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I. INTRODUCTION

Photon-assisted tunneling �PAT� has been discussed in lit-
erature for almost half a century by now.1–18 This phenom-
enon arises when a relatively high-frequency field is applied
across a tunnel junction whose dc current-voltage character-
istics are highly nonlinear. The radiation field is, however,
slow enough to guarantee adiabatic evolution of the energy
levels of the electrons. A typical system to observe PAT is a
SIS tunnel junction, with superconducting �S� leads and a
tunnel barrier �I� in between. Even though the system as such
is a Josephson junction for Cooper pairs, PAT deals with the
influence of the radiation on quasiparticle tunneling. Our sys-
tem of interest here is a NIS tunnel junction, where one of
the conductors is a normal metal �N�. Such junctions exhibit
highly nonlinear current-voltage characteristics at low tem-
peratures, and normally the current is due to quasiparticles
only. NIS junctions are known to have peculiar heat transport
properties under the application of a dc bias voltage,19–29 or
�“quasistatic”� ac radiation of relatively low frequency in
form of either periodic or stochastic drive.30–32 Specifically,
it is possible to find operation regimes where the normal
metal is refrigerated and the superconductor is overheated,
and in some special situations the opposite can occur as well.
The question remains whether and under what conditions the
relatively high-frequency radiation responsible for PAT
would either enhance or suppress the thermal transport in the
NIS system. In this paper we show that the influence of PAT,
as compared to static and quasistatic ac-driven conditions, is
to decrease the refrigeration of the normal conductor, and
also to change, usually to increase, the magnitude of heat
dissipation in the superconductor. Although these results are
somewhat unfortunate for high-frequency applications of
NIS junctions, they are, however, useful in finding operating
conditions, for instance, for ac-driven electronic
refrigerators.30,31

The paper is organized as follows. In Sec. II we describe
the theoretical framework together with the discussion of the
conditions of its validity. In particular, in Sec. II A we
present our analytical results for the heat and charge currents.
In Sec. III we show and discuss the results. Finally, our con-
clusions are drawn in Sec. IV.

II. MODEL AND FORMALISM

The system under investigation consists of superconduct-
ing �S� and a normal �N� electrode tunnel coupled through an
insulating barrier �I� of large resistance Rt. An ac voltage bias
�S, of frequency �0=�0 /2� and amplitude Vac, is applied to
the S electrode, while a static voltage �N=U is applied to the
N contact. The total voltage across the junction is �N−�S
=U−Vac cos �0t. One could, of course, consider both the ac
and dc voltages to be applied to the normal lead, instead.
However, we choose the setup as shown in Fig. 1 to directly
demonstrate equivalence of the two connections when one of
the leads is in the superconducting state.

In the tunneling limit with large resistance Rt the currents
through the contact are small. If the ac frequency is small
compared to the superconducting gap, �0��, the deviation
from equilibrium in each lead is negligible. In particular, the
equilibrium is preserved with respect to the superconducting
chemical potential 	S in the S electrode �which has dimen-
sions much bigger than the branch-imbalance relaxation
length�. This leads to the standard assumption14–16




2
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�t
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where � is the order parameter phase.
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FIG. 1. The system under investigation is composed of a super-
conductor �S� tunnel coupled to a normal metal �N� layer through
an insulating barrier �I� of resistance Rt. The superconductor is ac
voltage biased with Vac cos��0t�, while the N electrode is biased
with a static voltage U. Both electrodes are assumed to be in ther-
mal equilibrium.
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In the case of equilibrium described by Eq. �1�, the order
parameter has the form

��r,t� = �0�r�exp�2i



�

0

t

	sdt�� . �2�

It is convenient to start with the Bogoliubov–de Gennes
equation �BdGE� for the eigenfunctions of the system,

i

�u

�t
= �Ĥ0 + e�S�u + �v ,

i

�v
�t

= − �Ĥ0
* + e�S�v + �*u ,

where H0 is the normal-state Hamiltonian. Solutions to the
BdGE have the form

u�r,t� = u0�r�e−iEt/
+�i/
��t	sdt�, �3�

v�r,t� = v0�r�e−iEt/
−�i/
��t	sdt�, �4�

where u0�r� and v0�r� satisfy the BdGE in the absence of the
applied potential ��S=0� as follows:

Eu0 = Ĥ0u0 + ��r�v0,

Ev0 = − Ĥ0
*v0 + �*�r�u0.

