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We investigate theoretically the spin-independent tunneling magnetoresistance effect in a graphene mono-
layer modulated by two parallel ferromagnets deposited on a dielectric layer. For the parallel magnetization
configuration, Klein tunneling can be observed in the transmission spectrum but at specific oblique incident
angles. For the antiparallel magnetization configuration, the transmission can be blocked by the magnetic-
electric barrier provided by the ferromagnets. Such a transmission discrepancy results in a tremendous mag-
netoresistance ratio and can be tuned by the inclusion of an electric barrier.
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Recent experiments have demonstrated the stability of
graphene �a single atomic layer of graphite� and the feasibil-
ity of controlling its electrical properties by local gate
voltages,1–6 opening a promising way to explore carbon-
based nanoelectronics. In graphene, the energy spectrum of
carriers consists of two valleys labeled by two inequivalent
points �referred to as K and K�� at the edges of the hexagonal
Brillouin zone. In each valley, the energy dispersion relation
is approximately linear near the points where the electron
and hole bands touch. Such a peculiar band structure results
in many interesting phenomena, including the half-integer
quantum Hall effect2,3,6 and minimum conductivity.2,3 Fur-
ther, Dirac-like fermions in graphene can transmit through
high and wide electrostatic barriers almost perfectly, in par-
ticular, for normal incidence.7–9 Such a phenomenon, known
as Klein tunneling, leads to a poor rectification effect in
graphene p-n junctions5 and thus may limit the performance
of graphene-based electronic devices.

Very recently, inhomogeneous magnetic fields on the na-
nometer scale have been suggested to confine massless two-
dimensional �2D� Dirac electrons,10 providing another clue
to the manipulation of electrons in graphene. For conven-
tional semiconductor two-dimensional electron gas systems,
the patterned local magnetic fields define various magnetic
nanostructures ranging from magnetic barriers and wells11 to
magnetic dots and antidots.12 A great deal of experimental
and theoretical works have been devoted to understand
physical properties of Schrödinger fermions in these sys-
tems. The effects of nonuniform magnetic field modulations
on 2D Dirac-Weyl fermions, however, has not been investi-
gated as thoroughly, especially for the Klein tunneling under
inhomogeneous magnetic field. In this work, we explore bal-
listic transport features of graphene under the modulations of
both local magnetic fields and local electrostatic barriers
generated by two parallel ferromagnetic stripes. A remark-
able tunneling magnetoresistance �TMR� effect is predicted
and its physical mechanism is explained.

The system under consideration is a single-layer graphene
sheet covered by a thin dielectric layer,4,5 as sketched in Fig.
1�a�. Two parallel ferromagnetic metal �FM� stripes are de-
posited on top of the insulating layer to influence locally the

motion of Dirac electrons in the graphene �x ,y� plane. Both
FM stripes have a width d and a magnetization in parallel or
in antiparallel to the current direction �the x axis�. Their
fringe fields thus provide a perpendicular magnetic modula-
tion Bz, which is assumed to be homogeneous in the y direc-
tion and only varies along the x axis. A suitable external
in-plane magnetic field can change the relative orientation of
the two magnetizations, which are antiparallel at zero field.
At the limit of a small distance between the graphene plane
and the ferromagnets, the magnetic barrier can be approxi-
mated by several delta functions, i.e., Bz�x�=BlB0

����x
+L /2�−��x+D /2��+����x−D /2�−��x−L /2���. Here, B
gives the strength of the local magnetic field, lB0

=�� /eB0 is
the magnetic length for an estimated magnetic field B0, �
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FIG. 1. �Color online� �a� Schematic illustration of the consid-
ered two-dimensional electron system modulated by two FM stripes
deposited on top of the graphene plane. Each FM stripe has a rect-
angular cross section and a magnetization directed along the current
direction �the x axis�. The gate voltage Vg applied on both FM
stripes provides an electrostatic double barrier in the underneath
graphene plane. �b� Simplified profiles of the magnetic barrier for
the P alignment �spikelike lines�, the corresponding vector potential
Ay�x� �solid line�, and the electrostatic potential U�x� �dashed line�.
�c� The same as in �b� but for the AP alignment.
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represents the magnetization configuration ��1 or parallel
�P�/antiparallel �AP��, D is the distance between the two FM
stripes, and L=2d+D is the total length of the structure
along the transport direction. The model magnetic field con-
figurations for �= �1 are depicted in Figs. 1�b� and 1�c�,
respectively. Further, when a negative gate voltage is applied
to both FM stripes, a tunable electrostatic double barrier po-
tential U�x� arises in the graphene layer. A square shape with
height U0 can be taken for the electric potential created
by either gate. Accordingly, the simplified electrostatic
barrier has the form U�x�=U0���x+L /2���−D /2−x�+��x
−D /2���L /2−x��, where ��x� is the Heaviside step func-
tion.

