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The complex-field approach is developed to derive analytical expressions of the magnetic field distributions
around superconducting strips on ferromagnetic substrates �SC/FM strips�. We consider the ferromagnetic
substrates as ideal soft magnets with an infinite magnetic permeability, neglecting the ferromagnetic hysteresis.
On the basis of the critical state model for a superconducting strip, the ac susceptibility �1�+ i�1� of a SC/FM
strip exposed to a perpendicular ac magnetic field is theoretically investigated, and the results are compared
with those for superconducting strips on nonmagnetic substrates �SC/NM strips�. The real part �1� for
H0 / jcds→0 �where H0 is the amplitude of the ac magnetic field, jc is the critical current density, and ds is the
thickness of the superconducting strip� of a SC/FM strip is 3 /4 of that of a SC/NM strip. The imaginary part
�1� �or ac loss Q� for H0 / jcds�0.14 of a SC/FM strip is larger than that of a SC/NM strip, even when the
ferromagnetic hysteresis is neglected, and this enhancement of �1� �or Q� is due to the edge effect of the
ferromagnetic substrate.
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I. INTRODUCTION

High-temperature superconducting coated conductors
have been developed for applications in electric power de-
vices �e.g., power cable, transformer, motor, fault current
limiter, cryocooler, and so on�, and remarkable progress to-
ward high-current and long-length conductors has recently
been reported.1 In superconducting coated conductors, the
superconducting layers are generally fabricated on metallic
substrates with oxide buffer layers, and ferromagnetic mate-
rials �e.g., Ni alloys� are promising candidates for the metal-
lic substrates.2,3 The magnetic behavior of ferromagnetic
substrates can strongly affect the electromagnetic response of
superconducting coated conductors. Although the effects of
ferromagnetic substrates on ac losses of superconducting
coated conductors have been extensively investigated experi-
mentally and numerically,4–13 ac losses in superconducting
strips on ferromagnetic substrates have not been investigated
analytically. Genenko et al.14 analytically investigated the
magnetic field and current distributions in superconducting
strips surrounded by soft magnets, but they did not consider
realistic geometries similar to those of coated conductors.

In the present paper, we develop a theoretical framework
to investigate electromagnetic response of superconducting
strips on ferromagnetic substrates �SC/FM strips�, and we
compare the results with those for superconducting strips on
nonmagnetic substrates �SC/NM strips�.15–17 Section II intro-
duces the theoretical models and methods that we used to
investigate the magnetic field around SC/FM strips. Section
III gives the theoretical results for the magnetic field distri-
bution around a SC/FM strip in which the superconducting
strip is in the ideal Meissner state and exposed either to a
perpendicular magnetic field, a parallel magnetic field, or a
transport current. Section IV gives the theoretical results for
dc and ac responses of a SC/FM strip in which the supercon-
ducting strip is in the critical state and the SC/FM strip is
exposed to a perpendicular magnetic field. Section V de-
scribes the comparison of our theoretical results with experi-
mental data by Suenaga et al.13 and summarizes our results.

II. MODEL

In this section, the configuration of a SC/FM strip is de-
fined, and the basic theoretical models used to investigate the
electromagnetic response of a SC/FM strip are introduced.

Consider a SC/FM strip of width 2a, total thickness ds
+dm, and infinite length along the z axis, as shown in Fig. 1.
This strip consists of a superconducting strip whose thick-
ness is ds, and a ferromagnetic substrate whose thickness is
dm, where ds+dm�2a. Let ��max�ds ,dm� be a positive in-
finitesimal, and the thin strip limit of �→ +0 enables analyti-
cal expressions of the magnetic field distribution around a
SC/FM strip to be derived as follows.

