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We consider the nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field
B0 sin �t. Using the London theory, we calculate the dissipated power Q�B0 ,�� and the transient time scales of
vortex motion. For the linear Bardeen-Stephen viscous drag force, vortex velocities reach unphysically high
values during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single
vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihi-
lation of the vortex-antivortex pairs. Using the nonlinear Larkin-Ovchinnikov �LO� viscous drag force at higher
vortex velocities v�t� results in a jumpwise vortex penetration through the surface barrier and a significant
increase of the dissipated power. We calculate the effect of dissipation on the nonlinear vortex viscosity ��v�
and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal
localization of penetrating vortex channels. We propose a thermal feedback model of ��v�, which not only
results in the LO dependence of ��v� for a steady-state motion, but also takes into account retardation of the
temperature field around a rapidly accelerating vortex and a long-range interaction with the surface. We also
address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the
surface resistance Rs calculated as a function of rf frequency and field. It is shown that trapped flux can result
in a temperature-independent residual resistance Ri at low T and a hysteretic low-field dependence of Ri�B0�,
which can decrease as B0 is increased, reaching a minimum at B0 much smaller than the thermodynamic
critical field Bc. We propose that cycling of the rf field can reduce Ri due to rf annealing of the magnetic flux
which is pumped out by the rf field from a thin surface layer of the order of the London penetration depth.

DOI: 10.1103/PhysRevB.77.104501 PACS number�s�: 74.25.Nf, 74.25.Qt, 74.25.Op

I. INTRODUCTION

The behavior of superconductors in strong rf fields in-
volves many complex mechanisms related to a nonlinear
electromagnetic response of nonequilibrium quasiparticles,
pair-breaking suppression of the superconducting gap �, and
penetration of vortices at higher rf amplitudes.1,2 The physics
behind the nonlinear rf response has recently attracted much
attention due to the development of a new generation of
high-performance superconducting Nb cavities for particle
accelerators, in which the peak surface GHz fields B�t�
=B0 sin �t close to the thermodynamic critical field Bc were
reached at a very high quality factor �109–1011 characteris-
tic of the Meissner state.3,4 At such strong rf fields the peak
surface current density B0 /�0� approaches the depairing cur-
rent density Jd at which the Meissner state becomes unstable
with respect to avalanche penetration of vortices once the
instantaneous rf field B�t�=B0 sin �t exceeds the superheat-
ing field Bs�Bc. In turn, penetration of vortices causes a
sharp increase in the surface resistance Rs.

As far as the very high quality factors are concerned, of
particular interest is the behavior of Rs in s-wave supercon-
ductors at low temperatures T�Tc and frequencies ���,
for which the rf field cannot break the Cooper pairs, and the
very low Meissner surface resistance Rs� ��2� /T�exp�
−� /T� is due to an exponentially small density of thermally
activated quasiparticles �unlike the power-law dependence
Rs�T��Ri+CT� due to nodal quasiparticles in d-wave
superconductors5–8�. In this case penetration of even a few
vortices driven by extremely high rf currents densities J

�Jd can produce strong energy dissipation comparable to
that in the Meissner state, which, in turn, can trigger thermo-
magnetic flux avalanches and the superconductivity break-
down. It is therefore important to understand dynamics of
single-vortex penetration under strong rf fields. Yet the rf
field onset of vortex penetration Bv, the dissipated power Q
as functions of B0 and �, and the relation between Bv and the
thermodynamic Bc and the lower critical field Bc1 are still not
well understood. These problems include complex kinetics of
the emergence of the vortex core at the surface and the sub-
sequent nonlinear large-amplitude oscillation of the vortex at
the surface driven by strong rf currents much higher than the
depinning critical current density. This situation cannot be
described by the theory of linear electrodynamics of a pinned
mixed state weakly deformed by rf currents.9–12 Some issues
of vortex dynamics in ramping magnetic fields have been
addressed in numerical simulations of the time-dependent
Ginzburg-Landau �TDGL� equations13–17 valid at T�Tc, mo-
lecular dynamics simulations,18 or in the theory of macro-
scopic nonlinear electrodynamics of pinned mixes states.19,20

However, few experimental and theoretical results on vorti-
ces driven by very strong rf currents at low temperatures
have been published in the literature.

In this paper we address the nonlinear rf dynamics of a
single vortex moving in and out of a type-II superconductor
through an oscillating magnetic surface barrier locally weak-
ened by a surface defect. We show that in this seemingly
basic situation weak Meissner fields B0�Bc can drive the
vortex with velocities v�t� so high that the linear Bardeen-
Stephen viscous drag model becomes inadequate. As a result,
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the vortex velocity v�t� can exceed the sound velocity, caus-
ing the Cherenkov generation of hypersound.21,22 Moreover,
v�t� can exceed the critical velocity v0, above which the
vortex drag coefficient ��v� decreases as v increases, and the
viscous drag force fv=v��v� reaches maximum at the critical
velocity v0, resulting in the jumpwise Larkin-Ovchinnikov
�LO� instability.23,24 The LO instability has been extensively
investigated by dc transport measurements25–31 on both low-
Tc and high-Tc superconductors for which v0�1–10 km /s
have been typically observed at low T and B. Single-vortex
dynamics under a strong rf field also involves annihilation of
vortex-antivortex pairs and a cascade of single-, double-, and
multiple-vortex penetrations. Competition of the rf driving
force, image attraction to the surface, and the viscous drag
force results in a strong dependence of the dissipated power
Q on the rf amplitude and frequency. Very high vortex ve-
locities achieved at fields B0�Bc required to break the sur-
face barrier make it possible to probe the behavior of vortices
under extreme conditions, for which the Lorentz driving
force approaches its ultimate depairing limit. Because of
strong heating effects, these conditions are hard to reproduce
in transport experiments �except in high-power pulse
measurements32,33�. The importance of heating effects for
transport instabilities in superconductors at low temperatures
is well known.24,34–36 In this paper we show that heating is a
key limiting factor for the high-field surface resistance at T
�Tc as well, even for single vortices driven by strong rf
Meissner currents. In particular, viscous vortex dynamics
coupled with electron overheating can result in the LO-type
behavior of ��v�, thermal rf breakdown, and a long-range
interaction �on scales much greater than the London penetra-
tion depth� between a vortex and the surface and between
vortices themselves.

The paper is organized as follows. In Sec. II we establish
the main parameters of interest by considering the penetra-
tion and dissipation of a single vortex over the oscillating
surface barrier in type-II superconductors described by the
dynamic equation, in which the linear Bardeen-Stephen vis-
cous drag force is balanced by the Lorentz driving force and
the image attraction force at the surface in the London
theory. Even in this basic model rf vortex dynamics always
involves annihilation of vortex-antivortex pairs for B0�Bv
close to the penetration field Bv and a strong dependence of
the dissipated power Q�B0 ,�� on the rf frequency and am-
plitude. In Sec. III we show that the Bardeen-Stephen model
actually has a very limited applicability because vortices
breaking through the surface barrier reach supersonic veloc-
ity, so the velocity dependence of the viscous drag coefficient
��v� must be taken into account. In this case the vortex
dynamics becomes strongly coupled with nonequilibrium
overheating of the vortex core, resulting in a jumpwise pen-
etration of single vortices through the surface barrier and a
significant increase in Q. In Sec. IV we consider the effect of
pinning on the rf surface resistance. In particular, we show
that trapped vortices can result in a temperature-independent,
field-hysteretic residual resistance, which can decrease as the
rf field increases. Pinned vortices can also produce hot spots,
which ignite thermal rf breakdown. Section V is devoted to
dissipation around hot spots and their nonlinear contribution

to the global surface resistance. The thermal breakdown of
the Meissner state ignited by vortex hot spots is addressed.
Section VI concludes with a discussion of the results.

II. PENETRATION OF A VORTEX OVER THE
OSCILLATING SURFACE BARRIER

A. Dynamic equations and time scales

Penetration of vortices in a superconductor is controlled
by the Bean-Livingston surface barrier, which results from a
competition between the Meissner screening currents push-
ing the vortex in a superconductor and the attraction force
between a vortex and the surface.37 This surface barrier os-
cillates under the rf field, so motion of a vortex in and out of
a superconductor is described by a dynamic equation. We
consider here a type-II superconductor within the London
theory, assuming that the rf field B�t�=B0 sin �t of amplitude
B0 and frequency � is applied parallel to the flat surface of a
superconductor as shown in Fig. 1. Then the equation of
motion for a single vortex driven by the rf Meissner current
balanced by the image attraction force and the viscous drag
force takes the form

�0u̇ =
	0B0

�0�
e−u/� sin �t −

	0
2

2
�0�3K1� 2

�
	u2 + �s

2
 , �1�

where u�t� is the distance of the vortex core from the surface,
� is the London penetration depth, �0=	0Bc2 /�n is the
Bardeen-Stephen vortex viscosity, �n is the normal-state re-
sistivity, 	0 is the magnetic flux quantum, Bc2=	0 /2
�2 is
the upper critical field, and K1�x� is the modified Bessel
function. Here we introduce the local coherence length �s at
the point of the vortex entry, which provides the cutoff in the
London theory. For u
�s, the last term in Eq. �1� gives a
constant force of vortex attraction to the surface due to the
formation of a “core string” of depressed order parameter
revealed by computer simulations of the GL equations.16,46

In this work we treat the emergence of the vortex phe-
nomenologically, assuming that it first appears in a small
defect region at the surface. For the results presented below,
the actual nature of the defect is not important as long as the
defect size is much smaller than � and the local �s is larger
than the bulk coherence length �. The vortex penetrates at the
field B�t��Bv for which the local surface barrier disappears

FIG. 1. Vortex �shown as the solid circle� penetrating by the
distance u�t� from the semi-infinite surface �x�0� exposed to a
uniform parallel rf field B�t�. The open circle shows the position of
the antivortex image.
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because the peak Meissner force 	0B0 /�0� exceeds the
maximum attraction force to the surface
	0

2K1�2�s /�� /2�0�3. For �s��, we can expand K1�x��1 /x
and obtain

Bv = 	0/4
��s � 0.71Bc, �2�

which basically defines �s in terms of the observed local
penetration field Bv, which has been calculated for different
types of surface defects.38–41 We assume that there is a dis-
tribution of sparse small regions with reduced local Bv on the
surface where vortices first enter. Penetration of straight vor-
tices can only be initiated by linear defects �for example,
dislocations or grain boundaries� parallel to the vortex line.
For more common three-dimensional �3D� surface defects,
such as precipitates or local variation of chemical composi-
tion, a vortex first emerges as a semiloop, which then ex-
pands as illustrated by Fig. 2. The initial penetration of a
small vortex semiloop of radius R�t��� can be described by
the following dynamic equation:

�0Ṙ =
	0B0

�0�
sin �t −

�

R
, �3�

where ���	0
2 /4
�0�2�ln�R /�� is the nonlocal vortex line

tension.42 To the accuracy of the logarithmic factor ln�R /��
�1, Eq. �3� reduces to Eq. �1� for a straight vortex displaced
from the surface by u�R��. Moreover, the circular vortex
semiloop very quickly evolves into a loop strongly elongated
along the surface because of the gradient of the Meissner
current, J�x�= �B0 /�0��exp�−u /��, and the LO instability,
which effectively straightens the vortex due to jumpwise lat-
eral propagation of the loop, as shown below. As the vortex
penetrates in a superconductor, the role of the vortex curva-
ture on the relevant scales �� rapidly diminishes, so Eq. �1�
can be used after a short transient time, which is still much
smaller than the rf period.

