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We study the magnetic properties of a system of interacting nanoparticles in a triangular lattice through
Monte Carlo simulations. The small particles are subjected to an in-plane magnetic field and are coupled via
long-range dipolar interactions. They also present uniaxial anisotropy energy, with the easy axes pointing
randomly in three dimensions. We assume a Gaussian distribution for the strengths of the uniaxial anisotropy
energy. We calculate the blocking temperature of the system from the zero-field-cooled curve as a function of
the ratio between the dipolar and mean uniaxial anisotropy energy contributions. The blocking temperature
increases linearly with this ratio, showing that the net effect of the dipolar interactions is to increase the height
of the effective energy barriers seen by the nanoparticles. The hysteresis curves are also determined as a
function of this ratio and we show that the coercive field exhibits a slight minimum for a small value of the
dipolar strength. When the dipolar interactions are not negligible, we observe a steep variation in the compo-
nent of the magnetization that is perpendicular to the magnetic field in the neighborhood of the coercive field.
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I. INTRODUCTION

Research on nanomagnetic systems is a topic of growing
interest. The synthesis of new magnetic nanoparticles and
their potential use in data recording and biosciences have
been recently reviewed.1,2 Stoner and Wohlfarth,3 Néel,4 and
Brown5 developed the initial studies on the magnetization
reversal of single-domain particles with very large magnetic
moments through thermal fluctuations across energy barriers.
Their predictions could be confirmed after the production of
nanostructured single-domain magnetic particles.6–8 Indeed,
samples of high quality have been devised for which the
individual nanoparticles are coated by nonmagnetic layers to
prevent exchange coupling between nearest-neighbor
particles.8–13 Each individual nanoparticle is formed by hun-
dreds or thousands of atomic magnetic moments strongly
coupled by exchange interactions. If the degree of dilution of
the sample is very high, the nanoparticles do not interact, and
their dynamics is dictated only by the external applied mag-
netic fields, effective uniaxial anisotropy, which include
shape and magnetocrystalline contributions, and coupling
with the heat bath.

On the other hand, this scenario changes completely when
the dilution is not so low, and we need to include long-range
magnetic dipolar forces between the nanoparticles to cor-
rectly describe the thermodynamical behavior of the system.
Due to the presence of dipolar interactions, the otherwise
purely uniaxial anisotropy energy barrier seen by each nano-
particle is modified. It is still a matter of debate in the litera-
ture how this change occurs. Even in the limit of weak dipo-
lar interactions, in some experiments the blocking
temperature increases14 with concentration, while in others it
decreases.15

One question that is relevant in the discussion of the low-
temperature properties of an array of magnetic dipoles is its
underlying Bravais lattice structure. Luttinger and Tisza16

showed that the lowest energy state of a collection of classi-
cal dipoles is ferromagnetic in a face centered cubic lattice,

whereas it is antiferromagnetic in a simple cubic lattice. In
two dimensions, it is well established that a square lattice of
classical point dipoles exhibits an antiferromagnetic arrange-
ment of the moments,17,18 while in the case of a triangular
lattice, the arrangement is ferromagnetic.19,20

Another question for which the answers appear to be con-
flicting is related to the role played by the dipolar interac-
tions on the effective energy barrier seen by the nanopar-
ticles. For instance, in the case of zero-field-cooled �ZFC�
curves, the blocking temperature increases with the strength
of the dipolar interactions, suggesting that the effective en-
ergy barrier seen by the nanoparticles also increases.21 On
the other hand, in the case of the magnetic relaxation process
from a saturated state, Iglesias and Labarta22 showed that for
a linear chain of magnetic moments, the dipolar interactions
effectively reduce the barrier height seen by the nanopar-
ticles. Recently, we have considered a triangular array of
identical magnetic nanoparticles with random uniaxial aniso-
tropy axes in three dimensions and coupled by dipolar
forces.23 For this system, we have observed that, indeed, the
effective energy barrier increases with the strength of the
dipolar interactions in the case of ZFC curves, whereas it
decreases in the relaxation processes. The effective energy
barriers corresponding to the blocking temperature and to
magnetization relaxation are different because the processes
are different. While the initial state of the system is com-
pletely disordered in the ZFC experiments, it is fully ordered
in the magnetic relaxation experiments.