A. Complex field

To analyze a two-dimensional magnetic field, H
=Hx�x ,y�x̂+Hy�x ,y�ŷ, we consider the complex field18–27

H��� = Hy�x,y� + iHx�x,y� , �1�

which is the analytical function of the complex variable �
=x+ iy outside of a SC/FM strip. Applying Cauchy’s integral
formula28 to H��� yields the following:

superconducting strip

ferromagnetic substrate
x

y

+a–a

FIG. 1. �Color online� Cross section of a SC/FM strip in the xy
plane. Superconducting strip is situated at �x��a and 0�y�ds, and
ferromagnetic substrate at �x��a and −dm�y�0, where ds+dm

�2a.
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where the closed contour C has three components: a line just
above the real axis �i.e., ��=x�+ i� from x�=−� to x�= +��,
an infinite circle �i.e., ��=Rei	 from 	=0 to 	=2� with
R→��, and a line just below the real axis �i.e., ��=x�− i�
from x�= +� to x�=−��, see Fig. 7 in Ref. 26. Substitution
of H���→Hay + iHax for �� � →� and H�x�+ i��=H�x�− i��
for �x��
a into Eq. �2� leads to the generalized Biot-Savart
law for a SC/FM strip:

H��� = �Hay + iHax� +
1

2�
�

−a

+a

dx�
Kz�x�� + i�m�x��

� − x�
, �3�

where Ha=Haxx̂+Hayŷ is a uniform applied magnetic field,
Kz�x� is the sheet current in a superconducting strip, and
�m�x� is the effective sheet magnetic charge29 in a ferromag-
netic substrate. The Kz�x� and �m�x� are defined by

Kz�x� = Hx�x,− �� − Hx�x, + �� , �4�

�m�x� = Hy�x, + �� − Hy�x,− �� , �5�

respectively. The net magnetic charge is zero; that is,
�−a

+a�m�x�dx=0.
The multipole expansion of Eq. �3� for ��� /a→� is given

by25

H��� → �Hay + iHax� +
Iz

2��
+

− my + imx

2��2 + ¯ , �6�

where Iz=�−a
+aKz�x�dx is the transport current flowing in a

superconducting strip. The m=mxx̂+myŷ is the magnetic mo-
ment per unit length of a SC/FM strip:

my = − �
−a

+a

dx xKz�x� = �
−a

+a

dx x�Hx�x, + �� − Hx�x,− ��	 ,

�7�

mx = �
−a

+a

dx x�m�x� = �
−a

+a

dx x�Hy�x, + �� − Hy�x,− ��	 .

�8�

The my is induced by Kz�x� in a superconducting strip,
whereas mx is induced by �m�x� in a ferromagnetic substrate.

The complex potential defined by

G��� =� H���d� �9�

is convenient for visualizing the magnetic field lines around
a SC/FM strip, because the contour lines of the real part of
Eq. �9�, Re G���, correspond to the magnetic field lines.26,27

The variable transformation �i.e., the conformal mapping�
defined by

� = i
�2 − a2, � = − i
�2 − a2 �10�

is useful for analyzing H��� for a SC/FM strip.

B. Ferromagnetic substrate

The ferromagnetic materials �e.g., Ni-W alloys� used as
metal substrates for coated conductors are classified as soft
magnets.3,7 For simplicity, in the present paper, we consider
the ferromagnetic substrates as ideal soft magnets, in which
the relationship between the magnetic induction B and the
magnetic field H is given by14 B=
mH, where 
m is much
larger than the magnetic permeability of the vacuum 
0 �i.e.,

m /
0�1�. Also, in the ideal soft magnet model, we neglect
the ferromagnetic hysteresis and assume that the saturation
field Hs is much larger than �H�.

In the infinite-permeability limit �
m /
0→��, the H
=B /
0 outside of the ideal soft magnet has only a perpen-
dicular component at the surface.29 Therefore, the boundary
condition at the surface of a ferromagnetic substrate �i.e., at
y=−�� is given by

Hx�x,− �� = Im H�x − i�� = 0 for �x� � a . �11�

The magnetic field distribution for a large but finite perme-
ability �
m /
0�1� is not significantly different from that for
an infinite permeability �
m /
0→��.14 The simple boundary
condition of Eq. �11� thus enables analytical expressions of
H��� to be derived.

C. Superconducting strip

The ideal Meissner state model �Sec. III� and the critical
state model �Sec. IV� are adopted to investigate the electro-
magnetic response of a superconducting strip in a SC/FM
strip.

In Sec. III, the ideal case is considered, namely, when a
superconducting strip is in the ideal Meissner state. In this
state, the magnetic flux does not penetrate a superconducting
strip, and consequently, the perpendicular component of the
magnetic field vanishes, that is, Hy�x , +��=0.