Equation �2� gives Bv close to the superheating field Bs
=0.745Bc, above which the Meissner state in extreme type-II
superconductors with �=� /��1 becomes absolutely un-
stable with respect to weak periodic perturbations of the or-
der parameter43–48 as the Meissner current density at the sur-
face Bv /�0� exceeds the local depairing current density Jd.
For B0�Bv, a vortex moves in and out the superconductor
under the action of the rf field. Since Eq. �1� can only be
used on the scales u�t���s, we neglect here a possible de-
pendence of �0 on u, although this dependence can occur if a

long-range interaction of the vortex core with the surface due
to nonequilibrium effects is taken into account, as shown
below.

To estimate the scale of vortex oscillations and maximum
velocities, we first disregard the image attraction force,
which becomes negligible at distances u��. Then the solu-
tion of Eq. �1� takes the form

u�t� = � ln�1 +
	0B0

�2��0�0
�cos �t0 − cos �t�
 , �4�

where t0=sin−1�Bv /B0� /� is the time of vortex entry. The
maximum vortex penetration depth um corresponds to
cos �t=−1, from which

um = � ln�1 +
	0

�2��0�0
�	B0

2 − Bv
2 + B0�
 . �5�

Here um depends logarithmically on the rf field and fre-
quency. From Eq. �4� we estimate the time � for the vortex to
move by the distance �� from the surface. For GHz fre-
quencies and the materials parameters of Nb and Nb3Sn, �
turns out to be much shorter than the rf period, so cos ��t0

+���cos �t0−�� sin �t0; hence,

� =
�0�2�0

	0Bv
�

2�0�3

�n�
. �6�

Taking �n=0.2 �� m, �=90 nm, and �=3 nm for Nb3Sn,49

we obtain ��3�10−12 s and ���0.04 for 2 GHz. Like-
wise, taking �n=10−9 � m and �=�=40 nm for Nb yields
�=4�10−12 s. Equation �6� gives the lower limit for � be-
cause the image vortex attraction increases �. For these pa-
rameters, � turns out to be of the order of the time of forma-
tion of the vortex core at the surface �/∆.14–17

Now let us consider rf vortex dynamics in more detail.
During the positive rf half-period, the vortex penetration
starts once B�t� exceeds the local Bv. Because the vortex
currents flow antiparallel to the Meissner currents at the sur-
face, penetration of the vortex suppresses the local pair-
breaking instability. At the time when the rf field almost
changes sign, the vortex penetrates by the maximum distance
um and then it turns around and starts coming back. How-
ever, for negative B�t�, the current density at the surface
J�0, t� is now a sum of the vortex currents and the parallel
Meissner rf currents. As a result, when the outgoing vortex
reaches the critical distance uc from the surface, J�0, t� ex-
ceeds Jd, causing penetration of an antivortex before the vor-
tex exits. The antivortex is driven into the sample by the
Meissner current and by the attraction to the outgoing vortex,
to which it annihilates at the distance ua from the surface.
After that the negative B�t� reaches −Bv, and a new antivor-
tex penetrates the sample in the same way as the vortex did
for the positive cycle, except that once the antivortex reaches
uc on the way out, it creates a vortex at the surface, both
annihilating at ua. This process repeats periodically.

Equation �1� therefore describes vortex penetration and
exit until the Meissner current density plus the current den-
sity of the outgoing vortex being at x=uc reaches −Bv /�0� at
the surface at the time t= tc defined by

FIG. 2. Snapshots of an expanding vortex semiloop emerging
from a surface defect �black dot�. The quicker expansion of the loop
along the surface is due to the gradient of the Meissner current
J�x��exp�−u /�� and the LO instability.
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B0�sin �tc� +
	0


�2K1�uc

�

 = Bv. �7�

The second term on the left-hand side �lhs� of Eq. �7� results
from the equal contributions of the outgoing vortex and its
antivortex image to the surface current density J�0, t�. For t
� tc, the vortex with the coordinate u+�t� and the antivortex
with the coordinate u−�t� move toward each other, as de-
scribed by the following equations:

�0u̇+ =
	0B0

�0�
e−u+/� sin �t −

	0
2

2
�0�3�K1�2u+

�



+ K1�u+ − u−

�

 − K1�u+ + u−

�


 , �8�

�0u̇− = −
	0B0

�0�
e−u−/� sin �t −

	0
2

2
�0�3�K1� 2

�
	u−

2 + �s
2


− K1�u+ − u−

�

 − K1�u+ + u−

�


 . �9�

These equations reflect the balance of interaction forces be-
tween the vortex and antivortex and their corresponding im-
ages similar to those in Fig. 1. The first term on the rhs of
Eq. �9� has the minus sign because the Meissner current
drives the antivortex in the opposite direction as compared to
the vortex. The initial conditions for Eqs. �8� and �9� are
u+�tc�=uc and u−�tc�=0, and the condition u+�ta�=u−�ta�=ua

defines the annihilation distance ua and time ta.
The dynamics of vortex penetration and annihilation is

illustrated by Fig. 3 where the vortex penetration depth is
um�3�, the critical distance is uc�2�, and the vortex-
antivortex annihilation occurs at ua��. For ���1, the vor-
tex first accelerates rapidly, penetrating by the distance ��

during a time ��, and then slowly turns around during the
time of the order of the rf period and annihilates in a short
time ��.

The above results are limited to the field region Bv
B0

Bs where single vortices penetrate independently through
regions where the Bean-Livingston barrier is locally sup-
pressed by surface defects separated by distances ��. The
case B0�Bs corresponds to a global pair-breaking instability
causing multivortex avalanche penetration. Yet even for Bv

B0
Bs, a multivortex chain penetration is possible. In-
deed, penetration of a single vortex for B�t��Bv suppresses
the local pair-breaking instability at x=0. However, as B�t�
increases, the Meissner current density increases, while the
counterflow of surface current density at x=0 from the vor-
tex decreases as it moves further away from the surface. As a
result, J�0, t� can again reach Jd, causing a penetration of the
second vortex at t= t2 when the first vortex is located at x
=u2 The condition of the second vortex penetration is similar
to Eq. �7�,

B2 sin �t2 −
	0


�2K1�u2

�

 = Bv, �10�

except for the minus sign on the lhs Equations �1� and �10�
define the critical rf amplitude B2 below which only the
single-vortex penetration occurs. Shown in Fig. 4 is the
curve B2��� obtained by the numerical solution of Eqs. �1�
and �10� for Nb3Sn. These results can be described well by
the power-law dependence

B2 = �1 + p���Bv, � = 2�0�2�/�n, �11�

where �=�� /�, �=0.73, and p=0.23. For ��1, the field
B2 is close to Bv; however, dissipation produced by penetrat-
ing vortices can significantly reduce both Bv and B2 �see
below�.

B. Vortex dissipation

The power Q= ��� /2
��v2dt dissipated due to the work
of the viscous drag forces is given by

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

u(
t)

/λ

t/τ

FIG. 3. Dynamics of vortex penetration and exit calculated from
Eq. �1� for t
 tc and Eqs. �8� and �9� for t� tc for ��=0.061 and
B0=1.01Bv. The solid and dashed curves show the trajectories of
the vortex and antivortex, respectively.
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FIG. 4. Dependence of the second-vortex penetration field B2 on
the dimensionless frequency �=�� /�.
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Q =
��


 ��
t0

tc

u̇2dt + �
tc

ta

�u̇+
2 + u̇−

2�dt
 , �12�

where u�t� is the solution of Eq. �1�, which describes the
dynamics of a single vortex driven by a rf field until t= tc
when the antivortex appears. The second integral in Eq. �12�
is due to the collapse of the vortex-antivortex pair described
by Eqs. �8� and �9�. For a quasistatic field, Q can be obtained
from the change of the vortex thermodynamic potential
G�u�:

G�u� =
	0

�0
�Bc1 − B + Be−u/� −

	0

4
�2K0�2u

�


 , �13�

where Bc1=��0 /	0 is the lower critical field and � is the
vortex self-energy. If the ac field B�t� varies very slowly
���1�, the dissipated energy equals the sum of �G+

=G�0�−G�um� during the positive half-cycle and �G−

=G�um�−G�0� during the negative half-cycle. For any closed
vortex trajectory, which starts and ends at the surface, con-
tributions to Q due to vortex self-energy and the work
�Fi�u�u̇dt of the potential image force Fi�u� vanish. Thus, Q
is only determined by the work of the driving Lorentz force,
��2	0Bv /�0��1−exp�−um /���, for both vortex and antivor-
tex cycles, where we took account of fact that the main con-
tribution to Q comes from the initial acceleration of the vor-
tex during time �� when the field B�t� is close to Bv.
Neglecting exp�−um /���1, we have

Q = 2�	0Bv/
�0, � → 0. �14�

The field region of the single-vortex penetration Bv
B0

B2 defined by Eq. �11� shrinks as the frequency decreases.
In this narrow field region the effect of vortex viscosity can
radically change the dependence of Q on B0 and �. Shown in
Fig. 5 are the results of numerical solution of Eqs. �1�–�9�

and �12� for different frequencies and the GL parameter �
=� /�s�34. These data are described well by the following
formula:

Q =
2�	0Bv


�0
�B0

2 − Bv
2

Bv
2 
��2

, �2 = 3.98��−2/3, �15�

which reduces to Eq. �14� for �→0. As follows from Fig. 5
and Eq. �15�, the power Q decreases as � increases because
of retardation effects due to vortex viscosity during the short
fraction of the rf period in which B�t��Bv.

III. INSTABILITIES AT HIGH rf FIELDS

Once the field B�t� exceeds Bv, the vortex rapidly accel-
erates, reaching the maximum velocity vm�� /�:

vm = �n/2�0�� . �16�

Equation �16� gives vm�30 km /s for Nb3Sn and vm
�10 km /s for Nb. Not only are the so-obtained values of vm
much higher than the velocity of sound, they may even ex-
ceed the critical BCS pair-breaking velocity,1

v� =
�

mvF
=

�


m�
, �17�

where �=�vF /
�, vF is the Fermi velocity, and m is the
electron mass. Indeed, taking �=40 nm and the free electron
mass m, we obtain v�=0.8 km /s
vm for Nb and v�

=10 km /s 
vm for �=3 nm in Nb3Sn. Here we use the
Bardeen-Stephen model for qualitative estimates only, ignor-
ing many still not well understood mechanisms essential at
low temperatures—for example, the effect of quantized elec-
tron states in the core and the core shrinkage due to the
Kramer-Pesch effect,50 resulting in the factor �ln�Tc /T� in
the Bardeen-Stephen formula.2,51,52 Yet for strong rf fields
B0�Bc, the linear viscous drag force derived for small vor-
tex velocities becomes inadequate. It was first predicted
theoretically23 and observed in many experiments25–30 that
the dependence of � on v at high vortex velocities results in
a nonmonotonic viscous drag force fv=v��v� and jumpwise
instabilities.