The aim of this work is to determine the blocking tem-
perature and the hysteresis curves for a system of magnetic
nanoparticles in a two-dimensional triangular lattice through
Monte Carlo simulations. We assume that the easy axes are
randomly oriented in the three-dimensional space, the
strength of the uniaxial anisotropy energies follows a Gauss-
ian distribution, and the particles interact through a long-
range magnetic dipolar interaction. The remanence and the
coercive field are determined as a function of the ratio be-
tween the dipolar strength and the mean uniaxial anisotropy
energy. Particularly interesting is the behavior of the coer-
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cive field, which displays a slight minimum at low tempera-
tures and for a small value of this ratio. We show that near
the coercive field, the variation of the component of the mag-
netization that is transverse to the magnetic field is large and
steep.

In our previous work,23 we have applied our results to
describe the magnetic properties of the magnetoferritin nano-
particles. There, we have estimated the ratio between the
blocking temperatures of the most aggregated and well-
dispersed magnetoferritin samples by assuming that all par-
ticles present identical energy barrier heights. Although we
have found good agreement with the experimental results,
our calculations were based on an effective energy barrier
instead of using the experimental Gaussian distribution for
the magnitude of the uniaxial anisotropies. In this paper, we
get better results for the magnetoferritin system by taking
into account its real distribution of energy barrier heights.

In the next section, we present the model and some details
concerning the Monte Carlo simulations. In Sec. III, we
present our results for the magnetic properties as a function
of temperature and dipolar strength. In Sec. IV, we summa-
rize our conclusions.

II. MODEL AND CALCULATIONS

Our particles are placed at the sites of a triangular lattice,
which is assumed to lie in the xy plane. Each particle pos-
sesses a uniaxial anisotropy with its easy axis pointing ran-
domly in the three-dimensional space. The magnitude of the
anisotropy is given by d=KV, where K is the anisotropy
energy per unit volume and V is the volume of the particle.
We assume a Gaussian distribution for the magnitude of the
anisotropies with mean value d0 and standard deviation �.
For most of our calculations, we used d0=0.5 and �=0.1. As
we will see below, this choice was made to yield good agree-
ment with the experimental result for the ratio between the
blocking temperatures of the most aggregated and well-
dispersed samples of the magnetoferritin nanoparticles. If we
keep the dipolar strength fixed, which is defined by the ratio
between the magnetic dipolar coupling and uniaxial aniso-
tropy, increasing d is equivalent to decreasing the ratio be-
tween the blocking temperatures of the most aggregated and
well-dispersed samples. This fact can be appreciated in Fig.
6 of our earlier work.23 The magnetic moment of the ith
particle is written as �i=�Si, where Si is a unit vector, �Si�
=1, and Si= �Six ,Siy ,Siz�. We also write � in the form �
=MsV, where Ms is the particle magnetization. An in-plane
external magnetic field of magnitude H is applied along the x
direction of the triangular lattice, which we choose to be
parallel to a side of the conventional unit cell. The particles
interact via a two-pair dipolar term, and the magnitude of the
dipolar energy is written as a function of the parameter g
= �0�2 / 4�a3 , where a is the lattice parameter. The correspond-
ing Hamiltonian for a set of N particles is

H =
1

2
g�

i=1

N

�
j�i

N �Si · S j

rij
3 − 3

�Si · rij��S j · rij�
rij

5 �
− �

i=1

N

hSix − �
i=1

N

di�êi · Si�2, �1�

where rij is the distance separating the magnetic moments at

sites i and j, which is measured in units of the lattice param-
eter a, and h=�H. The vector êi is a vector of unit magnitude
in the direction of the easy axis for the particle at site i. An
important parameter to describe the effect of dipolar interac-
tions on the magnetic properties of the system is the ratio
�=g /d0.

This model is suitable to describe the magnetic properties
of the magnetoferritin nanoparticles, which present a very
narrow size distribution and the easy axes are randomly dis-
tributed over the sample. It is an interesting nanoparticle to
probe the effect of the dipolar interactions because its 2 nm
protein shell prevents contact between the magnetic cores of
nearest-neighbor nanoparticles. Arrays of magnetoferritin
particles were prepared on coated Cu transmission electron
microscope �TEM� grids and studied by TEM and supercon-
ducting quantum interference device magnetometry.11,24 In
the dispersed sample, the calculated mean interparticle sepa-
ration was 130 nm, while in the aggregated sample, the mag-
netoferritin particles were in contact. The magnetoferritin
particles are spherical with an average diameter of 12 nm,
while the diameter of the magnetic core is D=8 nm. The
estimated anisotropy energy is d=5�10−21 J, while its di-
pole moment is �=1�104�B. Therefore, in the concentrated
case, where particles touch each other, a=12 nm and the
estimated value of � is 0.1. For the magnetoferritin system,
the blocking temperatures of the well-dispersed and most
aggregated samples are 22 and 28 K, respectively.