Using the standard approach we define the retarded �R�
and advanced �A� Green functions, which can be written as a
matrix in Nambu space as follows:

ĜR�A� = � GR�A� FR�A�

− FR�A�†
ḠR�A� � ,

where FR�A� refer to the anomalous Gorkov function. Since
these functions are statistical averages of the particle field
operators which can be decomposed into the wave functions
�3� and �4�, the retarded and advanced Green functions with
the help of Eqs. �3� and �4� take the form

GR�A��t1,t2� = GR�A�,0�t1,t2�ei/
��t1	sdt�−�t2	sdt��,

ḠR�A��t1,t2� = ḠR�A�,0�t1,t2�e−i/
��t1	sdt�+�t2	sdt��,

FR�A��t1,t2� = FR�A�,0�t1,t2�ei/
��t1	sdt�+�t2	sdt��,

where GR�A�,0, FR�A�,0 refer to �S=0.
If the ac voltage is applied to the superconductor,

	s = − eVac cos �0t . �5�

We use the identity

e−i/
�0
t eVac cos �0t�dt� = �

n=−�

n=+�

Jn�
�e−in�0t, �6�

where 
=eVac /
�0 and Jn is the nth order Bessel function.

The Green functions in the frequency representation take the
form

G�,�−
�
R�A� = �

n,m
Jn�
�Jm�
�G�−n
�0,�−
�−m
�0

R�A�,0 .

If �S=0, there is no time dependence and G�1,�2

�0� =2�
���1

−�2�G�1
. Here and in what follows one frequency subscript

refers to the static Green function.
The semiclassical Green functions are defined as the

Green functions in the momentum representation integrated
over the energy variable �p= p2 /2m−EF,

ĝ�1,�2
= �

−�

+�

Ĝ�1,�2
�p,p − k�

d�p

�i
.

Under the ac drive we thus have

g�,�−
�
R�A� = �

n,k
2���� − k�0�Jn�
�Jn−k�
�g�−n
�0

R�A� , �7�

f�,�−
�
R�A� = �

n,m
2���� − k�0�Jn�
�Jk−n�
�f�−n
�0

R�A� . �8�

For the Keldysh functions we use the standard
representation33,34 in terms of f1 and f2 which are the com-
ponents of the distribution function, respectively, odd and
even in �� ,p�. In Nambu space,

ĝ�1,�2

K = �
−�

+� d��

2�

	ĝ�1,��

R �f1,��,�2
+ �̂3f2,��,�2

�

− �f1,�1,��, + �̂3f2,�1,��,�ĝ��,�2

A 
 ,

where

�̂3 = �1 0

0 − 1
� .

In what follows we omit the integration limits if the integra-
tion is extended over the infinite range. With Eqs. �7� and �8�
the Keldysh Green functions take the form

g�,�−
�
K = �

n,k
2���� − k�0�Jn�
�Jn−k�
�	g�−n
�0

R − g�−n
�0

A 


�	f1�� − n
�0� + f2�� − n
�0�
 ,

f�,�−
�
K = �

n,m
2���� − k�0�Jn�
�Jk−n�
�	f�−n
�0

R �f1,�−n
�0

− f2,�−n
�0
� − �f1,�−n
�0

+ f2,�−n
�0
�f�−n
�0

A 
 , �9�

where the distributions f1 and f2 in the superconductor refer
to the state with �S=0. Equations for ḡR�A� and ḡK are ob-
tained from the corresponding equations for gR�A� and gK by
substituting g→ ḡ, �0→−�0, and f2→−f2.