A. Instabilities of viscous flux flow

A nonlinear viscous drag force was first calculated by
Larkin and Ovchinnikov,23 who showed that nonequilibrium
effects in the vortex core decrease the drag coefficient � as v
increases:

��v� =
�0

1 + v2/v0
2 , �18�

where �0 is the Bardeen-Stephen viscosity. The critical ve-
locity v0 in the dirty limit is given by

v0 � 0.6��ivF

��

1/2�1 −

T

Tc

1/4

. �19�

Here �i is the mean free path due to impurities and ���T� is
the quasiparticle energy relaxation time. Equation �18� re-

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.05 1.1 1.15 1.2

Q
/Q

0

B
0
/B

v

1
2

3

4

FIG. 5. Dissipated power Q as a function of the rf amplitude in
the region of the single-vortex penetration Bv
B0
B2 for different
frequencies ��: 0.061 �1�, 0.162 �2�, 0.325 �3�, and 0.65 �4�. Here
Q0=2�	0Bv /
�0.
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sults in a nonmonotonic dependence of the viscous drag
force, fv=v��v�, on the vortex velocity:

fv�v� =
�0v

1 + v2/v0
2 + �iv . �20�

Here, following the LO approach, we use two effective vis-
cosities �0 and �i, where �i phenomenologically takes into
account the transition to the normal state as v reaches the
pair-breaking velocity v�. For �0�8�i an N-shaped depen-
dence fv�v� develops, as shown in Fig. 6. For �i=0, the drag
force reaches the maximum value Fm=�0v0 /2 at v=v0.

The LO instability was originally associated with accel-
eration of normal quasiparticles in the vortex core by an
electric field, which can increase their energy above �. In
this case quasiparticles can escape the core if the diffusion
length LD= �D���1/2 exceeds the core size. The resulting qua-
siparticle depletion in the core reduces the core size and the
vortex viscosity according to Eqs. �18� and �19�. However,
Eq. �18� is actually more general and may result from several
different mechanisms. In particular, the velocity dependence
�18� can result from coupling of the vortex motion with other
diffusion process, including quasiparticle or temperature dif-
fusion around the moving vortex core. For example, the elec-
tron overheating of the core can lead to Eq. �18� as follows.

The power �v2 generated by the viscous drag increases
the electron temperature in the core Tm, reducing the vortex
viscosity ��Tm��Bc2�Tm�. Linearizing ��Tm���0�1
−Tm /Tc�, we write the thermal balance condition

�Tm − T0�g = �0�1 − Tm/Tc�v2, �21�

where g�
k / ln�L� /L�� defines the heat flux from the core
due to the thermal conductivity k�T�, where the thermal

length L� is of the order of the film thickness d for ideal
cooling and L��	�� is the length related to the amplitude of
vortex penetration. This logarithmic factor will be calculated
in the next section in more detail; here we just use
ln�L� /L��� ln�d /	��� for qualitative estimates. Solving Eq.
�21� for Tm results in the velocity-dependent ��T0� of the LO
form:

� = �0�1 − T0/Tc�/�1 + �0v
2/g� , �22�

v0 = �g/�0�1/2 � �
k�n/	0Bc2�0�ln�L�/L���1/2. �23�

Substituting here the low-T quasiparticle thermal conductiv-
ity k�kn�� /T�2 exp�−� /T� and using the Wiedemann-
Frantz law kn�n= �
kB /e�2T /3, and Bc2�0��	0 /2
�0�i and
�0��vF /� in the dirty limit, we reduce Eq. �23� to Eq. �19�.
Here the time constant

�� �
�T

�2 ln�L�

L�

exp��

T

 �24�

exhibits an exponential temperature dependence similar to
the energy relaxation time �� between quasiparticles and
phonons53 in the LO theory. However, the exponential de-
pendence of ���T� in the thermal model is cut off at lower T
where k is limited by phonons.

To estimate v0, we take �n=0.2 �� m, k=10−2 W /mK,
Bc2=23 T for Nb3Sn at low temperatures49 and L��	��
�16 nm, L��d�1 mm, and ln�L� /L���11. For these pa-
rameters, Eq. �23� gives v0�0.1 km /s, much smaller than
the estimates for v� and vm. Thus, overheating does result in
the same equation �18�, although in this case the vortex core
expands as it becomes warmer at higher velocities,35,36 in
contrast to the LO core shrinkage. The critical velocity v0
defined by Eq. �23� remains constant at Tc, unlike vanishing
v0�T0� for the LO mechanism, which thus dominates at T
�Tc. For T→Tc, both Eqs. �19� and �23� give the critical
velocity v0�T�, which exceeds the linear viscous-drag-limited
velocity vm�T�� �1−T /Tc�1/2 given by Eq. �16�. Thus, Eq. �1�
adequately describes rf vortex dynamics at strong fields B0
�Bc and temperatures close to Tc.

To evaluate the overheating mechanism in more detail, we
assume that ��Tm� depends on a local electron temperature
Tm�t� in the vortex core. The distribution of T�r , t� around a
moving vortex is described by a thermal diffusion equation

CṪ = k�2T − ��T − T0� + ��Tm�v2�t�f„x − u�t�,y… , �25�

which, after redefinition of the coefficients, can be reduced to
the same mathematical form as the diffusion equation for
nonequilibrium quasiparticles. Here C is the heat capacity, k
is the thermal conductivity, u�t� is the coordinate of the vor-
tex core moving with velocity v�t�, and the function f�x ,y�
accounts for the finite core size, so that �f�r�d2r=1. The term
��T−T0� describes heat exchange with the environment. For
example, �=h /d in a thin film of thickness d where h is the
Kapitza conductance at the sample surface and T0 is the bath
temperature. For electron overheating, the parameter �
=C /�� describes heat exchange between electrons and the
lattice, where C is the electron specific heat and �� is the time
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FIG. 6. The viscous drag force fv�v� as a function of the vortex
velocity for the LO instability. The dashed curve shows fv�v� at
�0=8�i. For �0�8�i, an N-shaped dependence fv�v� develops, as
illustrated by the solid curve plotted for �i=0.05�0. The arrows
show the jumpwise change of v�F�, as the driving force F increases
above the maximum value of fv�1� and then decreases below the
minimum value fv�3�.

A. GUREVICH AND G. CIOVATI PHYSICAL REVIEW B 77, 104501 �2008�

104501-6



of inelastic scattering of quasiparticles in the vortex core on
phonons.36,53–55 The last term on the rhs of Eq. �25� describes
dissipation in the vortex core proportional to the viscosity
��v ,Tm� taken at the local core temperature Tm�t�, which, in
turn, depends on v�t�. The core form factor f�r� is modeled
by the Gaussian function f�r�=
−1�1

−2 exp�−r2 /�1
2�, where

the core radius �1 can be smaller than � at T�Tc due to the
Kramer-Pesch effect50 �the solutions of Eq. �25� depend
weakly on �1�. We also consider weak overheating for which
the dependences of C, k, and � on T can be neglected. As
shown below, T can be regarded as either the electron or the
lattice temperature, depending on the time scale of the vortex
dynamics involved.

The solution of Eq. �25�, given in Appendix A, results in
the following integral equation for the temperature Tm�t� in
the vortex core moving with a time-dependent velocity v�t�
near the surface:

Tm�t� = T0 +
1


k
�

0

� dt�q�t − t��e−t�/t�

4t� + ts

��exp�−
�u�t� − u�t − t���2

�4t� + ts�D



� exp�−
�u�t� + u�t − t���2

�4t� + ts�D

� , �26�

where q�t�=�(Tm�t� ,v�t�)v2�t� is the time-dependent power
generated by the moving vortex, D=k /C is the thermal dif-
fusivity, ts=�1

2 /D is the diffusion time across the vortex core,
and t�=C /� is the electron energy relaxation time. The sec-
ond term in the parentheses describes the effect of the sur-
face: the plus sign corresponds to the thermally insulated
surface, ��xT�x , t��x=0=0, and the minus sign corresponds to
the ideal cooling, T�0, t�=T0. Here we do not consider mi-
croscopic thermal gradients inside the vortex core,56 assum-
ing that their effect is included in the bare �. Equation �26� is
written for steady-state vortex oscillations, so that the rf field
was turned on at ti=−� and v�t� in Eq. �26� accounts for all
oscillations preceding the time t.

The integral, Eq. �26�, takes into account retardation ef-
fects due to a diffusive redistribution of T�r , t� around an
accelerating vortex, so Tm�t� depends on the vortex velocity
v�t− t�� at earlier times. The effect of the surface makes Tm�t�
dependent on the vortex coordinate u�t� as well. Equation
�26� simplifies considerably if v�t� varies slowly over the
relaxation time t�, and ts� t� and u�t���1. Then q�t− t�� can
be taken out of the integral at t�=0, and Eq. �26� yields the
following equation for the local temperature difference �Tm
=Tm−T0:

�Tm =
��Tm�v2

2
k �ln
L�

�̃
� K0�2u

L�


 . �27�

Here �̃=�1e�/2 /2�0.67�1 and �=0.577 is the Euler
constant.57 The second term in the parentheses decreases ex-
ponentially for u�L�, and logarithmically, K0�z�� ln�2 /z�
−� for �̃�u�L�. In this case the expression in the paren-

theses reduces to ln�L� / �̃�+ln�L� / ũ�, where ũ=ue� /2. Tak-

ing the characteristic amplitude of vortex penetration, ũ��,
we can present the logarithmic part in the form 2 ln�L� /L��,
where L�= �ũ�̃�1/2�	�� was used before to obtain Eq. �18�
in the thermal model. The weak logarithmic dependence of
v0 on L� and L� makes Eq. �23� nearly insensitive to the
details of heat transfer and the behavior of u�t�.

In the other limiting case of a very rapid variation of v�t�,
the vortex reaches the critical velocity v0 and then jumps by
the distance �u, dissipating the energy W during the short
time �t. Then q�t�=q0+W��t� and Eq. �26� results in the
following implicit equation for �Tm�t� at t��t:

�Tm�t� �
�0v0

2

2
k
ln

L�

�̃
+

W�Tm�
4
kt

e−�u2/4Dt−t/t�, �28�

which describes a temperature spike in the core followed by
relaxation of �Tm�t�, as shown in Fig. 7. Here the first term
on the rhs gives �Tm before the jump and the effect of the
surface is neglected.

Next we consider the steady-state temperature field T�r�
averaged over rf oscillations, where T�r� is determined by
the balance of the vortex heat source and thermal diffusion.
Solution of the thermal diffusion equation in Appendix A
yields the following distribution of �T�r�=T�r�−T0 from a
heat source localized at the thermally insulated surface �x
=0� of a slab of thickness d, ideally cooled from the other
side, �T�d�=0:

�T�r� =
1

2
k
�

0

d

q�x��ln
cosh


y

2d
+ cos


�x + x��
2d

cosh

y

2d
− cos


�x − x��
2d

dx�.