In Sec. IV, a more realistic case is considered, and thus we
used the critical state model with constant critical current
density jc, as in the Bean model.30 Similar to earlier
calculations,15–17 the effects of the lower critical field Hc1 are
neglected �i.e., Hc1� �H��, and thus the B−H relationship is
simply given by B=
0H. In the critical state model, the
magnetic flux penetrates and Kz reaches its critical value jcds
near the edges of the superconducting strip. The �Kz�x��
= jcds holds in the flux-filled region �where Hy�x , +���0	
near the edges in a superconducting strip, whereas the flux-
free region �where Hy�x , +��=0	 exists near the center of a
superconducting strip.

III. IDEAL MEISSNER STATE

In this section, we consider the complex field H��� for a
SC/FM strip in which the superconducting strip is in the
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ideal Meissner state. In the ideal Meissner state, the magnetic
field component perpendicular to the surface of the super-
conducting strip at y= +� is zero:

Hy�x, + �� = Re H�x + i�� = 0 for �x� � a . �12�

In addition to the boundary conditions given by Eqs. �11� and
�12�, further conditions depending on Hax, Hay, and Iz are
needed to determine H���, as shown in the following subsec-
tions. The derivation of H��� is shown in Appendix A, and
the details of the square root functions are shown in Appen-
dix B.

A. Response to a perpendicular magnetic field

Here, the H��� for a SC/FM strip is presented for the case
when a SC/FM strip is exposed to a perpendicular magnetic
field Ha=Hayŷ; that is, when Hay �0 and Hax= Iz=0.

The corresponding complex field for Hax= Iz=0, which
satisfies the conditions given in Eqs. �11� and �12�, is ex-
pressed as

H��� = Hay�1 −
a

2�
�
� + a

�
, �13�

where �=���� is a function of � given by Eq. �10�. Equation
�13� is expanded for �� � 
���→� as

H��� → Hay�1 +
3a2

8�2 + ¯ � . �14�

Comparison of Eqs. �6� and �14� yields the magnetic moment
per unit length,

my = �0yHay , �15�

where �0y is the magnetic susceptibility given by

�0y = − �3�/4�a2. �16�

Here, we defined �0y as the ratio of my in units of �A m� to
Hay in units of �A/m�, such that �0y is in units of �m2�.
Equation �16� corresponds to 3 /4 of the magnetic suscepti-
bility of a SC/NM strip in the ideal Meissner state,16 �0y =
−�a2.

The complex potential calculated by substituting Eq. �13�
into Eq. �9� is given by

G��� = − iHay

��� − a� . �17�

Figure 2�a� shows the magnetic field lines calculated from

Re G��� with Eqs. �10� and �17�. At the surface of the ferro-
magnetic substrate at y=−�, the H near the edges is down-
ward �i.e., Hy�x ,−���0 when Hay 
0	 for xp� �x��a,
whereas H is mostly upward �i.e., Hy�x ,−��
0 when Hay


0	 for �x��xp, where xp /a=
3 /2=0.866. Such pro-
nounced behavior in H due to a ferromagnetic substrate re-
sults in the concentration of the magnetic field near the edges
of the SC/FM strip.

B. Response to a parallel magnetic field

Here, the H��� for a SC/FM strip is presented for the case
when a SC/FM strip is exposed to a parallel magnetic field
Ha=Haxx̂; that is, when Hax�0 and Hay = Iz=0.

The corresponding complex field for Hay = Iz=0, which
satisfies the conditions given in Eqs. �11� and �12�, is ex-
pressed as

H��� = iHax�1 +
a

2�
�
� − a

�
, �18�

where � is a function of � by Eq. �10�. Equation �18� is
expanded for ���
���→� as

H��� → iHax�1 +
3a2

8�2 + ¯ � . �19�

Comparison of Eqs. �6� and �19� yields the magnetic moment
per unit length,

mx = �0xHax, �20�

where �0x is the magnetic susceptibility given by

�0x = + �3�/4�a2. �21�

Equation �21� corresponds to 3 /4 of the magnetic suscepti-
bility of a ferromagnetic strip without a superconducting
strip, �0x= +�a2.

