ,q� ��−L�:

E��� = 3J1�cos 2� − 1� + 3J2�2 cos 2� + cos 4� − 3�

+ 6J3�cos 4� − 1� + 6J4�cos 2� + cos 4� − 2� ,

�A4�

q= �1,q ,0�:

E��� = 2J1�cos � − 3� − 4J2�cos � + 3�

− 16J3 + 2J4�cos � + cos 3� − 6� , �A5�

q= �1,1 ,q�:

E��� = − 6J1 − 12J2 − 8J3�cos 2� + 1� − 12J4. �A6�

Here, J3= �J3�+J3�� /2 is the average of the exchange coupling
constants for two inequivalent groups of third Cr neighbors.
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