�29�

Here q�x� is the power density averaged over the rf period.
On scales greater than the size of the heat source, �T�r�
depends only on the total power Q=�0

dq�x�dx:
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FIG. 7. Temperature spike in the vortex core after the jump
described by Eq. �28� for t�=10td, td=�u2 /4D, �T0=WD /
k�u2,

and Td=T0+�0v0
2 ln�L� / �̃� /2
k.
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�T�r� =
Q

2
k
ln

cosh�
y/2d� + cos�
x/2d�
cosh�
y/2d� − cos�
x/2d�

. �30�

Here �T�r� decays exponentially over the length 2d /
 as
shown in Fig. 8. Near the heat source �T�r� weakly �loga-
rithmically� depends on details of q�x�. As shown in Appen-
dix A, the distribution of �T�0,y� along the surface to the
logarithmic accuracy is given by

�T�0,y� =
Q

2
k
ln

16d2


2�y2 + r0
2�

, y2 � d2, �31�

where r0 quantifies the size of a dissipation source. The ac-
count of finite r0 cuts off the logarithmic divergence in Eq.
�30� at x=y=0, resulting in a maximum temperature distur-
bance at y=0:

�Tm �
Q


k
ln

4d


r0
. �32�

Equation �32� reduces to Eq. �27� with u�r0 and L��d.
The physical meaning of T in the above formulas depends

on the relevant vortex time scales. For example, for the su-
persound vortex penetration or vortex jumps on a time scale
much shorter than the electron-phonon energy relaxation
time, the quasiparticles are not in equilibrium with the lattice
and T�r , t� in Eq. �28� can be regarded as an electron core
temperature. However, steady-state vortex oscillations in the
rf field generate a dc power, which must be transferred to the
coolant through phonons. In this case Eqs. �29� describes the
lattice temperature distribution around a vortex if the phonon
mean free path is shorter than the film thickness.24 Thus, the
vortex oscillates in a “warm tunnel” with the lattice tempera-
ture �T�r� shown in Fig. 8, but in addition to that the vortex

core gets overheated with respect to the lattice during short
periods of rapid acceleration, jumps, or annihilation with an-
tivortices, as described before.

B. Jumpwise vortex penetration

For the LO vortex drag coefficient ��v� given by Eq. �18�,
the equation of motion becomes

�0u̇

1 + u̇2/v0
2 =

	0B0

�0�
e−u/� sin �t −

	0
2

2
�0�3K1� 2

�
	u2 + �s

2
 .

�33�

The nonmonotonic velocity dependence of the viscous drag
force on the lhs of Eq. �33� qualitatively changes the vortex
dynamics as v�t� exceeds the critical value v0 for which the
viscous force reaches the maximum Fm=�0v0 /2. Indeed, the
differential equation for u�t� has the form �0u̇ / �1+ u̇2 /v0

2�
=F�u , t�, where F is the net electromagnetic force given by
the rhs of Eq. �33�. We can introduce the ratio P of the
maximum Lorentz driving force at B0=Bv to the maximum
viscous force:

P =
2	0Bv

�0��0v0
. �34�

As shown above, the Bardeen-Stephen viscous flow results
in unphysically high vortex velocities, indicating that P�1
and the dependence of � on v must be taken into account. In
this case there are regions at the surface where F�u , t� ex-
ceeds Fm as shown in Fig. 9. In these regions the force bal-
ance equation �33� cannot be satisfied and the vortex jumps
to the place where F�x��Fm. To see how it happens, we
present the quadratic equation �33� for u̇ in the form

u̇ = v��F� =
v0Fm

F�u,t��1 �	1 −
F2�u,t�

Fm
2 
 , �35�

where Fm=�0v0 /2. For v�v0 and F�Fm, Eq. �35� with the
minus sign in the brackets reduces to Eq. �1�.
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Penetration of the vortex at B�t��Bv is therefore de-
scribed by the first-order differential equation u̇=v−�F�,
which is well defined only if F�u , t��Fm; otherwise, the
driving force exceeds the maximum friction force and the
square root in Eq. �35� becomes imaginary. Vortex dynamics
in this case can be understood from Fig. 9, which shows an
instantaneous profile of F�u , t� for B�t��Bv. Here a vortex
enters the sample with zero velocity at t= t0 and then accel-
erates because the net force F�u , t� increases as the vortex
moves away from the surface and the vortex-image attraction
weakens. This part of u�t� is described by the equation u̇
=v−�F� until the vortex reaches the point 1 where F�u , t�
=Fm. In the region u�u1, the friction force cannot balance
the driving force, so the vortex jumps to a point 2 where
F�u , t�=Fm and the viscous drag can balance the driving
force. As follows from Eq. �28�, the core temperature does
not change right after the jump �t→0�, but then starts in-
creasing. After that the smooth parts of u�t� are described by
the same dynamic equation u̇=v−�F� for the vortex, which
reaches the maximum penetration depth um and then turns
around and accelerates toward the surface during the nega-
tive rf half-period. However, as the vortex reaches the nega-
tive critical velocity −v0 on the way out, it jumps again and
either exits the sample or collides with the incoming antivor-
tex and annihilates as described in the previous section. The
positions of the jumps uj at the corresponding times t= tj are
determined by the equation F�uj , tj�= �Fm:

�
�0v0

2
=

	0B0e−uj/�

�0�
sin �tj −

	0
2

2
�0�3K1�2uj

�

 , �36�

where the � signs should be taken for the incoming and
outgoing parts of u�t�, respectively. Shown in Fig. 10, are
examples of vortex penetration dynamics calculated numeri-
cally from Eq. �33�. In this case the antivortex jumps in and
annihilates with the outgoing vortex before the vortex
reaches the critical velocity −v0.

As mentioned above, the LO instability facilitates a quick
evolution of the vortex semiloop originating at a 3D surface
defect into a straight vortex parallel to the surface. Indeed, as
evident from Fig. 2, the vortex propagation velocity is maxi-
mum for the segments of the semiloop perpendicular to the
surface because they are driven by the continuously increas-
ing maximum Lorentz force FL=B�t�	0 /�0�. As a result, the
LO instability first occurs for the perpendicular vortex seg-
ments, causing them to jump along the surface to the place
where the viscous force is able to balance the Lorentz force.
Unlike the parallel vortex segments whose jump distance ��
perpendicular to the surface is limited by the London screen-
ing, the jump length along the surface is limited by the lat-
eral sample size. Thus, the vortex semiloop turns into a
straight vortex in a jumpwise manner when the lateral veloc-
ity of the perpendicular vortex segments reach �v0.

Several points should be made regarding the jumpwise
vortex dynamics. First, the vortex trajectory u�t� comprised
of the jumps connected by smooth parts described by the
equation u̇=v−�F� occurs only if Ḟ�uj , tj�
0 at the jump
points where v�tj�= �v0. At higher frequencies, or as the
vortex overheating is taken into account, there are situations
when Ḟ�uj , tj��0. In this case the vortex velocity after the
jump exceeds v0 and the smooth parts of u�t� are described
by both branches u̇=v��F�, as shown in Appendix B.

The second point is that, for the overdamped dynamics
described by Eq. �33�, the jumps occur instantaneously un-
less the second ascending branch due to the �i term in Eq.
�20� is taken into account. This branch in the LO model
corresponds to very high velocities �v�, for which an ad-
equate theory of the nonequilibrium vortex core structure
and the vortex drag force is lacking. In our phenomenologi-
cal London approach we assumed that the vortex jumps to
the nearest point u2 where the friction force is able to balance
the driving force F�u2�=Fm. However, the instantaneous LO
dependence ��v� does not include retardation effects due to
finite relaxation times of the superconducting order param-
eter or a diffusive redistribution of nonequilibrium quasipar-
ticles or temperature around a rapidly accelerating or decel-
erating vortex core. These effects are taken into account by
the integral, Eq. �26�, for the core temperature Tm�t�, which
shows that the vortex jump time and length are affected by
intrinsic dynamics of �. Thus, there is a diffusion time scale
�t��u2 /D for the vortex jump by the distance �u, where D
equals either k /C in the thermal model or the quasiparticle
diffusivity in the LO theory. In the thermal model this esti-
mate gives �t�4�10−12 s if we take �u��=65 nm, k
�0.1 W /mK, and C�100 J /m3 K for Nb3Sn at 2 K,49 or
even a much shorter time for Nb, for which �=40 nm and
��10 W /mK. The so-estimated �t is smaller than the in-
verse gap frequency, indicating that once the overheated core
gets in the region where the friction force is able to balance
the driving force, it cools down very quickly due to the elec-
tron component of thermal conductivity. In Nb the electron
thermal conductivity k�exp�−� /T� is still significant down
to T�1 K, but at lower temperatures �t may be limited by
much slower phonon irradiation from the overheated core. At
the same time, the electron temperature relaxation time ��

outside the core results from a slow phonon-mediated recom-
bination of quasiparticles,53

0

1

2

3

4

5

20 30 40 50 60 70 80

u(
t)

/λ

t/τ

1

2

FIG. 10. Jumpwise vortex penetration calculated by solving Eq.
�33� for �=34, ��=0.061, B0=1.02Bv, and v0=0.052vm, P=38.4
�1� and v0=0.52vm, P=3.84 �2�. The dashed lines show the antivor-
tex penetration.
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�� � �0��

T

1/2

exp��

T

 , �37�

which yields ���30 ns, much longer than the thermal diffu-
sion time �t for Nb at 2 K. For ����1, the quasiparticles are
overheated with respect to the lattice in a highly inhomoge-
neous way according to the distribution of the lattice tem-
perature T�r� shown in Fig. 8. In this case the condition
����r��1 of the electron overheating can locally be satisfied
in colder regions away from the core, but near the vortex
core the electron temperature can be close to the lattice tem-
perature if ����r�
1 because of a higher T�r�, which greatly
accelerates the energy exchange between electrons and
phonons. For example, for Nb at T0=2 K, the local increase
of the lattice temperature to T=4 K yields ���T�
����T0�exp�−� /T0+� /T�, giving ���0.3 ns and ����1 at
1–2 GHz.

Another contribution to �t comes from a finite vortex
mass M. In the Suhl model M =2mkF /
3 is due to localized
electrons in the vortex core, where kF= �3
2n�1/3 is the Fermi
wave vector.58 The jump by � due to the driving force F
=	0Bv /�0� takes the time �t set by the Newton law
2� /�t2�F. Using Bv=	0 /4
��, �2=�0m /ne2, and �
=�vF /
�, we obtain

�t �
4�

�
�1/2. �38�

A more accurate account of quantized levels in the vortex
core59,60 or lattice deformation around the moving vortex61–63

can increase the vortex mass, thus further increasing the
jump time �t. Yet although vortex jumps are quantified by
the multiple relaxation times discussed above, they seem to
occur much faster than the rf periods we are dealing with in
this work.

C. rf dissipation

The power Q dissipated with the account of the jumpwise
vortex instabilities can be written in the form

Q =
�


�� ��u̇�u̇2dt + � ��u̇��u̇1
2 + u̇2

2�dt

+ �
m

�G�tm,um+� − G�tm,um−��� , �39�

where the integrals are taken over all smooth parts of the
vortex trajectory u�t�, including the vortex-antivortex annihi-
lation parts, like in Eq. �12�. The last term in Eq. �39� is the
sum of energies released during all vortex jumps at t= tm,
from u=um− to u=um+, where the instantaneous free energy
G�u , t� is given by Eq. �13�. Shown in Fig. 11 is the second-
vortex penetration field B2 calculated by solving Eqs. �33�,
�36�, and �39� numerically for the parameters of Nb3Sn. Here
B2 cannot be fit with a power law similar to Eq. �11�.