The complex potential calculated by substituting Eq. �18�
into Eq. �9� is given by

G��� = Hax

��� + a� . �22�

Figure 2�b� shows the magnetic field lines calculated from
Eqs. �10� and �22�. At the surface of the superconducting
strip at y= +�, the H near the edges is leftward �i.e., Hx�x ,
+���0 when Hax
0	 for xp� �x��a, whereas H is mostly

–2 –1 0 1 2
x/a

–1

0

1

y
/a

(a) perpendicular field Hay

–2 –1 0 1 2
x/a

(b) parallel field Hax

–2 –1 0 1 2
x/a

(c) transport current Iz

FIG. 2. �Color online� Magnetic field lines �i.e., contour lines of Re G���	 around a SC/FM strip in which the superconducting strip is in
the ideal Meissner state: �a� in a perpendicular magnetic field Hay, �b� in a parallel magnetic field Hax, and �c� with a transport current Iz.
Thick horizontal bar at −1�x /a�1 and y=0 denotes the SC/FM strip.
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rightward �i.e., Hx�x , +��
0 when Hax
0	 for �x��xp,
where xp /a=
3 /2=0.866.

C. Response to a transport current

Here, the H��� for a SC/FM strip is presented for the case
when a superconducting strip in a SC/FM strip carries a
transport current Iz; that is, when Iz�0 and Hax=Hay =0.

The corresponding complex field for Hax=Hay =0, which
satisfies the boundary conditions given in Eqs. �11� and �12�,
is expressed as

H��� = i
Iz

2�

1

�

� − a

�
, �23�

where � is a function of � by Eq. �10�. Equation �23� is
expanded for ���
���→� as

H��� →
Iz

2�
�1

�
+

ia

2�2 + ¯ � . �24�

Comparison of Eqs. �6� and �24� reveals that, despite Hax
=0, the magnetic moment per unit length,

mx = aIz/2, �25�

is induced from Iz.
The complex potential calculated by substituting Eq. �23�

into Eq. �9� is given by

G��� = �Iz/��arcsinh�
�/a� . �26�

Figure 2�c� shows the magnetic field lines calculated from
Eqs. �10� and �26�.

IV. CRITICAL STATE

In this section, we consider H��� for a SC/FM strip in
which the superconducting strip is in the critical state. A
SC/FM strip is exposed to a perpendicular magnetic field
Ha=Hayŷ and carries no net transport current �i.e., Hax= Iz
=0�, where Hay is either dc or ac magnetic field.

A. Response to a dc magnetic field

Here, we consider the case when a SC/FM strip is ex-
posed to a dc magnetic field Hay =H0, which is fixed after
monotonically increased from Hay =0.

The magnetic flux penetrates the superconducting strip
near the edges, and the sheet current density Kx�x�=−Hx�x ,
+�� �from Eqs. �4� and �11�	 reaches its critical value,

Hx�x, + �� = Im H�x + i�� = − sgn�x�jcds for b0 � �x� � a .

�27�

In contrast, the magnetic flux does not penetrate the inner
region,

Hy�x, + �� = Re H�x + i�� = 0 for �x� � b0, �28�

where b0 is the parameter for the flux front. At the surface of
the ferromagnetic substrate, the parallel component of the
magnetic field is zero, as required by the boundary condition

in Eq. �11�. The corresponding complex field that satisfies
the conditions given in Eqs. �11�, �27�, and �28� is expressed
by

H���
2jcds/�

= arctanh�
�0�� + a�
a�� + �0�

� −

a�0�� + a��� + �0�

�a + �0��
,

�29�

where � is given by Eq. �10�, and �0 is given by

�0 = 
a2 − b0
2. �30�

Equation �29� is expanded for ���
���→� as

H���
2jcds/�

→ arctanh�
�0

a
� −


a�0

a + �0
+

�a�0�3/2

2�a + �0��2 + ¯ .