For such a system, the low-energy excitations in the vi-
cinity of the K point can be described by the following Dirac
equation:

�vF� · �p + eA� + U�0�� = E� , �1�

where vF�0.86	106 m /s is the Fermi velocity of the sys-
tem, �x, �y, and �z are three isospin Pauli matrices, p
= �px , py� is the electron momentum, A is the vector potential
which in the Landau gauge has the form A= �0,Ay�x� ,0�, and
�0 is the 2	2 unit matrix. Since the Dirac Hamiltonian of
graphene is valley degenerate, it is enough to consider the K
point.10 For convenience, we express all quantities in dimen-
sionless units by means of two characteristic parameters, i.e.,
the magnetic length lB0

and the energy E0=�vF / lB0
. For

a realistic value B0=0.1 T, we have lB0
=811 Å and E0

=7.0 meV.
Since the system is homogeneous along the y direction,

the transverse wave vector ky is conserved. At each region
with a constant vector potential Ay and electrostatic potential
U, the solution of Eq. �1� for a given incident energy E can
be written as

� = eikyy	C+eikxx
 1

kx + iq

E − U
� + C−e−ikxx
 1

− kx + iq

E − U
�� . �2�

Here, q=ky +Ay, and kx is the longitudinal wave vector sat-
isfying

kx
2 + �ky + Ay�2 = �E − U�2. �3�

The sign of kx is chosen in such a way that the corresponding
eigenstate is either propagating or evanescent in the forward
direction. The coefficients C+ and C− are determined by the
requirement of wave function continuity and the scattering
boundary conditions. The scattering matrix method13 is
adopted to obtain these coefficients and the transmission
probability T=TP/AP�E ,ky� for the P/AP configuration. The
latter depends on the incident energy E and the transverse
wave vector ky. The ballistic conductance at zero temperature
is calculated from

GP/AP�EF� =
4e2

h


−EF

EF

TP/AP�EF,ky�
dky

2
/Ly

= G0
−
/2


/2

TP/AP�EF,EF sin ��cos �d� , �4�

where Ly �L is the sample size along the y direction, � is
the incident angle relative to the x direction, and G0
=2e2EFLy / �
h� is taken as the conductance unit.

The proposed device relies on the interplay between the
Klein tunneling and the wave vector filtering provided by
local magnetic fields. To obtain a quantitative understanding
of this interplay, Fig. 2 plots the transmission probability
calculated as a function of the incident angle � for both the P
and AP magnetization configurations. In our calculations, the
structure parameters of the magnetic barrier are set at d=D
=1 and B=2. The incident energy is fixed at E=5 and the
electric barrier height U0 is taken as 2,3,4,5,6,7,8 for differ-
ent curves.

For the magnetic barrier with P alignment, the transmis-
sion spectrum demonstrates obvious angular anisotropy �see
Figs. 2�a�–2�d��. The reflection at normal incidence is finite
and is almost complete at suitable electric barrier heights.
Instead, perfect transmission appears at some oblique inci-
dences. For example, in the special case E=U0, the transmis-
sion peak with a finite width locates at ky =−Ay �see Fig.
2�d��. In comparison with the case of pure electric barriers,9

we can see that the magnetic barrier changes the incident
direction at which the Klein tunneling occurs. The transmis-
sion is remarkable in a wide region of negative � and is
blocked by the magnetic barrier when the incident angle ex-
ceeds a critical value �+�U0� or is below another critical
value �−�U0�. This can be understood as follows. From Eq.
�3�, we know that evanescent states appear in the magnetic
barrier regions when the magnetic vector potential �here Ay
=B� and electrostatic barrier satisfy �ky +B� �E−U0�. The
transmission is generally weak as the decaying length of the
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FIG. 2. �Color online� Transmission as a function of incident
angle for electrons traversing the considered structure �depicted in
Fig. 1� with ��a�–�d�� parallel or ��e� and �f�� antiparallel magneti-
zation configuration. Device parameters used in the calculations are
d=D=1 and B=2. The incident energy is fixed at E=5. Note that
all curves in �f� are scaled by a factor 200.
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evanescent states is shorter than the barrier width. In the
transmission forbidden region, there may exist one or two
line-shaped peaks with unity values, as a result of resonant
tunneling through the symmetric double barrier structure.
The applied electric barrier significantly alters the positions
of the transmission peaks. We can also observe a large dif-
ference between the transmission curves for the barrier
height U0�E and U0�=2E−U0. Such a difference arises from
the fact that the carrier states for the two cases are not com-
pletely complementary.