The LO instability makes the behavior of Q�B0 ,�� more
complicated as compared to Q�B0� described by Eq. �15�. As
shown in Fig. 12, there are three distinct field regions of very
different vortex dynamics. The pure Bardeen-Stephen dy-

namics like that shown in Fig. 3 is limited to a very narrow
region of B0 close to Bv �labeled by a in the inset�. In this
case the vortex penetration depth um turns out to be smaller
than �, indicating that the London theory combined with the
Bardeen-Stephen drag cannot give a self-consistent descrip-
tion of vortex dynamics at low temperatures. However, Eq.
�1� adequately describes the rf vortex dynamics at higher T
close to Tc where the LO instability is irrelevant because the
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FIG. 11. The dependence of the second penetration field B2 on
the dimensionless frequency �=�� /� for the LO instability at �
=34 and v0=0.52vm.
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um due to the LO instability. Parts c cor-
respond to the LO dynamics similar to that in Fig. 10.
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critical velocity v0� �1−T /Tc�1/4 becomes larger than vm

� �1−T /Tc�1/2.
The parts of the Q�B0� curves labeled b in Fig. 12 corre-

spond to an intermediate case, for which the most part of
u�t�, including the initial acceleration of the vortex, reaching
the maximum penetration depth um, and turning back, does
not involve the LO instability. However, as the velocity of
the exiting vortex exceeds −v0, it jumps to the surface and
disappears, significantly increasing the dissipated power Q.
Further increase of B0 corresponds to the parts of Q�B0�
curves labeled c, for which the LO instabilities occur both on
the penetration and the exit parts of u�t�, like those in Fig.
10. In this case Q�B0� jumps up to a much higher level Q
�Q0 until the second penetration field B2 is reached. Here
the behavior of Q�B0� can also depend on �: for lower fre-
quency �curve 1�, Q�B0� increases weakly between 0.4

��B0�
0.8, but for �= �B0−Bv� / �B2−Bv��0.8, the power
Q�B0� jumps down. This behavior reflects the change in the
vortex dynamics: for 0.4
�
0.8, the vortex jumps out of
the sample before the antivortex enters, while for ��0.8, the
jump of the vortex toward the surface is accompanied by the
penetration of the antivortex and their annihilation, like that
in Fig. 10. For higher frequencies, this change in the vortex
dynamics formally occurs only for B0�B2, so the down step
in Q�B0� does not show up in curve 2 in Fig. 12.

D. Thermal self-localization of vortex penetration

The local temperature increase around an oscillating vor-

tex reduces both critical fields B̃v=Bv�Tm� and B̃2=B2�Tm� as
compared to their isothermal values Bv�T0� and B2�T0�. To
evaluate this effect we combine Eq. �15� for Q and Eq. �32�
for Tm and obtain for ��2�1

�Tm �
2�	0Bv


2�0k
ln� 4d


r0

 . �40�

Next we linearize B̃v�Bv− �Bv���Tm with respect to �Tm,

where Bv�=�TBv�T0�. Then the effective fields B̃v and B̃2 take
the form

B̃v = �1 − b�Bv, B̃2 = �1 − b�B2, �41�

b =
2�	0�Bv��


2�0k
ln� 4d


r0

 . �42�

Both B2 and Bv are reduced by dissipation, which produces
constant shifts of local Bv values but does not change their
initial distribution. Taking k=10 W /mK, Bv��Bv /Tc, Bv
=0.15 T, � /2
=2 GHz, and ln�4d /
r0��10 for Nb, we ob-
tain b�3�10−2, in which case the thermal shift of Bv is
negligible. However, for Nb3Sn, with ��10−2 W /mK, the
value b�1 is much higher, so thermal effects can signifi-

cantly expand the field region B̃v
B0
Bs of single-vortex
penetration.

The condition of the single-vortex penetration Bv
B0

B2 implies that the local value of B2 is smaller than the
uniform superheating field Bs. Multiple-vortex penetration

for B0�B2 causes strong dissipation, further decreasing B2
and resulting in avalanche-type dendritic vortex
penetration.64,65 Such thermomagnetic dendritic flux ava-
lanches have been observed in both low-Tc and high-Tc
superconductors.66–71 Notice that the superfast vortex pen-
etration through the surface barrier due to the jumpwise LO
vortex instability may pertain to the supersonic vortex ve-
locities observed for dendritic vortex penetration in
YBa2Cu3O7 and YNi2B2C films.66,71

The temperature distribution �30� results in the long-range
dc repulsion force fT�L�=−s*�T between two oscillating
vortices spaced by L. Here s*�T� is the vortex transport en-
tropy responsible for thermomagnetic effects in the mixed
state.72,73 In thick films d��, vortices are localized at the
surface, so to calculate the thermal force fT�L�, we put x=0
in Eq. �30� and obtain

fT�L� =
s*Q

2dk sinh�
L/2d�
. �43�

This long-range force on a scale much greater than � results
in repulsion of neighboring vortex penetration channels, fa-
cilitating bending instability and dendritic branching of the
multivortex tracks.

IV. EFFECT OF PINNING

A. Trapping rf vortices at strong fields, B0ÈBv

At the initial stage of vortex penetration, B�t��Bv, the
driving force FL is much stronger than typical pinning forces
by materials defects. However, as the vortex moves deeper
into the sample, the force FL�u��exp�−u /��sin �t decreases
exponentially, so pinning becomes more effective if the vor-
tex trajectory passes a pin aligned with the place of the vor-
tex entry within a “belt” �� wide. In this case the vortex can
be trapped and stay pinned as the rf field changes sign. As
B�t� reaches −Bv during the negative rf cycle, an antivortex
penetrates along the same trajectory as the vortex did and
annihilates with the pinned vortex.

The power dissipated due to the vortex-antivortex annihi-
lation can be evaluated from the change of the thermody-
namic potential G�u�:

Q �
�Bv


	0
�1 − e−up/�� . �44�

This quasistatic expression differs from Eq. �14� by the fac-
tor 1−exp�−up /��� /2, which accounts for the finite Meissner
currents at the pin, x=up, and the fact that the trapped vortex
does not go back as Bt changes sign, thus dissipating half of
what is given by Eq. �14�.

B. Residual surface resistance at B0™Bv

Besides dissipation due to vortex penetration and exit,
there is also dissipation due to rf oscillations of vortices al-
ready trapped in the sample.74 In this section we address rf
dissipation and depinning of vortices trapped in a supercon-
ductor during field cooling, in the limit of very low flux
density, for which the intervortex interaction is negligible.
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We first consider a single vortex pinned by a chain of equi-
distant defects spaced by � from each other and by d from
the surface in the layer of rf field penetration, as shown in
Fig. 13. In this case the equation of motion of the vortex line
takes the form

�0u̇ = �u� +
	0B0

�0�
e−u/� sin �t −

	0
2

2
�0�3K1�2u

�



+ �
m

fp�u,y − m�� , �45�

where the first term on in the rhs describes the bending stress
of the vortex line, the prime means differentiation over the
coordinate y along the surface, and the last term is the sum of
the elementary pinning forces fp�x ,y�. For ���, the disper-
sive vortex line tension � reduces to the vortex self-energy
�=	0Bc1 /�0 per unit length.42

As evident from Fig. 13, the magnetic attraction to the
surface makes the pinned vortex not straight even at zero rf
field. As a result, there is a minimum trapping distance dm, so
that only vortices spaced by u�dm can be pinned. Vortices
spaced by u
dm are unstable and annihilate at the surface,
since the image attraction prevails over pinning. For weak
identical pins, dm can be evaluated from the force balance
equation

	0
2

2
�0�3K1�2dm

�

 =

fp

�
, �46�

where fp is the maximum pinning force per pin. The vortex
segments between the pins bow out toward the surface, but
for vortices in the trapped flux zone x�dm, the curvature of
u�y� is weak and the image attraction force Fi

= �	0
2 /2
�0�3�K1�2u /�� is nearly uniform. In this case the

equilibrium shape of the vortex segment between the pins is

determined by the equation �u0�=Fi with u0��� /2�=d, which
yields the parabolic profile

u0�y� = d − u0m�1 −
4y2

�2 
 , �47�

u0m =
	0

2�2

16
�0��3K1�2dm

�

 =

�2K1�2dm/��
4� ln �̃

. �48�

Here �=	0
2�ln �+cv� /4
�0�2 where the constant cv�0.5

accounts for the vortex core contribution. It is convenient to
use the effective �̃�1.65� defined by ln �̃=ln �+cv. Equa-
tions �47� and �48� correspond to ���, so the condition that
u0m�� is provided by dm��, as follows from Eq. �46�. For
denser pins, �
�, the nonlocal expression for � should be
used,42 in which case ln � in Eq. �48� is to be replaced by
ln�� /��.

To calculate the power Qv dissipated by the pinned vortex
under the weak �B0�Bv� rf field, we seek a solution of Eq.
�45� in the form u�y , t�=u0�y�+�u�y , t�. Here the Fourier
component �u��y�=��u�y , t�e−i�tdt of the oscillating vortex
displacement �u�y , t� satisfies the linearized equation

i��0�u� = ��u�� + f�, �49�

where f�=	0B0 exp�−d /�� /�0�. In Eq. �49� we neglect the
image force �exp�−2d /���u, which is much smaller than the
first elastic term on the rhs for weak pinning and d�dm
defined by Eq. �46�. The solution of Eq. �49� with the bound-
ary condition of the fixed vortex ends at the pins,
�u���� /2�, has the form

�u� =
f�

i��0
�1 −

cos��1 − i��p
1/2y/��

cos��1 − i��p
1/2/2�


 , �50�

�p = ��p, �p = �0�2/2� . �51�

Here we introduced the pinning relaxation time constant �p
and the dimensionless frequency �p. The dissipated power
per unit vortex length,

Qv =
�0�2

2�
�

−�/2

�/2

��u��y��2dy , �52�

can be calculated substituting here, Eq. �50�, and integrating
over y:

Qv =
f�

2

2�0
���	�p� , �53�

���z� = 1 −
sinh z + sin z

z�cosh z + cos z�
. �54�

For ��p�1, Eq. �53� gives the frequency-independent limit
Qvm→ f�

2 /2�0, inversely proportional to �0. However, for
��p�1, we obtain the quadratic frequency dependence Qv
= f�

2 �0�4�2 /240�2 proportional to �0.
The vortex rf power Qv /a=B0

2Ri /2�0
2 per unit surface

area results in the additional surface resistance Ri:

FIG. 13. Vortex pinned by a chain of defects near the surface.
The solid line shows the equilibrium vortex shape due to competi-
tion of pinning and the image attraction forces. The dashed lines
show instantaneous vortex profiles for B�t�=B0 and B�t�=−B0, be-
tween which the vortex line oscillates.
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Ri =
	0

2�e−2d/��
�2�0a

���	�p� , �55�

where a is a mean spacing between pinned vortices and �¯�
means averaging over the vortex positions d in the direction
perpendicular to the surface. Since these positions must sat-
isfy the stability condition d�dm, the main contribution to Ri
comes from vortices in the critical belt dm
d
dm+� where
�e−2d/�� is maximum. For ��p�1, Eq. �55� simplifies to

Ri =

�0

2�2�4�2�e−2d/��
15a�n ln2 �̃

, �56�

where we used the Bardeen-Stephen �0 and took �
=	0

2 ln �̃ /4
�0�2 for ��� or ln �→ ln�� /�� for �����.42

These results show the following.
�i� For ��p�1, the frequency dependence of Ri is similar

to the BCS surface resistance RBCS��2 exp�−� /T� at T
�Tc. However, unlike RBCS�T�, the vortex contribution Ri

remains finite at T→0, so trapped vortices can contribute to
the non-BCS excess surface resistance, which has been often
observed on many superconductors at low temperatures. In
this case even a few pinned vortices can result in Ri compa-
rable to the exponentially small RBCS�T�. This scenario was
first suggested by Rabinowitz74 who modeled pinning by a
phenomenological spring constant and did not consider the
critical depinning spacing dm due vortex attraction to the
surface. The account of a more realistic discrete pin structure
is given in Fig. 13, and the gradient of the Lorentz force
changes the frequency dependence of Ri and results in new
effects discussed below.