Studies on the magnetic properties of nanoparticles have
been performed at zero temperature, exploring the hysteresis
phenomenon and structure of the monolayer,19,25–27 and at
finite temperatures, where besides hysteresis, other properties
have also been investigated. Most of the calculations at finite
temperature were performed by employing Monte Carlo
simulations. For instance, the effects of packing
geometries,28 tunneling magnetoresistance,29 reversible
transverse susceptibility,30 magnetic relaxation,22,31 and finite
size effects32,33 are some of the problems that received atten-
tion in recent years.

We have employed Monte Carlo simulations to study the
magnetic properties of the system. We have taken a system
of linear size L=21 on a triangular lattice, with 441 magnetic
moments, and we assumed free boundary conditions in our
calculations. The role of the boundary conditions was con-
sidered in the works of Kechrakos and Trohidou28,29 as well
as in our recent study of a system of identical magnetic
nanoparticles.23

The procedure we used to determine the equilibrium
states of the system is based on the minimization of its free
energy through the Monte Carlo technique and the well
known Metropolis algorithm.34 According to this algorithm,
a given magnetic moment is selected at random, and we try
to move it to a new position in such a way that the deviation
from the old state is random, but within a maximum solid
angle. We calculate the change in energy of the system ��E�,
and if �E�0, the transition to a different configuration is
accepted. On the other hand, if �E	0, the transition to a
different configuration is made with probability exp�
−�E /kBT�. This is the most expensive part of the simulation
because, after the transition, we need to recalculate the dipo-
lar field acting on all the other particles of the system. In
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each Monte Carlo step �MCs�, we performed N=441 �N is
the number of magnetic moments of the system� trials to flip
the magnetic moments. To calculate the average magnetic
properties, we considered 104 MCs, where the first 2�103

MCs were discarded due to the thermalization process. This
number of MCs to reach the equilibrium state was achieved
by taking a maximum solid angle variation equal to 0.1�,
where approximately 50% of the attempted moves were suc-
cessful. Due to the thermal fluctuations and the random di-
rection of the easy axes, we have taken a minimum of 50 and
a maximum of 200 samples to determine the thermal prop-
erties. On the other hand, each sample is selected for a ZFC
experiment only when its initial total magnetization is less
than 10−3.

In our algorithm, we calculated the average magnetization
per particle, as well as its components in the x, y, and z
directions, as a function of temperature and ratio �. These
average values were obtained, first, by calculating the mean
values of the magnetic moments of the system for each MCs
after the thermalization process as follows:

Mx =
1

N
�
i=1

N

Six, �2�

My =
1

N
�
i=1

N

Siy , �3�

Mz =
1

N
�
i=1

N

Siz, �4�

Mtot = �Mx
2 + My

2 + Mz
2. �5�

Afterward, these averages were taken by considering all the
Monte Carlo steps, after thermalization. Finally, an average
is performed over all the selected samples.

III. RESULTS

We have determined the blocking temperature as a func-
tion of the parameter � by considering the corresponding
zero-field-cooled curves for each value of this parameter. We
apply a very small magnetic field in the x direction for each
zero-field-cooled sample, where the initial magnetization is
close to zero at very low temperatures. This field is chosen to
be equal to 5% of d0, which is the mean barrier height due to
the uniaxial anisotropy energy. Then, by increasing the tem-
perature, some magnetic moments become unblocked and a
net magnetization appears in the field direction. With a fur-
ther increase in the temperature, the magnetization reaches a
maximum value, which is defined as the blocking tempera-
ture of the system. For temperatures higher than the blocking
temperature, the magnetization decreases for increasing val-
ues of the temperature and the system is in the superpara-
magnetic state.