�31�

Comparison of Eqs. �6� and �31� yields the following rela-
tionship between H0 and �0:

H0

2jcds/�
= arctanh�
�0

a
� −


a�0

a + �0
. �32�

The parameter for the flux front b0 is obtained as a function
of the applied magnetic field H0 by eliminating �0 from Eqs.
�30� and �32�. The resulting b0 vs H0 for a SC/FM strip is
shown as the solid lines in Fig. 3, and b0
=a /cosh��H0 / jcds� for a SC/NM strip15–17 is shown as the
dashed lines. When H0 / jcds
0.054, the magnetic-flux pen-
etration into a SC/FM strip is slower than that into a SC/NM
strip �i.e., b0 for a SC/FM strip is larger than b0 for a SC/NM
strip�, as seen in Fig. 3�a�, whereas when H0 / jcds�0.054,
the penetration is faster into a SC/FM strip, as seen in Fig.
3�b�.

The solid lines in Fig. 4 show the calculated distributions
of Hy�x , +�� and Kz�x� for a SC/FM strip, and the dashed
lines show Hy and Kz for a SC/NM strip.15–17 The �Hy� and
�Kz� of a SC/FM strip are smaller than those of a SC/NM
strip in the inner region ��x� /a�0.6�, whereas �Hy� of a

0 0.5 1 1.5 2

H0/ jcds

0

0.5

1

b
0
/a

(a)

0 0.02 0.04 0.06

H0/ jcds

0.98

0.99

1

b
0
/a

(b)

SC/FM

SC
/N
M

SC/NM

SC/FM

FIG. 3. �Color online� Parameter for the flux front b0 �in units of
a� as a function of an applied magnetic field H0 �in units of jcds� �a�
for 0�H0 / jcds�2 and �b� for 0�H0 / jcds�0.075. Solid lines rep-
resent b0 vs H0 for a SC/FM strip obtained from Eqs. �30� and �32�,
and dashed lines represent b0 vs H0 for a SC/NM strip �Refs.
15–17�.
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SC/FM strip is larger in the outer region �0.7� �x� /a�1�.
The stronger magnetic field near the edges of a SC/FM strip
is due to the edge effect of the ferromagnetic substrate, and is
responsible for the faster magnetic-flux penetration �i.e.,
smaller b0� into a SC/FM strip in the weak magnetic field
regime �H0 / jcds�0.054�, as shown in Fig. 3�b�.

From Eqs. �6� and �31�, the magnetic moment per unit
length is given by my =m0�H0�, where

m0 = − 2jcds
�a�0�3/2

a + �0
. �33�

The m0 is obtained as a function of H0 by eliminating �0 in
Eqs. �32� and �33� and the differential susceptibility is ex-
pressed as

�m0

�H0
=

�m0/��0

�H0/��0
= −

�

4
�3a + �0��a − �0� . �34�

For a weak magnetic field of H0� jcds �i.e., �0�a�, Eq. �34�
is reduced to �m0 /�H0�−�3� /4�a2, which corresponds to
Eq. �16�.

B. Response to an ac magnetic field

Here, we consider the case when a SC/FM strip is ex-
posed to an ac magnetic field Hay =H0 cos �t.

The magnetic moment per unit length my�t� for an ac
magnetic field is expressed as15,31,32

my�t� = + m0�H0� − 2m0�H0�1 − cos �t�/2	 , �35�

for 0��t��, and

my�t� = − m0�H0� + 2m0�H0�1 + cos �t�/2	 �36�

for ���t�2�, where m0�H0� is given by Eqs. �32� and
�33� by eliminating �0. The my�t� can be expressed as the
Fourier series:

my�t� = H0�
n=1

�

��n� cos n�t + �n� sin n�t�

= H0�
n=1

�

Re���n� + i�n��e
−in�t	 , �37�

where the ac susceptibility �n�+ i�n� is calculated as33

�n� + i�n� =
1

�H0
�

0

2�

d��t�my�t�ein�t. �38�

Substitution of Eqs. �35� and �36� into Eq. �38� yields �n�
=�n�=0 for even n. The ac susceptibility for odd n is given by

�n� + i�n� =
2

�H0
�

0

�

d	ein	�m0�H0� − 2m0�H0�1 − cos 	�/2�	

=
4

in�H0
�

0

H0

dh exp�in arccos�1 −
2h

H0
�� �m0�h�

�h
.