�ii� Ri increases significantly as the superconductor gets
dirtier. To evaluate this effect, we make a rough estimate
�exp�−2d /����exp�−2dm /��� /a, which takes into account
the main contribution to Ri from vortices in the critical belt
dm
d
dm+�. Taking exp�−2dm /�� from Eq. �46� and us-
ing the asymptotic expansion K1�z�= �
 /2z�1/2 exp�−z�, we
obtain

Ri �
4
2�0

3�2�3�2�4fp

15a2	0
2�n ln2 �̃

	 dm


�
. �57�

Equation �57� shows that Ri�1 /a2 is proportional to the
trapped flux density, similar to the Bardeen-Stephen flux
flow resistivity. In the dirty limit, ���0��0 /�i�1/2, �
���0�i�1/2, and �n�1 /�i, we obtain that the excess resistance
Ri��n

3 increases rapidly as the resistivity increases �here the
slowly varying logarithmic dependences of Ri on �i are ne-
glected�. This behavior of Ri has been observed on Nb cavi-
ties in which the change of �n at the surface was caused by a
low-temperature baking.75–77

�iii� There is a strong dependence of Ri on the size � of
pinned vortex segments because shorter segments have
stiffer spring constants �� /�2 and thus smaller vibration am-
plitudes under a rf field. If pinning centers are distributed
randomly, Ri��� should be therefore averaged over the distri-
bution of the segment lengths:

R̄i��� = �
0

�

Ri���0�2/2��P���d� , �58�

where Ri is given by Eq. �55� and P��� is a distribution
function of the segment lengths. For example, P��� can be
taken in the form P���=�0

−1 exp�−� /�0� used in the Granato-
Lücke model of pinned dislocations, where �0 is the mean
segment length.78 In this case, Eqs. �54�, �55�, and �58� yield

R̄i��p� =
R�

	�p
�

0

�

e−z�p
−1/2

���z�dz , �59�

where z=��p
1/2 /�0, �p=��0�0

2 /2�, and R�

=	0
2�e−2d/�� /�2�a is the high-frequency limit of Ri���. The

resulting behavior of R̄i��� is shown in Fig. 14: for low
frequencies, the contribution of weakly pinned large-length

segments makes R̄i��� higher than Ri���, while for high fre-
quencies, the contribution of strongly pinned small segments

makes R̄i��� lower than Ri���. The overall behavior of R̄i���
resembles the power-law dependence Ri�� with  
�0.5–0.7, which has been observed on Pb �Ref. 79� and Nb
�Ref. 80� at 0.1–10 GHz.

To estimate the pinning time constant �p, we first evaluate
the mean length of the vortex segment �0. This can be done
from an estimate of the single-vortex pinning force balance
fp�Jc	0�0 /�0, which expresses �0 in terms of the depinning
critical current density Jc. For core pinning, fp
�!Bc

2
�2 /�0, where ! accounts for the change in the con-
densation energy by the pin due to variation of �Tc /Tc and
the mean free path.72 Hence,

�0 �
!	0

8
�0�2Jc
. �60�

Taking �=40 nm and Jc=109 A /m2 for Nb at T�Tc yields
�0�103!�. The pinning relaxation time �p can then be ob-
tained from Eqs. �51� and �60�:
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FIG. 14. Frequency dependences of the residual surface resis-
tance due to pinned vortices. Curve 1 corresponds to Ri for a peri-
odic chain of pins described by Eq. �55�, and curve 2 corresponds to
Ri for the exponential distribution of pinned vortex segments given
by Eq. �59�. Here Ri���=	0

2�e−2d/�� /�2�0a.
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�p �
!2	0

2

64
2�0�n�2�2Jc
2 ln �̃

. �61�

Taking ����40 nm, Jc=109 A /m2, and �n=10−9 � m for
Nb, we obtain �p�s��210−6!2. From the rf measurements of
pinning relaxation time �10−8 s in Nb,80 we then deduce !
�0.1 and �0�102��4 �m. Here �p is rather sensitive to
the value of ! determined by details of the order parameter
suppression at the pin.

It is instructive to compare Q from an oscillating vortex
with Q due to the rf electric field Ei�B0�� exp�−d /�� in-
duced in the fixed normal vortex core. In the latter case the
power Qv�
�2Ei

2 /�n gives the surface resistance Ri
�
�2�4 exp�−2d /�� /�0

2�2a�n, which is by a factor of
�−4 ln2 ��1 smaller than Ri given by Eq. �56� for an oscil-
lating vortex segment. Thus, for type-II superconductors
with ��1 considered in this paper, the inductive
contribution74 is negligible.

C. Low-field nonlinear surface resistance and rf annealing of
trapped magnetic flux

So far we have considered Ri independent of the rf field.
However, because Ri is mostly determined by pinned vorti-
ces in the critical belt dm
d
dm+�, the excess resistance
Ri may become dependent on the weak rf field due to an
increase of the critical distance dm as B0 increases. This ef-
fect is evident from Fig. 13, which shows that, because both
the image attraction force and the Meissner rf force increase
as the vortex moves closer to the surface during the negative
rf cycle, the vortex oscillations become asymmetric and
shifted toward the surface. Thus, some of the pinned vortices
can be pushed out of the sample by the rf field because dm
increases as B0 increases.

To calculate the effect of the rf field on dm, we consider
the maximum depinning force due to the interaction between
a vortex and the surface. This force, given by the sum of the
second and third terms on the rhs of Eq. �45�, contains the
static image attraction force and the maximum instantaneous
Lorentz force, which both push the vortex toward the surface
during the negative rf cycle. Hence we obtain the following
equation for dm:

fp

�
=

	0
2

2
�0�3K1�2dm

�

 +

	0B0

�0�
e−dm/�. �62�

For weak pinning exp�−2dm /���1, we can use K1�z�
��
 /2z�1/2 exp�−z� and reduce Eq. �62� to a quadratic equa-
tion for exp�−dm /��, which yields

e−2dm/� =
e−2dm0/�

�	�B0/B	�2 + 1 + B0/B	�2
, �63�

B	 = ��0fp

��

1/2� �


dm

1/4

, �64�

where the static dm0 is determined by Eq. �46�. From Eqs.
�63� and �56� we obtain the field dependence of Ri:

Ri�B0� =
Ri�0�

�B0/B	 + 	1 + �B0/B	�2�2
, �65�

where the zero-field Ri�0� is given by Eq. �56�. For core
pinning fp���	0

2 /4
�0�2, the crossover field B	

�Bc1
	� /� can be much smaller than Bc. At low fields B0

�B	, the resistance Ri�B0���1−2B0 /B	� decreases linearly
as B0 decreases, while for high fields B0�B	, Eq. �65� yields
Ri�B0��Ri�0�B	

2 /4B0
2.

The decrease of Ri�B0� results from the field-induced shift
of the critical belt dm
d
dm+� away from the surface,
where the screening of the rf Meissner currents reduces vor-
tex dissipation. As a result, the rf field irreversibly pumps
parallel vortices out of a superconductor, resulting in a rf
“annealing” of the field-cooled trapped magnetic flux. The
field dependence of Ri�B0� is therefore hysteretic: if B0 is
first increased to a maximum value B0m and then decreased
back to zero, Ri�B� on the ascending branch decreases ac-
cording to Eq. �65� and stays equal to Ri�B0m� on the de-
scending branch as shown in Fig. 15. This hysteretic behav-
ior enables an experimental separation of the vortex
contribution to Ri from reversible mechanisms due to sound
generation,81 dielectric losses in the substrate,82,83 etc.

The total surface resistance Rs can be written as a sum of
the vortex component Ri and the BCS resistance:

Rs = RBCS�1 + �
B0

2

Bc
2
 +

Ri�0�

�B0/B	 + 	1 + B0
2/B	

2 �2
. �66�

Here we included the first nonlinear field correction to RBCS
due to the Doppler shift of the quasiparticle spectrum and
heating effects. In the clean limit the Doppler contribution
�p��� /T�2 increases as T decreases,87–91 while the heating
component �h�RBCS decreases as T decreases.91 The total
Rs�B0� exhibits a nonmonotonic field dependence: Rs�B0�
first decreases as B0 increases, reaching the minimum at B0
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FIG. 15. The hysteretic field dependence of Rs�B0� defined by
Eq. �66� for �=1, B	=0.2Bc, and Ri�0�=0.5RBCS. The descending
branch is determined by Eq. �66� in which B0 in the last term stays
at the maximum B0=5B	 reached on the ascending branch.
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=Bmin, and then increases at B0�Bmin, as shown in Fig. 15.
Here Bmin can be found from Eq. �66�:

Bmin � 	BcB	� Ri�0�
4�RBCS


1/4

, Bmin � B	, �67�

Bmin �
Bc

2Ri�0�
�B	RBCS

, Bmin � B	. �68�

As illustrated by Fig. 15, the rf field cycling could reduce the
surface resistance by irreversibly pumping a fraction of
trapped flux out of the sample. The rf flux annealing consid-
ered in this paper is somewhat analogous to a directional
motion of magnetic flux induced by transport ac current, re-
sulting in a dc voltage on a superconductor.84–86

V. NONLINEAR HOT SPOTS IN THE SURFACE
RESISTANCE

Localized dissipation due to vortex penetration or oscilla-
tion of pinned vortices in thick films produces a long-range
temperature distribution, which spreads out on the scale
�2d /
, much greater than � �see Fig. 8�. Even if these tem-
perature variations are weak, �T�r�=T�r�−T0�T0, they can
nevertheless produce strong variations in the surface resis-
tance Rs of the surrounding areas, resulting in nonlinear con-
tributions to Rs with very different field and frequency de-
pendences than RBCS�T ,��. This effect comes from the
exponential temperature dependence of the BCS surface re-
sistance,