These solutions describe a quasiequilibrium state with a
time-dependent chemical potential �5�. In the limit �0→0,
using Eq. �10�, we have g�

R�A,K�→g�+	S

R�A,K�, ḡ�
R�A,K�→ ḡ�−	S

R�A,K�

which agrees with the constant-voltage limit.35

Here we need an obvious remark. It can be shown �see
Appendix� that for 	s satisfying Eq. �5�,
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�
n,k

2���� − k�0�Jn�
�Jn−k�
���� − n
�0�

=� �	� + 	s�t�
ei�tdt �10�

for any function ���� which has no singularities. For a func-
tion with singularities �or large higher-order derivatives� at
certain �, Eq. �10� holds only in the limit �0→0. If the
density of states g�

R�A�, f�
R�A�, and the distribution function

were smooth functions, the quasistatic limit would hold for
any �0; in this case all the quantities would simply adiabati-
cally depend on the ac potential Vac. However, due to a
strong singularity at �=� of the density of states and/or a
sharp dependence of the distribution function for low tem-
peratures, the quasistatic picture breaks down for a finite �0,
determined by the smallest scale of the nonlinearity. As a
result both the tunnel current and the heat flux for a finite
frequency deviate strongly from the quasistatic behavior. In
practice, the reservoirs are not perfect. In particular, relax-
ation in the superconductor is still an open issue. This is a
question that needs to be addressed separately. The present
treatment gives the answers in the case of ideal reservoirs.

Consider the self-consistency equation for the order pa-
rameter. Since f2=0 for �S=0, the self-consistency equation
����= �� /4�� f�,�−
�

K d� takes the form

���� = �0�
k

Jk�2
�2���� − k�0� , �11�

which is the Fourier transform of Eq. �2� where

�0�r� = ��/4� � d�	f�
R − f�

A
f1��� ,

with f1���=tanh�� /2T� is the order parameter for zero ac
field. This implies that Eqs. �1�–�4� are consistent. In obtain-
ing Eq. �11� we use

�
n=−�

n=+�

Jk+n�t�Jn�z� = Jk�t − z� . �12�

A. Charge and energy currents

For two tunnel-coupled electrodes, the charge current that
flows into the electrode i is given by35

I�i� = −
ie�
�i�i

2
Tr	�̂3ÎK�i;t,t��
t=t�, �13�

whereas the heat current flowing into the electrode i is

Q�i� =
�
2�i�i

4
Tr�� �

�t
−

�

�t�
+

2ie�i



�̂3
ÎK�i;t,t���

t=t�
.

�14�

Here �i is the normal-state density of states in the electrode i,
and �i and �i are its volume and electric potential. The col-

lision integral ÎK�i� in the electrode that appears in Eqs. �13�
and �14� contains contribution due to tunneling from neigh-

boring electrode and the electron-phonon contribution, IK

= It
K+ Ie-ph

K . The electron-electron interactions drop out from
the energy current because of the energy conservation. The
energy flow into the electrode can thus be separated into two
parts. One part containing Ie-ph

K is the energy exchange with
the heat bath �phonons�. The other part contains the tunnel
contribution It

K and is the energy current into the electrode
through the tunnel contact. The tunnel collision integral for
the electrode 1 in contact with an electrode 2 has the form35

Ît
K�1� = i�1	ĝR�2� � ĝK�1� − ĝR�1� � ĝK�2� + ĝK�2� � ĝA�1�

− ĝK�1� � ĝA�2�
 . �15�

Here the arguments i=1 or 2 refer to the electrodes S or N.
The symbol ° is the convolution over the internal variables

A�1� � B�2� =� A�1;t1,t��B�2;t�,t2�dt�.

The factor

�i = 	4�i�ie
2Rt
−1

parametrizes the tunneling strength between the electrodes,
Rt being the tunnel resistance. Since in the normal state

ĝN
R�A���;t1,t2� = � �̂3��t1 − t2� ,

ĝN
K��;t1,t2� = 2	f1

N����̂3 + f2
N���
��t1 − t2� ,

the collision integral in the superconductor is

Ît
K�S� = i�S��̂3ĝS

K + ĝS
K�̂3 + 2	�̂3f1

N + f2
N
ĝS

A − 2ĝS
R	f1

N�̂3 + f2
N
� .