�39�

When H0→0, all components of the ac susceptibility vanish
except for �1�= ��m0 /�H0�H0→0. The ac loss of a SC/FM strip
per unit length, Q, in an ac magnetic field is proportional to
�1� as33

Q�H0� = �
0H0
2�1��H0� . �40�

Figure 5 shows the real part �1� and imaginary part �1� of
the ac susceptibility for the fundamental frequency �n=1� as
a function of H0, calculated by substituting Eqs. �32� and
�33� into Eq. �39�. Except when the magnetic field is strong
�H0 / jcds�1�, the ac susceptibility of a SC/FM strip �solid
lines� is significantly different from that of a SC/NM strip
�dashed lines�. When H0 / jcds�1, the real part −�1� of a
SC/FM strip is smaller than that of a SC/NM strip, and when
H0 / jcds�1, we have �1� /�a2=−3 /4, which corresponds to
Eq. �16�.

As shown in Fig. 5�b�, �1� of a SC/FM strip �solid line� is
smaller than that of a SC/NM strip �dashed line� when
H0 / jcds
0.14, whereas �1� of a SC/FM strip is larger when
H0 / jcds�0.14. Note that the enhancement of �1� for
H0 / jcds�0.14 is not due to the ferromagnetic hysteresis in
the substrate, because we assume a linear B−H relationship
in the ferromagnetic substrate, as described in Sec. II B.
When H0 / jcds�1, the edges of SC/FM strips play crucial
roles in �1�. In addition to the �1� of a SC/FM strip with am
=as �as shown in Fig. 1�, Fig. 5�b� shows �1� of a SC/FM
strip with am
as �Fig. 6�, where 2as is the width of the
superconducting strip and 2am is the width of the ferromag-
netic substrate �see Appendix C.� Even when the ferromag-
netic substrate is only 1% wider than the superconducting
strip �i.e., am /as=1.01�, �1� is strongly affected when
H0 / jcds�0.1. For any H0 / jcds, �1� of a SC/FM strip with
am /as=1.1 is smaller than that of a SC/NM strip. The depen-
dence of �1� on am /as clearly confirms that the enhancement
of �1� of a SC/FM strip with am /as=1 for H0 / jcds�0.14 is
due to the edge effect of a ferromagnetic substrate.
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x/aK
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j c
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FIG. 4. �Color online� Distributions of �a� perpendicular mag-
netic field Hy�x , +�� �in units of jcds� and �b� sheet current Kz�x� �in
units of jcds� as a function of x �in units of a� for H0 / jcds=0.6.
Solid lines show Hy =Re H�x+ i�� and Kz=Im�H�x− i��−H�x
+ i��	 calculated from Eq. �29� for a SC/FM strip �b0 /a=0.602�, and
dashed lines show Hy and Kz for a SC/NM strip �Refs. 15–17�
�b0 /a=0.297�.
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V. DISCUSSION AND SUMMARY

The three key theoretical predictions presented in Sec. IV
for the real part �1� and imaginary part �1� of the ac suscep-
tibility, and the ac loss Q ��H0

2�1�� of a SC/FM strip exposed
to an ac perpendicular magnetic field Hay =H0 cos �t are as
follows.

�i� The �1� in the weak magnetic field limit �i.e., �m0 /�H0
for H0� jcds� of a SC/FM strip is given by −�3� /4�a2, which
corresponds to 3 /4 of that of a SC/NM strip.

�ii� The �1� of a SC/FM strip is larger �smaller� than that of
a SC/NM strip in the weak �strong� field regime of H0 / jcds
�0.14 �H0 / jcds
0.14�, as evidenced in Fig. 5�b� by the
intersection between the line for �1� vs H0 of a SC/FM strip
and that of a SC/NM strip at H0 / jcds�0.14, where the inter-

section field 
0H0�0.14
0jcds is on the order of mT for
typical coated conductors.

�iii� When the ferromagnetic substrate is wider than the
superconducting strip, �1� of a SC/FM strip for H0 / jcds�1 is
suppressed, and can be smaller than that of a SC/NM strip
�Fig. 5�b�	.