RBCS�r� �
�2

T
exp�−

�

T0
+

�T�r��
T0

2 
 , �69�

so that even weak variations �T�r�
T0 can produce strong
variations in RBCS�r� at low temperatures T0

2
�T�. Indeed,
substituting the surface temperature distribution �T�0,y�
= �Q /
k�ln coth�
y /4d� from Eq. �30� at x=0 into Eq. �69�
we obtain

Rs�y� = RBCS�T0,��coth"�
y

4d

 , �70�

"�B0,T0,�� = Q�B0,T0,����T0�/
k�T0�T0
2, �71�

on the scales �y��r0 greater than the size r0 of the heat
source. Here the exponent " is proportional to the dissipated
power Q, which depends on both B0 and �. For example,
Q� �B0

2−Bv
2���2 near the onset of the single-vortex penetra-

tion �see Eq. �15�� or Q�B0
2����p� for a pinned vortex near

the surface �see Eq. �53��. In turn, the dependences of " on
B0 and � result in a nonlinear contribution to the global
surface resistance from sparse “hot spots” of size of the film
thickness around much smaller heat sources.91 These hot
spots contributions can have very different dependencies on
B0 and � as compared to the field-independent RBCS��2. For
"
1, the total excess resistance �Rs is insensitive to the
power distribution q�x� and can be obtained by integrating
Eq. �70� using a new variable #=tanh2�
y /4d�:

�Rs = �
−�

�

�Rs�y� − RBCS�dy =
4d



�$�1

2

 − $�1 − "

2


RBCS,

�72�

where $�x�=d ln ��x� /dx and ��x� is the gamma function.57

For "�1, the expression in the brackets reduces to 
2" /4;
thus,

�Rs = 
d"�B0,�,T0�RBCS, " � 1. �73�

If Q is due to pinned vortices, the correction �Rs from weak
hot spots with "�1 is quadratic in B0 and proportional to �4

for low frequencies ��p�1 �see Eq. �56��. As "→1, the
function in the brackets in Eq. �72� diverges logarithmically,
indicating that the spatial distribution of the power density
q�x�, which cuts off the logarithmic divergence in T�x ,y� in
Eqs. �29�, should be taken into account.

In the crossover region "�1, the behavior of �R�B0 ,��
is sensitive to the details of the power density distribution
q�x�, but in the limiting case "�1 the main contribution to
�R comes from the hottest region near the heat source for
which �T�y� is given by Eq. �31�. Substituting Eq. �31� into
Eq. �69�, we obtain

�Rs

RBCS
� �

−�

�

dy� 16d2


2�y2 + r0
2�
"/2

= r0� 4d


r0

"

I", �74�

where I"=	
���"−1� /2� /��" /2���2
 /"�1/2 for "�1.
The behavior of �Rs for "�1 changes radically as com-
pared to "
1: instead of relatively weak power-law depen-
dences of �Rs on B0 and � for "
1, Eq. �74� predicts much
stronger exponential field and frequency dependences of �Rs
for "�1, r0�d. The case of strong dissipation "�1 can
result from vortex penetration amplified by grain
boundaries,92,93 surface topography,4 local enhancements of
RBCS due to impurity segregation, etc.

The mean surface resistance R̄s averaged over all hot spot
contributions is given by

R̄s = RBCS + R̄i + �
n

�Rs�rn�/A . �75�

Here the averaged residual resistance R̄i results from either
pinned vortices or other mechanisms, the last term on the rhs
is due to the effect of vortex dissipation on the BCS resis-
tance, rn are the coordinates of the sparse �thermally nonin-
teracting� hot spots, and A is the surface area exposed to the
rf field. As shown above, �Rs can have very different tem-
perature and frequency dependences as compared to RBCS, so
the hot spot contribution can strongly affect the dependences

of the global surface resistance R̄s of � and T, particularly at
low temperatures, where RBCS is exponentially small. More-
over, the last two terms on the rhs of Eq. �75� can bring about

a strong dependence of R̄s on the rf amplitude, which can be
well below the field �BcT /Tc of intrinsic nonlinearities of
the BCS surface resistance due to the Doppler shift of qua-
siparticle energies.87–91
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Thermal instabilities ignited by hot spots

In the previous section we considered the rf power as a
function of the bath temperature T0. However, Q is actually
determined by the local temperature Tm, which should be
calculated self-consistently from the heat balance condition.
We consider the case for which the mean spacing between
hot spots, Li, is shorter than the thermal length L�

= �dk /���1/2, over which �T�r� decays away from a single
hot spot. Here ��=k�K / �d�K+k� is the effective thermal re-
sistance across the film which accounts for the resistance d /k
due to thermal conductivity plus the interface thermal resis-
tance 1 /�K, where �K is the Kapitza heat transfer coefficient.
For Li�L�, thermal fields of hot spots overlap and the tem-
perature Tm along the surface becomes uniform. In this case
the thermal balance equation takes the form

�Tm − T0��� =
B0

2

2�0
2 �Ri + RBCS�Tm�� , �76�

which determines self-consistently both the rf dissipated
power and the maximum temperature Tm as functions of B0
and �. It is convenient to express B0�Tm� as a function of Tm

from Eq. �76�:

B0
2 =

2�0
2�Tm − T0���

Ri + R0 exp��Tm − T0��/T0
2�

. �77�

Here we took into account the most essential exponential
temperature dependence of the BCS surface resistance,
where R0=RBCS�T0�, and the residual resistance Ri due to
trapped vortices is assumed temperature independent for T
�Tc. The function B0�Tm� has a maximum at

Tm − T0 =
T0

2

�
+

B0
2Ri

2�0
2��

, �78�

giving the critical overheating Tm−T0�T0 above which a
thermal instability develops. From Eqs. �78� and �77�, we
obtain the equation for the maximum field Bp:

R0Bp
2e�

2�0
2T0

2��

exp� RiBp
2�

2�0
2T0

2��

 = 1. �79�

The thermal balance equation �76� has solutions Tm�B0� only
if the rf amplitude is below the breakdown field Bp. For B0
�Bp, the thermal runaway occurs because the heat genera-
tion grows faster than the heat flux to the coolant as Tm
increases. This situation is analogous to combustion in
chemical systems94 or thermal quench in semiconductors,
normal metals, or superconductors.34

For Ri�R0, the exponential term in Eq. �79� can be ne-
glected and the breakdown field is given by91

Bp = �0�2��T0
2

R0e�

1/2

. �80�

The temperature dependence of Bp�T0� can be obtained tak-
ing R0�T0�=Rn0�� /T0�exp�−� /T0� and ��=��T0

s , from
which Bp�T0��T0

�3+s�/2 exp�−� /2T0� reaches a minimum at
Tmin=� / �s+3� and increases as T0 decreases below Tmin.
However, for lower temperatures, RBCS�T0� becomes smaller

than Ri in which case the exponential term in Eq. �79� domi-
nates and Bp�T0���0�2��T0

2 /Ri��1/2�T0
1+s/2 decreases as T0

decreases. The behavior of Bp�T0� is shown in Fig. 16. The
maximum in Bp�T� at the optimum temperature Tmax sepa-
rates the regimes controlled by the BCS surface resistance at
T0�Tmax and by hot spots due to frozen flux or other mecha-
nisms of residual resistance at T0
Tmin. For Nb ���18 K�,
the optimum temperature in Fig. 16 corresponds to Tmax
�2 K, while for Nb3Sn ���36 K�, Tmax�4 K, if Ri /Rn0 is
the same for both materials. The above consideration based
on the linear BCS surface resistance assumes that the break-
down field Bp is much smaller than the field �TBc /Tc at
which the intrinsic nonlinearities in Rs become important. A
significant increase of the isothermal Rs�B0� due to these
nonlinearities can strongly affect the thermal breakdown,91

limiting Bp by the thermodynamic critical field Bc.

VI. DISCUSSION

The results presented above show that the breakdown of
the Meissner state by strong rf fields involves supersonic
vortex penetration through the surface barrier weakened by
defects, the jumpwise LO-type instability, and high dissipa-
tion even for single vortices. Such dissipation results in ther-
mal retardation effects and hot spots igniting the explosive
thermal instability due to the exponential temperature depen-
dence of the surface resistance. These effects are precursors
of the avalanche vortex penetration and dendritic thermo-
magnetic instabilities.64,65

At the onset of vortex penetration pinning forces are
much weaker than the driving forces of the rf Meissner cur-
rents. Yet as the vortex moves away from the surface by the
distance ��, the Lorentz force decreases exponentially, so
the vortex can be trapped by pinning centers. Such vortices
trapped in the thin surface layer of rf field penetration during
breaking through the surface barrier or field cooling of the
sample can result in a temperature-independent residual sur-
face resistance. Because pinning centers are distributed ran-

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

T
0
/∆

B
p/B

p0

FIG. 16. The temperature dependence of Bp�T0� calculated from
Eq. �79� for RBCS�T0�=Rn0�� /T0�exp�−� /T0�, Ri /eRn0=2�10−5,
��=��T0

s , s=3, and Bp0
2 =2�0

2��T0
s+1 /Rn0.
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domly, the rf power dissipated by pinned vortices Q�u� var-
ies very strongly because of the exponential sensitivity of
Q�exp�−2u /�� to the vortex position. This effect results in
hot spots of vortex dissipation, which peaks for vortices
spaced from the surface by distances close to the minimum
distance dm, for which pinning forces can prevent vortex
annihilation at the surface at low fields B0�Bv. The field
dependence of dm causes rf flux annealing in which vortices
are irreversibly pushed out from the surface layer. This effect
results in a nonlinear hysteretic dependence of Ri�B� at low
fields B0�Bc, which may pertain to the puzzling decrease of
the surface resistance at low fields B0�3–20 mT, which has
been often observed on Nb �Refs. 4 and 76� and other
superconductors.82,83 Yet Eq. �65� describes well the ob-
served field dependence Ri�1 /B0

2 for Nb.76

Besides the field and frequency dependences of Ri�B�,
another manifestation of the vortex pinning mechanism is the
hysteretic behavior shown in Fig. 15 due to the rf annealing
of the trapped flux. This mechanism caused by the gradient
of the Lorentz force is only effective for vortex segments
parallel to the surface and does not affect vortex segments
perpendicular to the surface. The segments of pinned vorti-
ces perpendicular to the surface generally give a field-
independent contribution to Ri; however, if these segments
belong to the vortex semiloop trapped at the surface, the rf
Lorentz force gradient acting on the parallel component of
the loop can eventually push the whole loop toward the sur-
face where it shrinks and annihilates. In this case the rf an-
nealing decreases Rs, eliminating some of the hot spots
caused by trapped vortices. This is illustrated by Fig. 17,
which shows three different types of vortices trapped at the
surface. Vortex 1 cannot be pushed out by the rf field because
only a small segment of it, ��, is exposed to the rf Lorentz
force, while the remaining part is pinned in the bulk. Vortex
semiloop 2 can be pushed out by the rf field, as discussed
above. Vortex 3 has a parallel segment, which, however, can-
not annihilate at the surface because it is held back by other

pinned segments which are beyond the surface layer of the rf
field penetration.