�16�

The even and odd components of the distribution function
correspond to the absence of the ac potential. They are, re-
spectively,

f2
N��� = − n� + �1 − n−�� = nN�� + eU� − nN�� − eU� ,

�17�

f1
N��� = − n� + n−� = 1 − nN�� + eU� − nN�� − eU� , �18�

for the normal lead, and

f2
S��� = − n� + �1 − n−�� = 0, �19�

f1
S��� = − n� + n−� = 1 − 2nS��� = tanh

�

2TS
, �20�

for the superconducting lead. Here nN��� and nS��� are the
Fermi functions with temperatures TN and TS, respectively.
The distributions in the superconductor thus correspond to
the zero-potential state.

As far as the NIS junction is concerned, consider first the
charge current into the superconductor defined by Eq. �13�.
The tunnel current in the frequency representation becomes
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IS��� =
1

4eRt
� d�g��

n,k
Jn�
�Jn−k�
��2���� − k�0�	f1

S��� + f2
S��� − f1

N�� + n
�0� − f2
N�� + n
�0�
 − 2���� + k�0�	f1

S��� − f2
S���

− f1
N�� − n
�0� + f2

N�� − n
�0�
� =
1

2eRt
� d�g��

n,k
Jn�
�Jn−k�
��2���� − k�0�	nN�� − eU + n
�0� − nS���


+ 2���� + k�0�	nN�� − eU − n
�0� − nS���
� . �21�

In Eq. �21� we use the relation ḡ�
R�A�=−g�

R�A� for static func-
tions, and denote g���g�

R−g�
A� /2 the ratio of the supercon-

ducting density of states to that in the normal state, g�

=NS��� /NN. The �0 component of the current is

IS�0
�t� =

cos��0t�
eRt

� d�g��
n

Jn�
�Jn−1�
�

�	f1
S��� − f1

N�� + n
�0�


=
cos��0t�

eRt
� d�g��

n

Jn�
�Jn−1�
�

�	nN�� + eU + n
�0� + nN�� − eU + n
�0�

− 2nS���
 . �22�

The time averaged current takes the form

ĪS =
1

2eRt
� d�g��

n

Jn
2�
�	f2

S��� − f2
N�� + n
�0�


=
1

2eRt
� d�g��

n

Jn
2�
�	nN�� − eU + n
�0� − nN�� + eU

+ n
�0�
 . �23�

The terms with f2 drop out of Eq. �22� due to the property of
the Bessel functions

J−n = �− 1�nJn. �24�

Note that if we set �0=0 the average current assumes the
zero-ac-voltage form

IS
�0� =

1

2eRt
� d�g�	nN�� − eU� − nN�� + eU�
 .

Indeed, when taking the limit �0→0 one should keep in
mind that the sum �nJn

2�
�=1 	which is a consequence of a
more general relation �12�
 converges at n�
=eVac /
�0.
Therefore, 
n�0�eVac in Eq. �21�; thus one has to put
eVac→0 to neglect n
�0. However, the true static expres-
sion is defined for �0=0 but Vac�0. According to Eq. �10�,
it has the energy-shifted density of states g��eVac

and the
distribution functions f1

S���eVac�, f2
S���eVac�. This static

limit �i.e., �0=0 and Vac�0� is indeed obtained from Eq.
�21� using Eq. �10�. Making shifts of the integration variable
we find

IS
static =

1

2eRt
� d�g�	f2

S��� − f2
Nstatic���
 , �25�

where f2
S=0 and

f2
N = nN�� + eU − eVac� − nN�� − eU + eVac� ,

which corresponds to the total voltage U−Vac, according to
Eq. �17�.