We show in Fig. 1 the magnetization as a function of
temperature for a Gaussian distribution of uniaxial aniso-
tropy energies with d0=0.5, �=0.1, and dipolar interaction
strength �=0.1. We find a well defined peak in the magneti-
zation curve at T=0.10. The temperature here is measured in
units of d0, that is, T means kBT / d0 , where kB is the Boltz-
mann constant. The blocking temperature for the noninteract-
ing system, �=0, for the same values of the parameters d0
and � is equal to T0=0.08. We have included in Fig. 1 the
standard error for each value of the temperature. Assuming
that the sample magnetization is Gaussian distributed, our
estimate for the standard error is given by the expression


 =��
i=1

ns

��mi�2/ns�ns − 1� , �6�

with �mi=mi−m, where m is the mean value of the magne-
tization for a set of ns independent sample realizations,
which account for the random direction of the easy axes and
anisotropy energy distribution. The value of mi for each
sample is already the mean value taken over the Monte Carlo
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FIG. 1. Zero-field-cooled magnetization ver-
sus temperature for an interacting system ��
=0.1�, and uniaxial anisotropy energy parameters
d0=0.5 and �=0.1. The external magnetic field is
h=0.05d0. The error bars represent averages over
200 samples. The line serves as a guide for the
eye.
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steps of the simulation due to the thermal fluctuations. In
Fig. 1, we have used ns=200. For temperatures well below
the blocking temperature, the error bars are of the size of the
symbols or smaller. However, due to the thermal fluctuations,
the error bars are larger around the blocking and higher tem-
peratures. Although not presented here, the susceptibility,
specific heat, and Binder cumulant also show a maximum
around the blocking temperature for �=0.23

Figure 2 displays the plot of the blocking temperature as a
function of the dipolar strength. For the range of values of �
shown in Fig. 2, we see that the increase in the blocking
temperature is smoother in the interval 0���0.1. However,
for values of �	0.1, it increases linearly with the dipolar
strength. The enhancement of the magnetic properties due to
the dipolar interactions was observed in other studies. For
instance, Lee et al.35 found that the remanent magnetization
is consistently higher for simulations with magnetostatic in-
teractions as compared to simulations without magnetostatic
interactions, even for a very diluted system of interacting
point dipoles and uniaxial anisotropy with random axis in a
plane.

As we have commented earlier, this model describes the
magnetoferritin system very well.24 The blocking tempera-
tures of the well-dispersed and most aggregated samples are
estimated to be 22 and 28 K, respectively. The mean distance
between two nearest-neighbor particles in the well-dispersed
sample is 130 nm, which gives �=10−4, that is, the well-
dispersed sample is noninteracting and we assume for it the
value �=0. The estimated value for the most aggregated
samples, where particles are in contact, is �=0.1. Figure 2
shows that, for �=0.1, the blocking temperature is T=0.10,
which gives the ratio of 1.25 between the blocking tempera-
tures of the aggregated and well-dispersed samples, the value
of which is very close to the experimental ratio �1.27�. The
increase in the magnitude of the dipolar interactions has the
net effect of enhancing the effective energy barrier height
seen by the nanoparticles in the ZFC experiments performed
on samples with a triangular lattice arrangement of magnetic
dipoles.

We have also observed that the plot of the ratio between
the dipolar and uniaxial anisotropy energies versus tempera-

ture for �=0.1 is very similar to that seen in Fig. 1 for the
magnetization. They present a maximum at the same tem-
perature, which is the blocking temperature of the system.
While the uniaxial anisotropy energy is an increasing func-
tion of temperature during the ZFC experiment, the dipolar
energy decreases up to near the blocking temperature, where
it exhibits a minimum.

Figure 3 shows two hysteresis curves for the noninteract-
ing ��=0� and interacting ��=0.3� systems at a very low
temperature �T=10−4�. We observe that the remanence is ap-
proximately the same for both systems, while the coercive
field is clearly larger for the interacting system. In order to
better understand this behavior, we have calculated the rema-
nence and coercivity as a function of � at very low tempera-
tures. The remanence was determined by letting the magnetic
moments of the system relax, in a zero external field, from an
initial state where all the moments are aligned in the x direc-
tion, that is, the initial state is given by �Six=1, Siy =0, Siz

=0�. We considered 104 MCs for the system to reach equi-
librium, although at very low temperatures, equilibrium is
easily achieved within 500 MCs. This happens because the
initial state is one of high energy and the system simply
relaxes toward equilibrium at very low temperatures, where
thermal fluctuations are negligible. In this case, the accep-
tance rate is almost equal to 1.