Suenaga et al.13 experimentally investigated the effects of
ferromagnetic Ni-W alloy tapes on ac losses Q of
YBa2Cu3O7 coated conductors, and they confirmed that ac
losses of ferromagnetic substrates are much smaller than
those of superconducting strips �see also Refs. 7 and 10�. The
above theoretical predictions �i� and �ii� agree well with
these experimental data. The theoretical intersection field

0H0�0.14
0jcds of �1� vs H0 �or Q vs H0� described in the
prediction �ii� is estimated to be about 4.9 mT for jc=1.2
�1010 A /m2 and ds=2.3 
m, which agrees well with the
experimental data by Suenaga et al.13

Prediction �iii� clearly explains that the enhancement of
�1� of a SC/FM strip with am /as=1 when H0 / jcds�0.14 is
due to the edge effect of a ferromagnetic substrate. The edges
effects are also seen in Fig. 3�b� �i.e., the intersection of the
lines of b0 vs H0� and in Fig. 4�a� �i.e., the intersection of Hy
vs x�.

Although our simple model for ferromagnetic substrates
assumes an infinite permeability �
m /
0→�� in contrast to

m /
0
30 in a Ni-W alloy used in coated conductors,13 the
quantitative agreement of our theoretical predictions with the
experimental data by Suenaga et al. suggests that the ideal
soft magnet model with an infinite permeability works well
when 
0 /
m�1.11,13,14,34

In summary, analytical expressions of the complex field
were derived for SC/FM strips. The ferromagnetic substrates
were regarded as ideal soft magnets with an infinite perme-
ability, and the critical state model was used to calculate the
magnetic moment and ac susceptibility of a SC/FM strip
exposed to a perpendicular magnetic field. The theoretical
results of the ac susceptibility of a SC/FM strip exposed to a
perpendicular magnetic field agreed well with the experi-
mental data by Suenaga et al.13

ACKNOWLEDGMENT

I thank M. Suenaga for stimulating discussions about his
experimental data prior to its publication.

APPENDIX A: DERIVATION OF THE COMPLEX FIELD

In this appendix, we derive Eqs. �13�, �18�, and �23�. The
relationship between the complex potential G��� in the �

plane and G̃��� in the � plane is simply given by20 G���
= G̃���. The complex field H���=dG��� /d� in the � plane is,

therefore, obtained from the complex field H̃���
=dG̃��� /d� in the � plane as

H��� = H̃���
d�

d�
= H̃���

i
�2 − a2

�
, �A1�

where we used Eq. �10�.

superconducting strip

ferromagnetic substrate
x

y

+as−as

+am−am

FIG. 6. �Color online� Cross section of a SC/FM strip with a
wider ferromagnetic substrate. The superconducting strip is situated
at �x � �as and 0�y�ds, and the ferromagnetic substrate is at �x �
�am and −dm�y�0, where ds+dm�2as�2am.
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FIG. 5. �Color online� ac susceptibility �1�+ i�1� �in units of �a2�
for the fundamental frequency �n=1� as a function of the amplitude
of an applied ac magnetic field, H0, �in units of jcds� for a SC/FM
strip �solid lines� and for a SC/NM strip �dashed lines�. �a� Semilog
plot of the real part �1� �lower lines� and imaginary part �1� �upper
lines� vs H0. �b� Log-log plot of the imaginary part �1� vs H0 for a
SC/FM strip with am /as=1 �solid line� and for SC/FM strips with
am /as=1.01 and 1.1 �dotted lines�, where 2as is the width of the
superconducting strip and 2am is the width of the ferromagnetic
substrate.
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When Hay �0 and Hax= Iz=0 as in Sec. III A, the complex
field in the � plane is similar to that for a superconducting
strip �situated at 0�Re����a and Im���=0	 exposed to a
magnetic field,16,17,25

H̃��� = − iHay
� − a/2


��� − a�
. �A2�

Substitution of Eq. �A2� into Eq. �A1� yields Eq. �13�.
When Hax�0 and Hay = Iz=0 as in Sec. III B, the complex

field in the � plane corresponds to that for a superconducting
strip �situated at −a�Re����0 and Im���=0	 exposed to a
magnetic field,16,17,25

H̃��� = Hax
� + a/2


��� + a�
. �A3�

Substitution of Eq. �A3� into Eq. �A1� yields Eq. �18�.
When Iz�0 and Hay =Hax=0 as in Sec. III C, the complex

field in the � plane corresponds to that for a superconducting
strip �situated at −a�Re����0 and Im���=0	 carrying a
transport current,16,17,22

H̃��� =
Iz

2�

1

��� + a�

. �A4�

Substitution of Eq. �A4� into Eq. �A1� yields Eq. �23�.