The heat current that flows into the superconducting lead
can be calculated with the help of Eqs. �3� and �4�. We find in
the frequency representation

− 
�� �

�t
−

�

�t�
+

2ie�S



�gR�A��t,t��


�,�−
�

= 4�i�
n,k

��� − k�0�Jn�
�Jn−k�
��� − n
�0�g�−n
�0

R�A� ,

�26�

− 
�� �

�t
−

�

�t�
+

2ie�S



�gK�t,t��


�,�−
�

= 4�i�
n,k

��� − k�0�Jn�
�Jn−k�
��� − n
�0�

�	g�−n
�0

R − g�−n
�0

A 
	f1�� − n
�0� + f2�� − n
�0�
 ,

�27�

and similarly for ḡ with the substitutions g→ ḡ, �S→−�S,
�0→−�0, and f2→−f2. Here the distribution functions again
correspond to zero ac potential.

Shifting the energy variable under the integral, the aver-
age heat current into the superconductor becomes

Q̄S =
1

2e2Rt
� �g��

n

Jn
2�
�	f1

S��� − f1
N�� + n
�0�
d� .

�28�

The heat current equation �28� is even in �0. For �0=0 Eq.
�28� formally goes over into

QS
�0� =

1

2e2Rt
� �g�	f1

S��� − f1
N���
d�

with f1
N and f1

S from Eqs. �18� and �20�. This is the zero-ac-
voltage result.

The static expression is obtained from Eqs. �10�, �26�, and
�27� as follows:
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QS
static =

1

2e2Rt
� �g�	f1

S��� − f1
Nstatic���
d� , �29�

where f1
Nstatic��� corresponds to the total voltage U−Vac,

f1
N static��� = 1 − nN�� + eU − eVac� − nN�� − eU + eVac� .

This should be compared to Eq. �18�.
It is also interesting to define the quasistatic regime,

which is obtained by averaging the static heat flux QS
static over

the sinusoidal voltage cycle with Vac→Vac cos �0t. It does
not coincide with the static expression due to the voltage
oscillations. This quasistatic regime corresponds to the clas-
sical limit occurring at small frequencies, for which the pho-
ton energy 
�0 is much smaller than the energy scale over
which the nonlinearity of the I-V curve occurs.15,16 In the
system under investigation such energy scale is set by the
temperature or by the width of the superconducting density
of states peak near the gap energy, which smear the sudden
current onset occurring at the superconductor gap. As it will
be confirmed in Sec. III, the quasistatic regime occurs for

�0�kBT.

We now consider the heat current flowing out of the nor-
mal electrode as follows:

QN
out = QS − ��N − �S�IS, �30�

where IS is the tunnel charge current reported in Eq. �21�.
Note that the heat extracted from the normal electrode and
the heat entering the superconducting lead differ by the en-
ergy absorbed at the NIS interface where the potential drops
by �N−�S. The time-average heat current is

Q̄N
out = Q̄S − UĪS − Pac, �31�

where Pac=Vac cos��0t�IS�0
�t� is the average ac power ab-

sorbed at the NIS contact,

Pac = −
Vac

2eRt
� g��

n

Jn�
�Jn−1�
�	f1
S��� − f1

N�� + n�0�
d� .

�32�

Note that Pac is finite both in the static case ��0�0� and in
the quasistatic regime �small but finite �0�.

III. RESULTS AND DISCUSSION

We shall now discuss how the heat current depends on the
various parameters of the system. This can be done by nu-
merically evaluating the expressions given in the previous
section. In the following we shall assume parameters typical
of aluminum �Al� as S material, with critical temperature
Tc=1.19 K. We assume the superconducting gap to follow
the BCS relation �0=1.764kBTc and choose

NS��� = �Re	�� + i��/��� + i��2 − �2
� ,

where � is a smearing parameter which accounts for quasi-
particle states within the gap.35–37 We will use �=10−4�0, as
experimentally verified in Ref. 37. Finally, we shall always
assume the N and S electrodes to be at the same temperature,
i.e., TS=TN�T.