We next examine the transmission characteristics for the
AP alignment, which is shown in Figs. 2�e� and 2�f�. In this
configuration, the magnetic vector potential is antisymmetric
about the central line x=0 �see Fig. 1�c��. The Dirac Hamil-
tonian possesses a symmetry associated with the operation

T̂R̂x�̂y, where T̂ is the time reversal operator and R̂x is the
reflection operator x→−x. This symmetry implies the invari-
ance of the transmission with respect to the replacement ky
→−ky, as seen in Figs. 2�e� and 2�f�. For large �E−U0�, the
transmission decays monotonically as the incident angle in-
creases from zero �see Fig. 2�e��. Since the carrier states in
the two magnetic barriers are not identical, perfect transmis-
sion cannot be achieved �except for the case of normal inci-
dence�. Note that for the AP configuration and a given wave
vector ky �0, the presence of evanescent states in the first
magnetic barrier only requires ky  �E−U0�−B. When �E
−U0��B, this condition is met for all incident directions and
the transmission can be strongly suppressed, as shown in Fig.
2�f�. Within this parameter regime, the transmission exhibits
a nonmonotonic variation with the positive incident angle.
Furthermore, the maximal transmission for the AP alignment
can be 2 orders of magnitude lower than that for the P align-
ment �Figs. 2�c� and 2�d��.

As demonstrated above, the transmission features for the
P and AP configurations are quite distinct. Such a difference
is also exhibited in the measurable quantity, the conductance
G. In Fig. 3, the conductance is plotted as a function of the
Fermi energy for several heights of the electric barrier. Reso-
nant peaks can be observed in the conductance spectrum for
both P and AP alignments. For the P alignment, the conduc-

tance is finite �larger than 0.1 in most cases in Fig. 3�. For the
AP alignment, the conductance is almost zero within a broad
energy interval �covering �U0−B,U0+B�� except for several
sharp conductance peaks. In this energy region, GAP is de-
pleted by the magnetic barrier, whereas GP is finite. Away
from this transmission-blocking region, GAP essentially in-
creases with the Fermi energy and is primarily contributed
by the propagating modes. The normalized difference
between GP and GAP, i.e., the TMR ratio MR= �GP
−GAP� /GAP, is presented in Fig. 4�a�. In the absence of the
electric barrier, high values of MR are located in the low
Fermi energy region, as a result of the strong suppression of
transmission in the AP alignment. The inclusion of an elec-
tric barrier shifts the transmission-blocking region and, thus,
can be used to adjust the MR ratio. The latter is obviously
reflected in Fig. 4�b�.

In the above analysis, we take simplified magnetic field
profiles to illustrate the operating principles of the proposed
device. In realistic cases, the modulated magnetic field Bz�x�
has the smoothing variations on the scale of graphene lattice
spacing �a=0.246 nm�. When both FM stripes have the same
rectangular cross section and magnetization along the x di-
rection, the generated magnetic field profiles for the P and
AP alignments can be obtained analytically.14 For the param-
eters given in the figure caption, the calculated MR ratio is
shown in Figs. 4�c� and 4�d�. The calculation shows that the
conductance of the device has a variation similar to that in
Figs. 4�a� and 4�b�. The TMR ratio remains large and exhib-
its rich variations as the electric barrier height increases.
Since ferromagnetic elements with a submicron scale have
been successfully fabricated on top of a two-dimensional
electron system15 and dielectric layers on monolayered
graphene have been realized recently,4,5 our considered struc-
ture is realizable with current technology.
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FIG. 3. �Color online� Conductance as a function of Fermi en-
ergy for electrons traversing the considered structure with a parallel
�solid line� or antiparallel �dashed line� magnetization configura-
tion. Device parameters used in the calculations are d=D=1 and
B=2.
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FIG. 4. �Color online� MR ratio as a function of ��a� and �c��
Fermi energy or ��b� and �d�� electric barrier height for electrons
traversing the considered magnetic-electric barrier structure. In �a�
and �b�, simplified magnetic field profiles are utilized and the device
parameters used in the calculations are d=D=1 and B=2. In �c� and
�d�, realistic magnetic field profiles are taken. In the calculations,
we assume that both ferromagnetic stripes have a rectangular cross
section of width d=1 and height dz=0.6 and magnetization �0Mx

=1.8 T �for cobalt material� placed at a distance of z0=0.2 on top of
the graphene plane. Their distance is D=1.

BRIEF REPORTS PHYSICAL REVIEW B 77, 113409 �2008�

113409-3



In summary, we have investigated the transport features of
a graphene monolayer under the modulation of both a mag-
netic double barrier and an electric barrier, where the mag-
netic double barrier is provided by depositing two parallel
ferromagnetic stripes with magnetizations along the current
direction. The results indicate that for the AP magnetization
configuration, the transmission of electrons in graphene can
be drastically suppressed for all incident angles. When in the
P alignment, the Klein tunneling can be generally observed
at specific oblique incident directions rather than the normal
incidence. The difference of wave-vector-dependent trans-
mission for two magnetization configurations �P/AP� leads to
a large TMR ratio, which can be further adjusted by the

electric barrier. Note that different thin dielectric layers atop
graphene sheets have been fabricated and then the top gates
can be formed by means of standard e-beam lithography.4,5

The deposition of ferromagnetic materials on insulating lay-
ers has been widely adopted to create local magnetic field
modulations of the underlying 2D semiconducting sys-
tems.11,12 Thus, our proposed device is within the realizable
scope of current technological advances.
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