Although the Monte Carlo simulation based on Metropo-
lis algorithm is not the best method for the minimization of
the total energy at very low temperatures, it has been used
with success in the study of magnetic nanoparticles.28–30

When the initial state of the system is well ordered, with
high energy, as happens in our case, the evolution to the
lowest energy state is guaranteed because in each Monte
Carlo step we explore only a small region of the phase space
around the current state. If large random moment deviations
were considered between successive Monte Carlo steps, we
would have the formation of metastable clusters and the time
to reach the minimum energy state would be very large. For
instance, at the end of the relaxation, the magnetization of
the noninteracting system is 1/2, which is the expected value
for a random distribution of uniaxial axes in three dimen-
sions. On the other hand, the mean deviation of the moments
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FIG. 2. Blocking temperature �TB� as a func-
tion of the dipolar strength �. The error bars take
into account 200 independent samples. The
uniaxial anisotropy energy parameters are d0

=0.5 and �=0.1. The line serves as a guide for
the eye.
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from their easy axis direction increases with the dipolar
strength. While the mean deviation is zero for �=0, its value
is 60 for �=0.1. At finite temperatures, we need at least 104

MCs to achieve equilibrium as we have seen during the ZFC
experiments. We have also taken 200 samples to allow dif-
ferent realizations of the random axis and anisotropy energy
distributions.

We show in Fig. 4 the remanence, which is defined by the
component Mx of the total magnetization, as a function of �.
We have also plotted in Fig. 4 the two other components of
the total magnetization. The x component Mx slightly in-
creases from the value 1/2, which is the well known value for
a noninteracting system with completely random uniaxial
axes in three dimensions, up to near �=0.1, and then de-
creases again for �	0.2 to a value close to 1/2. As expected,
the out of plane component Mz is almost zero even for the
noninteracting case. However, while the x and z components
of total magnetization are nearly independent of the dipolar
strength, the transverse component of the magnetization My
is an increasing function of � and assumes large values even

for small values of the dipolar strength. In order to appreciate
the effect of temperature in relaxation, we plot in Fig. 5 the x
component of total magnetization as a function of the dipolar
strength for the temperatures T=10−4 and T=0.05. For small
values of the dipolar strength, the values of the remanence
are quite different. However, they approach each other as we
increase the dipolar strength, despite the rather distinct val-
ues of the considered temperatures.

The coercivity is defined by the value of the external mag-
netic field for which the x component of the magnetization,
at the end of the simulation, changes its sign after we start
from the uniform distribution of magnetic dipoles �Six

=1,Siy =0,Siz=0� at t=0. The external magnetic field is ap-
plied in the negative x direction. We also considered 200
different samples and waited 104 MCs to determine the co-
ercive field. In Fig. 6, we plot the coercive field as a function
of � and we observe the presence of a slight minimum
around �=0.1. The decrease is only 2% relative to the non-
interacting case. We had observed a larger decrease �13%� in
the case of a system of identical nanoparticles.23 Figure 7 is
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FIG. 3. Hysteresis loops for interacting ��
=0.3, closed squares� and noninteracting ��=0,
open circles� systems. The uniaxial anisotropy
energy parameters are d0=0.5, �=0.1, and T
=10−4. The lines serve as a guide for the eye.
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FIG. 4. Absolute value of the components of
total magnetization as a function of the dipolar
strength: Mx �closed squares�, My �open squares�,
and Mz �open circles�. The uniaxial anisotropy
energy parameters are d0=0.5, �=0.1, and T
=10−4. The lines serve as a guide for the eye.
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a detailed view of the coercive field for small values of the
dipolar strength. The error bars in the figure are determined
from a set of 200 independent samples. Indeed, within the
statistical errors, the minimum is observed for the value �
=0.10. In order to give support to the use of the Metropolis
Monte Carlo algorithm at low temperatures, we also consid-
ered a purely dipolar case with d0=0 and g=1. For this sys-
tem in the triangular lattice, we find for the coercive field the
value Hc=1.98, which is very close to Hc=1.87 found by
Russier19 through the minimization of the dipolar energy at
zero temperature.

We show in Fig. 8 the plot of the component of total
magnetization transverse to the field when Mx=0. Even for
small values of �, it assumes a large value. For instance, its
value rises from zero for �=0 to a value close to 0.30 for
�=0.10, where the coercive field attains its minimum value.
Besides, this transverse component saturates for dipolar
strength values larger than 0.30. We believe that the unusual
behavior we find for the coercive field at very low tempera-

tures is due to the use of free boundary conditions in our
simulations, where demagnetization effects were not taken
into account. For instance, in a triangular lattice, calculations
assuming periodic boundary conditions19 predict a decreas-
ing coercive field as a function of the dipolar strength, al-
though the decrease is not as strong for large values of the
dipolar strength.