APPENDIX B: SQUARE ROOT FUNCTIONS

When we consider the behavior of H��� and G��� that
contain square root functions, it is necessary to take care of
the branch lines �i.e., cut lines� of the square root functions.
The branch lines of the square root functions are shown, for
example, in Ref. 35: the branch line of 
� is on the real axis
of −��Re����0, and the branch line of 
�2−a2 is on the
real axis of −a�Re���� +a.

Substitution of �=x� i� �where �→ +0� into Eq. �10�
yields

� = � 
a2 − x2 when � = x � i� �B1�

for �x � �a. The square root functions in Eqs. �13�, �18�, and
�23� are reduced to


�� + a�/� = − i sgn�x�f−�x� , �B2�

i
�� − a�/� = if+�x� , �B3�

when �=x+ i� for �x � �a, where sgn�x�= +1 for x
0,
sgn�x�=−1 for x�0, and

f��x� =
 a

a2 − x2

� 1. �B4�

From Eqs. �B1�–�B3�, we readily verify that Eqs. �13�, �18�,
and �23� satisfy the boundary condition of Eq. �12�. The
square root functions are reduced to


�� + a�/� = − f+�x� , �B5�

i
�� − a�/� = − sgn�x�f−�x� , �B6�

when �=x− i� for �x � �a. From Eqs. �B1�, �B5�, and �B6�,
we also verify that Eqs. �13�, �18�, and �23� satisfy Eq. �11�.

APPENDIX C: SUPERCONDUCTING STRIP ON A WIDE
FERROMAGNETIC SUBSTRATE

The complex field for a SC/FM strip in which the ferro-
magnetic substrate is wider than the superconducting strip6,12

�i.e., 2am
2as, as shown in Fig. 6� is derived here. The
SC/FM strip carries no net transport current and is exposed
to a perpendicular magnetic field Hay =H0, and the supercon-
ducting strip is in the critical state.

The boundary condition at the surface of the ferromag-
netic substrate is given by

Hx�x,− �� = Im H�x − i�� = 0 for �x� � am. �C1�

On the basis of the critical state model, the boundary condi-
tions at the surface of a superconducting strip are

Hx�x, + �� = Im H�x + i�� = − sgn�x�jcds for b0 � �x� � as,

�C2�

Hy�x, + �� = Re H�x + i�� = 0 for �x� � b0, �C3�

where b0 is the parameter for the flux front. The correspond-
ing complex field, which satisfies Eqs. �C1�–�C3�, is given
by

H���
2jcds/�

= arctanh�
��0 − �s��� + am�
�am − �s��� + �0�

�
−


�am − �s���0 − �s��� + am��� + �0�
�am + �0��

,

�C4�

where

�s = 
am − as, �0 = 
am − b0. �C5�

The parameter �0 is related to H0 as

H0

2jcds/�
= arctanh�
�0 − �s

am − �s
� −


�am − �s���0 − �s�
am + �0

.

�C6�

The magnetic moment per unit length, my =m0�H0�, is

m0

jcds
= − � 2am�0

am + �0
+ �s�
�am − �s���0 − �s� . �C7�

The differential susceptibility is simply given by

�m0

�H0
= −

�

4
�3am + �0��am − �0� . �C8�

For H0� jcds �i.e., �0��s�, Eq. �C8� is reduced to

�m0

�H0
� −

�

4
�2am

2 + as
2 − 2am


am
2 − as

2� , �C9�

which is further simplified to �m0 /�H0�−�� /2�as
2 for am

�as.
The ac susceptibility of SC/FM strips with wider ferro-

magnetic substrates can be calculated by substituting Eqs.
�C6� and �C7� into Eq. �39�. The calculated results for �1� are
shown as dotted lines in Fig. 5�b�.
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