For the sake of definiteness, let us first consider the situ-
ation in which no bias is applied to the normal island �U
=0�. In Figs. 2�a� and 2�b� the time-averaged heat current

entering the S electrode �Q̄S�, Eq. �28�, is plotted as a func-
tion of the ac voltage at, respectively, large �T=0.3�0 /kB�
and small �T=0.03�0 /kB� temperatures. The various curves
refer to different values of frequency �0=�0 /2�, and calcu-
lations were performed up to �0=40 GHz, corresponding
roughly to the value of the superconducting gap ��0 /h
�43.7 GHz�. We note that a driving frequency correspond-
ing to 2�0 would lead to breaking up of the Cooper pairs.
For a comparison we have included static �i.e., �0=0�, Eq.
�29�, and quasistatic regimes. For large temperatures 	i.e.,

T=0.3�0 /kB, Fig. 2�a�
, the heat current Q̄S is a monotonic,
nearly parabolic, function of Vac for all values of frequency.
The first observation is that the static heat current is always
larger than the heat current at finite frequency. On the one
hand, it is obvious that the quasistatic curve is below the
static one, the former being just an average over a cycle of
the static limit �see Sec. II A�. On the other hand, the photon-
assisted heat current is always larger than quasistatic charac-
teristic. To be more precise, the heat current monotonically
decreases by decreasing frequency, eventually reaching the
quasistatic limit for small enough �0 �note that the curves

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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1
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40
static
quasi-static

T
S

= T
N

= 0.3∆
0
/k

B

U = 0

ν
0
(GHz)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.1

0.2

0.3

0.4

e2 R
tQ

S
/∆

2 0

eVac /∆0

1
5
10
20
40
static
quasi-static

T
S

= T
N

= 0.03∆
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FIG. 2. �Color online� Normalized time-average heat current

into the S electrode Q̄S as a function of the amplitude of the ac
voltage Vac for different values of �0 at �a� high �T=0.3�0 /kB� and
�b� low �T=0.03�0 /kB� temperatures. The static case and the qua-
sistatic limit are plotted for comparison. Note that in �a� the curves
relative to �0=10, 5, and 1 GHz coincide with the quasistatic one.
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relative to �0=1 ,5 ,10 GHz are indistinguishable from the
quasistatic one�. This means that photon-assisted processes
give rise to an enhancement of the heat current entering S
with respect to the quasistatic situation, though remaining
well below static values. Such enhancement reflects the in-
crease in current due to photon-assisted processes:14 elec-
trons are excited to higher energy states, thus favoring tun-
neling above the gap. Of course, such mechanism is more
effective for small temperatures. In such a case 	i.e., T
=0.03�0 /kB, Fig. 2�b�
, indeed, static and quasistatic curves
present an activationlike behavior, with a switching voltage
of Vac�0.9�0 /e and Vac�1.0�0 /e, respectively, and

thereby increasing almost linearly. Photon-assisted Q̄S in-
creases more smoothly as compared with the quasistatic
case, which is approached by decreasing �0.

We now consider the heat current extracted from the N

electrode Q̄N
out, which differs from Q̄S by the ac power Pac

�for U=0� absorbed by the NIS contact 	see Eqs. �31� and

�32�
. In Figs. 3�a� and 3�b� we plot Q̄N
out as a function of Vac

for several frequencies for large and small temperatures, re-
spectively. The effect of Pac on the behavior of the heat
current is very strong, giving rise to a maximum located
around Vac=�0 /e, and to a sign change. By increasing Vac

the heat flow out of N increases up to the maximum and
thereafter rapidly decreases to negative values �heat current
enters the N electrode�. For reasons given above, the maxi-
mum quasistatic heat current is always smaller than the
maximum of the static one. Another effect of Pac is that, in
this case, the photon-assisted heat current is smaller than the
quasistatic characteristic. In particular, the heat current
monotonically increases by decreasing frequency, eventually
reaching the quasistatic limit for small enough �0. Moreover,

by increasing the frequency the maximum of Q̄N
out moves

toward smaller values of Vac. While at large temperatures

Q̄N
out remains positive �implying heat extraction from the N

electrode� also for frequencies slightly above 40 GHz 	see
Fig. 3�a�
, at low temperatures the minimum frequency for

positive Q̄N
out is drastically reduced �by about 1 order of mag-

nitude� 	see Fig. 3�b�
. This clearly proves that photon-
assisted tunneling is detrimental as far as heat extraction
from the N electrode is concerned. Analogously to what hap-
pens for the charge current,14 the approach to the quasistatic
limit depends on temperature. Indeed, as already mentioned
in Sec. II A, the quasistatic regime occurs at 
�0�kBT. The
curve relative to 1 GHz differs, with respect to the quasi-
static one at its maximum, by less than 0.1% at T
=0.3�0 /kB, and by about 50% at T=0.03�0 /kB, where kBT