It is interesting to note that other properties also present a
peculiar behavior near the coercive field at very low tem-
peratures. We show in Fig. 9 the behavior of dipolar and
uniaxial anisotropy energies as a function of � at the coer-
cive field for which Mx=0. Like the coercive field, the
uniaxial anisotropy energy also displays a very slight mini-
mum at the value �=0.1. On the other hand, the dipolar
energy is a monotonically decreasing function of �. Then,
the triangular array of magnetic moments behaves as a true
ferromagnetic state even for small values of the dipolar
strength.
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FIG. 5. Absolute value of the x component of
total magnetization as a function of the dipolar
strength for temperatures T=10−4 �open squares�
and T=0.05 �closed squares�. The uniaxial aniso-
tropy energy parameters are d0=0.5 and �=0.1.
The lines serve as a guide for the eye.
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FIG. 6. Coercive field as a function of the
dipolar strength. The uniaxial anisotropy energy
parameters are d0=0.5, �=0.1, and T=10−4. The
line serves as a guide for the eye.
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FIG. 8. The My component of total magneti-
zation at the coercive field for which Mx=0. The
uniaxial anisotropy energy parameters are d0

=0.5, �=0.1, and T=10−4. The error bars are cal-
culated from a set of 200 independent samples.
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FIG. 9. Uniaxial anisotropy �open squares�
and dipolar �closed squares� energies per particle,
calculated at the coercive field, as a function of
the dipolar strength. The uniaxial anisotropy en-
ergy parameters are d0=0.5, �=0.1, and T=10−4.
The lines serve as a guide for the eye.
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FIG. 7. Detailed view of Fig. 6 for small val-
ues of the dipolar strength showing the minimum
at �=0.10. The error bars are calculated from a
set of 200 independent samples. The line serves
as a guide for the eye.
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We show in Fig. 10 the longitudinal Mx and transverse My
components of total magnetization as a function of the mag-
netic field for the particular value �=0.3. Figure 10 corre-
sponds to one-half of the hysteresis loop at temperature T
=10−4, and we have removed the points for clarity. By in-
creasing the field from negative values, we found that the
transverse component of the magnetization jumps abruptly
just before we reach the coercive field. A similar behavior is
also seen for other values of the dipolar strength.

Finally, we show in Fig. 11 the behavior of the coercive
field as a function of temperature for selected values of the
dipolar strength. The coercive field decreases with tempera-
ture for any value of �. At the smallest temperatures, the
behavior is similar to that presented in Fig. 6, where the
coercive field attains its minimum value for �=0.1. Due to
this fact, as we increase the temperature, the curves for �
=0 and �=0.1 cross because the decay is slower for the
interacting systems. The blocking temperature can also be
estimated from these plots. It is the temperature above which
the coercive field vanishes. The value of the blocking tem-
perature determined using this procedure is slightly larger

than the one found from the peak of the magnetization in the
ZFC experiments, which is given in Fig. 2.

IV. CONCLUSIONS

We have studied in this work the magnetic properties of a
system of interacting magnetic nanoparticles in a triangular
lattice. The particles interact via long-range dipolar forces
and their uniaxial anisotropy axes are uniformly distributed
in three dimensions. We have also assumed that the aniso-
tropy energy strength is distributed according to a Gaussian
probability function. We have employed in our calculations
the Monte Carlo method along with the Metropolis prescrip-
tion to sweep over the phase space of the system, and we
assumed free boundary conditions. From the measurements
of the magnetization as a function of temperature in the ZFC
experiments, we determined the blocking temperature as a
function of the ratio between the dipolar strength and the
mean uniaxial anisotropy energy. We have shown that the
blocking temperature increases linearly with this ratio. The
increase in the blocking temperature with dipolar strength
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FIG. 10. Mx �solid line� and My �dotted line�
components of total magnetization for �=0.3.
The uniaxial anisotropy energy parameters are
d0=0.5, �=0.1, and T=10−4.
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FIG. 11. Coercive field as a function of tem-
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indicates that the dipolar interactions effectively enhance the
height of the energy barriers seen by the nanoparticles. We
have also determined the hysteresis curves as a function of
the dipolar strength. The coercive field is a decreasing func-
tion of temperature for any value of the dipolar strength.
However, at very low temperatures, it exhibits a slight mini-
mum as a function of the dipolar strength. In the case of
interacting systems, close to the coercive field, we observe a
steep variation in the component of total magnetization that

is transverse to the magnetic field. We have seen that this
model appears to be adequate in describing the magnetic
properties of the magnetoferritin nanoparticles.
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