Penetration and trapping of even single vortices at low
temperatures can significantly increase the exponentially
small Rs, which, in turn, decreases the thermal breakdown
field Bp. For example, flux trapped during field cooling in the
Earth magnetic field Bi�40 �T corresponds to the mean
intervortex spacing a= �	0 /Bi�1/2�7 �m. To estimate Ri for
such trapped flux, we use Eq. �55� for strong pinning at
��p
1, taking �exp�−2d /����� /a and dm��. Hence,

Ri �
�2�p

2

30
Ri���, Ri��� =

�nBi

�Bc2
, �81�

where Ri��� is the high-frequency limit of Ri���. For Nb,
taking Bc2=400 mT, �=40 nm, �n=10−9� m, and Bi
=40 �T, we obtain Ri���=2.5 ��, much higher than the
typical values Ri�10 n� observed on high-purity Nb.76 For
Nb3Sn, with �n=0.2 �� m, ��90 nm, we obtain Ri���
�3.9 ��. As follows from Eq. �81�, pinning reduces Ri by
the factor ���p�2 /30, so Ri�10 n� corresponds to ���p�2

�0.1, or �p�0.5 ns for � /2
=1 GHz. By contrast, the pin-
ning time constant �p�10−8 s measured by Pioszyk et al.80

seems to indicate that their Nb sample was in the weak pin-
ning limit ���p�2�1, for which Ri�Ri��� is in agreement
with the measured Ri�0.5 Oe��2 �� and the estimate from
Eq. �81�.

Introducing dense pinning structures in the surface layer
of the rf field penetration can therefore impede vortex oscil-
lations and significantly reduce the part of Ri caused by
trapped flux, particularly for vortex loops like 1 and 3 in Fig.
17 which are not affected by the rf flux annealing. Because
pinning is only effective if ��p
1, decreasing �p in Eq. �51�
implies reducing the pin spacing. At the same time, a more
effective rf flux annealing requires both weak and dense pins
�small fp and � in Eq. �57��. Overall, Ri can be reduced by
decreasing the relaxation time constant �p, which can be
done not only by decreasing the pin spacing �, but also by
optimizing the mean free path at the surface. Indeed, Eq. �51�
shows that �p is larger for higher-� superconductors because
of the softening of the vortex line tension �, although this
effect can be offset by a higher normal resistivity. For ex-
ample, the ratio �p1 /�p2=�1

2�n2 /�2
2�n1��n1 /�n2 for two dif-

ferent materials 1 and 2 �or two different mean free paths �i�,
but the same �, shows that pinning becomes less effective for
a dirtier surface. Furthermore, comparing Nb with �1=1,
�n1=10−9 � m and Nb3Sn with �2=30, �n1=0.2 �� m, we
obtain �p

Nb /�p
Nb3Sn�1 /5. Thus, reduction of Ri by pinning

turns out to be somewhat more effective in Nb, although this
conclusion can be strongly affected by impurities, as dis-
cussed above.

The results of this work show that reducing vortex dissi-
pation is an important problem in achieving ultimate pair-
breaking breakdown fields in superconductors. In particular,
significant progress has been made in increasing Rs and Bp
by low-temperature annealing of Nb cavities which enables
tuning the impurity concentration, nanoscale oxide layers,
and hot spot distribution on the Nb surface.76,77,95,96 Another
possibility in raising the ultimate breakdown fields is to use

FIG. 17. Vortices �shown as dashed lines� trapped near the sur-
face by pinning centers �black dots�.
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thin-film superconductor-insulator-superconducting �SIS�
multilayer coating with high-Bc films of thickness d
� to
significantly increase Bc1 and delay the field onset of vortex
penetration.97 Moreover, the SIS coating may suppress the
LO instability by decreasing the vortex flight time through
the film and providing strong pinning due to the magnetic
interaction of the vortex with the film surfaces. The SIS
multilayer coating of Nb cavities may enable increasing the
ultimate breakdown fields Bp above Bc

Nb by taking advantage
of A15 superconductors98 or MgB2 �Refs. 99 and 100� with
Bc�Bc

Nb and potentially lower RBCS.
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APPENDIX A: TEMPERATURE OF A MOVING VORTEX

Equation �25� can be written in the dimensionless form

�̇ = �2� − � +  ��m�s2�t�f�x − u�t�,y� , �A1�

where �= �T−T0� / �Tc−T0� and the time, coordinates, and
vortex velocity are normalized by the thermal scales t�

=C /�, L�= �k /��1/2, and v�=L� / t�, respectively,  ��m�
=�0��m�v�

2 / �Tc−T0�k, and s�t�=v /v� is the dimensionless
vortex velocity. The Fourier transform of Eq. �A1� results in
the following equation for the Fourier components, �p�t�
=���x ,y , t�exp�−ipr�d2r:

�̇p + �1 + p2��p = fpg�t�e−ipxu�t�, �A2�

where g�t�= ��m�t��s2�t�. The solution of Eq. �A3� is

�p�t� = fp�
0

�

e−�1+p2�t�−ipxu�t−t��g�t − t��dt�. �A3�

For steady-state vortex oscillations, the rf field was turned on
at ti=−� and v�t� in Eq. �A3� accounts for all oscillations
preceding the time t. For f�r�=
−1�1

−2 exp�−r2 /�1
2� and fp

=exp�−p2�1
2 /4�, the inverse Fourier transform of Eq. �A3�

gives

��r,t� =
1



�

0

� dt�g�t − t��

4t� + �̃2
e−t�−��x − u�t − t���2+y2�/��̃2+4t��.

�A4�

Equation �A4� was obtained for an infinite sample. For a
thermally insulated or ideally cooled surface at x=0, Eq.
�A4� can be modified using the method of images:

��r,t� =
1



�

0

� dt�g�t − t��

4t� + �̃2
e−t�−y2/��̃2+4t��

��e−�x − u�t − t���2/��̃2+4t�� � e−�x + u�t − t���2/��̃2+4t��� ,

�A5�

where the plus and minus signs in the parentheses corre-

spond to the Dirichlet ��x��0,y , t�=0� and Neumann
���0,x , t�=0� boundary conditions at the surface, respec-
tively. The core size is typically much smaller than L�, so the
dynamic equation for the core temperature �m�t� can be ob-
tained from the self-consistency condition �m�t�
=�(u�t� ,0 , t), resulting in Eq. �26�.

Next we consider the steady-state temperature distribution
T�x ,y� averaged over high-frequency vortex oscillations at
2
�t��1. In this case T�x ,y� satisfies the static thermal dif-
fusion equation

k�2T + q�x���y� = 0, �A6�

where q�x� is the mean power density distribution along the
vortex trajectory. We solve Eq. �A6� for a film of thickness d
with the boundary conditions �xT�x ,y�=0 on the thermally
insulated surface x=0 where vortex dissipation is localized
and T�x ,y�=T0 at the opposite surface, x=d kept at T0. By
symmetry, this geometry has the same T�r� as in a film of
thickness 2d with isothermal boundary conditions T��d ,y�
=T0 and the heat source in the middle at x�0. In this case
Eq. �A6� can be solved using the Green function

G�r,r�� =
1

4
k
ln

cosh

�y − y��

2d
+ cos


�x + x��
2d

cosh

�y − y��

2d
− cos


�x − x��
2d

,

�A7�

which gives the distribution of �T�r�=T�r�−T0:

�T�r� =
1

2
k
�

0

d

q�x��ln
cosh


y

2d
+ cos


�x + x��
2d

cosh

y

2d
− cos


�x − x��
2d

dx�.

�A8�

If the length of the dissipation source �r0 is much smaller
than the film thickness, �T�r� around the source at �x2 ,y2�
�d2 reduces to

�T�r� =
1

2
k
�

0

�

q�x��ln
16d2


2�y2 + �x − x��2�
dx�. �A9�

Next, we take a rectangular approximation q�x�=q0 for x

r0 and q�x�=0 for x�r0, where r0 is a characteristic size
of the dissipation source, so that q0r0=Q gives the total
power Q. In this case the distribution of �T�0,y� along the
surface becomes

�T�y� =
q0

2
k
�

0

r0

ln
16d2


2�y2 + x�2�
dx�, �A10�

which yields after integration

�T�y� =
Q

2
k
�ln

16d2


2�y2 + r0
2�

+ 2 −
2y

r0
tan−1 r0

y

 .

�A11�

The maximum �Tm=�T�0,0� is given by
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�Tm =
Q


k
�ln

4d


r0
+ 1
 . �A12�

APPENDIX B: MULTIVALUED FRICTION FORCE

Equation �33� describes an overdamped vortex driven by
the force F�u , t� balanced by a nonlinear friction force
�v / �1+v2 /v0

2�. The force balance equation has either two or
no roots, as shown in Fig. 18. The velocity v−�F� for the left
intersection point vanishes at F=0 and increases up to v0 as
F increases. The velocity for the right intersection point
v+�F� decreases as F increases. If F
Fm, the branch v−�F�
describes all smooth parts of the vortex trajectory and also
provides v−�0�=0 for the initial condition u�0�=0. For F
�Fm, the vortex jumps from x=u1 to the point x=u2 where
friction is able to balance the drive. Here u1,2 are defined by

the condition F�u1,2 , t1,2�=Fm. The branch v−�F� describes all

smooth parts of u�t� provided that Ḟ�u1,2 , t�
0, so that F�t�
always decreases below Fm after the jump.

For high rf frequencies or strong vortex core overheating,

there are situations for which Ḟ�0 after the jump. For ex-
ample, if u��, the term with the K�x� in F can be neglected

and Ḟ=v0�xF+�tF becomes

Ḟ = �− v0/� + � cot �t�F , �B1�

which tends to become positive at higher frequencies. In this
case the vortex cannot jump to the point where F�u , t�=Fm,

since the friction force cannot balance F if Ḟ�0, because
F�u , t� keeps increasing above Fm, so v�t� becomes greater

than v0. Thus, for Ḟ�0, friction can only stop the vortex
jump if v�v0; thus, we have to consider the branch v+�F� as
well. We should therefore construct the trajectory for which
the vortex first jumps at t= ti to the new point x=ui and
acquires the velocity vi�v0. After that v�t� continuously de-
creases from vi�v0 at t= ti to v0 at t= t0, as described by the
first-order differential equation u̇=v+�F�u , t��. Here u0 and t0

are determined by the equations

F�u0,t0� = Fm, v0�uF + �tF = 0, �B2�

which state that Ḟ should change sign as the vortex reaches
the maximum friction force at the critical velocity v−0. In-

deed, if Ḟ changes sign at any point of the descending branch
v+�F�, the vortex cannot reach v0, so v�t� passes through a
minimum at some v�v0 and then starts accelerating con-

tinuously. On the other hand, if the vortex reaches v0 at Ḟ
�0, the jump instability occurs. Therefore Eq. �B2� provides
the only way for a stable switch from the descending branch
of v+�F� for ti
 t
 t0 to the ascending branch of v−�F�. Once
t0 and u0 are found from Eq. �B2�, the coordinate of the
jump, ui, can be calculated for the vortex going backward in
time, taking the initial condition u=u0 and F=Fm, and then
solving the equation u̇=v+�F�t0− t̃�� with the “negative time”
t̃= t0− ti, from t̃=0 to t̃= t0− ti.
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