�
�0. Figure 4 shows the time-average Q̄N
out versus Vac at

low temperature calculated for frequencies in a smaller
range. As it can be clearly seen, the quasistatic curve appears
to be a good approximation for �0=0.1 GHz.

It is now interesting to analyze the behavior of dynamic
heat transport in the NIS junction for fixed amplitude of the
ac voltage by plotting the heat currents as a function of the
period of oscillations �0=1 /�0. This is shown in Figs. 5 and

6 for Q̄S and Q̄N
out, respectively. Here we set U=0. Both for

large 	T=0.3�0 /kB, see Fig. 5�a�
 and small 	T=0.03�0 /kB,

see Fig. 5�b�
 temperatures the heat current Q̄S presents an
overall decrease with �0, for all values of Vac. At small tem-
peratures, however, the heat current shows an additional
structure consisting of superimposed oscillations due to
photon-assisted processes, which tend to disappear for large

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.02

0.04

0.06

e2 R
tQ

ou
t

N
/∆

2 0

eVac /∆0

1
5
10
20
40
static
quasi-static

T
S

= T
N

= 0.3∆
0
/k

B

U = 0

ν
0
(GHz)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

1

2

3

e2 R
tQ

ou
t

N
/∆

2 0

eVac /∆0

1
5
10
20
40
static
quasi-static

T
S

= T
N

= 0.03∆
0
/k

B

U = 0

ν
0
(GHz)

(b)

x10-3

FIG. 3. �Color online� Normalized time-averaged heat current

out of the N metal Q̄N
out as a function of the amplitude of the ac

voltage Vac for different values of frequency �0 at �a� high �T
=0.3�0 /kB� and �b� low �T=0.03�0 /kB� temperatures. The static
case and the quasistatic limit are plotted for comparison. At high
temperature the quasistatic limit is a good approximation at fre-
quencies as low as 1 GHz.
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values of �0 �small frequencies�, i.e., approaching the quasi-
static limit. Notably, the relative maxima turn out to be
equally spaced by the time scale related to the superconduct-
ing gap, ��=h /�0. In addition we found that, at even lower
temperatures, also the relative maxima are equally spaced by
��.

Though presenting an overall enhancement with �0, the
behavior of the time-average heat current extracted from the

N electrode Q̄N
out is qualitatively similar to that of Q̄S �see

Fig. 6; note that the vertical axis is linear in this case�. Note

that for large temperatures Q̄N
out remains positive for most of

the frequency range considered, even for Vac=�0 /e 	see Fig.
6�a�
. For small temperatures 	see Fig. 6�b�
, however, the
heat current is negative over nearly the whole time range.
The additional structure, in this case, shows equal spacing
�of magnitude ��� between the relative minima, since these
correspond to maximum heat absorption by S 	maxima in
Fig. 5�b�
.

We now turn to the effect of a finite dc voltage U com-
bined with an ac modulation on the heat current exiting the N

electrode. In Figs. 7�a� and 7�b�, the time-average Q̄N
out at

large temperatures �T=0.3�0 /kB� is plotted as a function of

U for several values of frequency at Vac=0.6�0 /e and Vac

=0.9�0 /e, respectively. Figure 7�a� shows that Q̄N
out is nearly

constant having a weak maximum around U�0.3�0 /e al-
most independently of the frequency, and rapidly decreasing
thereafter. By inspecting Fig. 3�a� it clearly appears that, at
T=0.3�0 /kB, Q̄N

out is maximized around Vac�0.9�0 /e, so it
seems that a finite value of U just adds to the ac voltage
making the heat current to move along the voltage character-
istic similarly to the pure ac case. Furthermore, we note that
the addition of a static dc potential to an ac modulation is not
able to recover the maximum value the heat current can
achieve with only the ac voltage biasing. A confirmation of
this is given in the plots displayed in Fig. 7�b� which are
relative to a value of Vac=0.9�0 /e. For such an ac voltage

biasing Q̄N
out does not present a constant part, and the addition

of U turns out to only suppress the time-average heat current.
Moreover, an increase of frequency �0 causes a reduction of

Q̄N
out, even to negative values.

We finally plot in Fig. 8 the maximum value of Q̄N
out,

obtained by spanning over Vac, as a function of T for several

values of frequency. For every �0 the time-average Q̄N
out is a
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bell-shaped function presenting a maximum around T
�0.25�0 /kB �similarly to what happens in the static19 as
well as in the quasistatic limit�, which is gradually sup-
pressed upon enhancing the frequency. By increasing the fre-
quency the curves slightly shrink, thus reducing the tempera-
ture interval of positive heat current. Moreover, the position
of the maxima tends to move to higher temperatures for in-
termediate frequencies �i.e., for �0 below �20 GHZ�, while
they tend to move to lower temperatures in the higher range
of frequencies �see, for example, the curve corresponding to
�0=40 GHz in Fig. 8�.

IV. CONCLUSIONS

In this paper we have calculated the heat currents in a
normal and/or superconductor tunnel junction driven by an
oscillating bias voltage in the photon-assisted tunneling re-
gime. We have found that the maximum heat extracted from
the normal electrode decreases with increasing driving fre-
quency. We checked that for small frequencies �
�0�kBT�
the photon-assisted heat current approaches the quasistatic
limit, the latter being obtained by averaging the static heat
current over a sinusoidal voltage cycle �relevant for subgiga-

hertz frequencies�. The suppression of the heat current by
photon-assisted processes can be imputed to the ac power,
dissipated at the tunnel contact, which is enhanced in the
quantum regime with respect to the quasistatic limit. On the
contrary, the heat current entering the superconducting elec-
trode slightly increases with increasing frequency. We also
found that, for small temperatures, the heat current as a func-
tion of the inverse of frequency presents an additional struc-
ture consisting of superimposed oscillations with a period
corresponding to the time scale derived from the supercon-
ducting gap, ��=h /�0.

We want finally to briefly comment onto some implica-
tions of the above results for practically realizable systems.
We refer, for instance, to ac-driven NIS electron refrigerators
operating in the regime of Coulomb blockade which were
theoretically investigated in Ref. 30, and experimentally
demonstrated in Ref. 31. Moreover, in particular, it was
shown in Ref. 30 that both the heat current flowing out the N
island and the minimum achievable electron temperature de-
pend on the frequency of the gate voltage as well as on the
bath temperature. Our results may thus suggest the proper
operating conditions in terms of frequencies and bath tem-
peratures in order for photon-assisted tunneling not to sup-
press the heat current in these systems. In other words, they
allow us to predict a suitable range of parameters which keep
the system in the quasistatic limit.
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APPENDIX: STATIC LIMIT

To prove Eq. �10� we use ��x�, which is analytic; there-
fore,
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and �b� the calculations were performed by setting the temperature
at T=0.3�0 /kB.
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��� − n
�0�e−in�0t = �
k=0

�
dk�

d�k

�− n
��k

k!
e−in�0t = ��� − i


�

�t
�e−in�0t.

We next perform the inverse Fourier transform of the right-hand side of Eq. �10�,

��� + 	s�t�� = �
n,k

Jn�
�Jn−k�
���� − n
�0�e−ik�0t = �
n

Jn�
���� − n
�0�e−in�0tei/
�0
t eVac cos �0t�dt�

= ei/
�0
t eVac cos �0t�dt��

n

��� − i

�

�t
�Jn�
�e−in�0t = ei/
�0

t eVac cos �0t�dt�

���� − i

�

�t
�e−i/
�0

t eVac cos �0t�dt�,

which indeed is ���−eVac cos �0t�. Here we use the expansion equation �6� twice.
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