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The shape of the bands for photon absorption and emission by the local constituents of a solid is governed
mainly by processes involving many low-energy acoustic phonons. This applies not only to wide bands, such
as those exhibited by F centers, but also to narrow ones, as those observed for infrared absorption by local
vibration modes of U centers and heavier impurities. The line shapes are theoretically studied on a general
basis to show they provide a nice example to illustrate the power of field theory and methods to reproduce
experimental facts. To this aim, the phonon induced broadenings of infrared absorption lines by U centers in
KCl and KBr, and by substitutional Ag+ in KI, were calculated to compare theoretical predictions with
experiment. The agreement obtained between both is remarkable.
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I. INTRODUCTION

The study of the line shapes of light absorption and emis-
sion bands by localized centers in solids is a beautiful subject
because can be precisely measured, and either are amenable
to analytical calculation by the methods of the theory of
fields. Historically, however, most of the effort has been done
on the optical bands of F centers in alkali halides, which are
particularly wide, of about 0.2−0.5 eV full width at half
height, and rather old means have been employed to analyze
the data. Consisting of a single electron trapped by an an-
ionic vacancy in an ionic crystal, without a positive ion core,
F electrons have a spread wave function, which couples
strongly with the neighboring lattice ions. Transitions be-
tween F electron states cause severe local distortions.
Though the method conceived principally by Huang and
Rhys1,2 on the basis of the semiclassical Franck-Condon
principle3,4 to derive the line-shape function has plenty of
physical insight, it cannot compete with more recent second-
quantized techniques. Although both approaches to the prob-
lem yield similar expressions for the main component of the
line-shape function, the latter is simpler and fully analytical,
gives precise knowledge of the terms that are left aside and
how to reincorporate them, and provides reliable information
on the range in which the results remain valid. Conversely,
the semiclassical basis of the Huang-Rhys theory leaves
these aspects uncertain. Perhaps for this reason the theory
has been applied to almost only F centers, whose wide bands
seem more consistent with the Franck-Condon model for the
optical transitions in solids.

According to Franck3 and Condon,4 electronic transitions
occur with no change in the nuclear configuration. The
Franck-Condon model relies on a semiclassical picture of the
lattice dynamics that follows an internal electronic transition
in a point defect, originated by the absorption or emission of

a photon. As the interaction of an ion with its neighbors
should depend on its excitation state, the process causes a
sudden variation of the local lattice forces. Then, the original
lattice ceases to be the equilibrium configuration, and the
crystal begins to evolve to the distorted structure that bal-
ances the new forces. As the electronic excitation is abrupt,
the massive crystal ions have not enough time to change
their individual dynamical states, and simply commence to
oscillate around the new equilibrium sites, starting from the
positions, and with the velocities, they had when the transi-
tion took place. These positions and velocities correspond to
different energies in the distorted and undistorted lattices.
Hence, in summary, electronic changes occurring in a crystal
constituent involves both a lattice distortion and a transition
to a new vibrational state.

This traditional model is expected to work better for sys-
tems displaying wide optical bands, because they are associ-
ated by the uncertainty principle to transitions involving
shorter times, and hence satisfy better the assumption of a
sudden change in the electronic state of the defect. However,
we show in what follows that this is not exact, and that the
old expression for the line-shape function remains valid also
for very narrow bands. As well as in Bohr’s early theory for
the hydrogen atom, a semiclassical reasoning leads to the
right, fully quantal, result for this case.

To remark this, we review the general theory for the line
shapes and then particularize to a situation in which the band
width is smaller than the Debye energy of the solid. The
resulting expression is used to analyze the experimental
data on infrared absorption by the local modes of U centers
in KCl and KBr, which show bands as narrow as 0.002−
0.005 eV full width at half height.6 U centers are substitu-
tional H− impurities. Though heavier and more localized than
F centers, they are much lighter than the lattice normal con-
stituents. To show the theory works well also for heavy de-
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fects, we apply it also to reproduce the infrared absorption
line shapes by Ag+ impurities in KI. To our knowledge, no
similar attempt has been published yet.

Infrared absorption lines are attributed to the local vibra-
tional modes of the defect. Though narrow when compared
with absorption lines of higher energy, their widths for U
centers and heavier impurities in alkali halides are about
10% the Debye energy. This means that these modes are not
free, but couple significatively with the rest of the crystal
modes of vibration. In our analysis, they are dealt with as
impurity states. The agreement attained between theory and
experiment is remarkable, which allows one to understand
the origin of the asymmetries that characterize the infrared
absorption bands of defect centers in crystalline solids.

II. THE HAMILTONIAN

A. The main terms of the Hamiltonian

The crystalline solid interacting with the electromagnetic
field is governed by the Hamiltonian

H = H0 + H1 + H2 + H3, �1�

where

H0 = �
q

��qaq
†aq + �

l

�lcl
†cl + �

ql

gqlcl
†cl�aq − aq̄

†� �2�

represents a crystal, eventually having point imperfections,
whose atomic constituents can be in different internal states.
The index q= �� ,q�� denotes the vibrational mode of the
branch � whose wave vector, frequency, and polarization
vector are q� , �q, and êq. The corresponding phonon operator
is aq. The branch index � also characterizes localized modes
associated to eventual crystal defects. We also denote q̄

��� ,−q��. The fermion operator cl
†, where l= �� , l��, creates

an electron in state ���r�− l��, bound to the ion at the lattice

site l�, with � labeling the excitation state. The operator cl
†cl

accounts for the internal state of the ion located at l�. By the
hermiticity of H0,

gql
� = − gq̄l. �3�

The number operator cl
†cl has eigenvalues 0 and 1. The

system represented by H0 has a class of stationary states for
which �cl

†cl�=0 for any l, which is affected by just the first
term of H0. It describes the dynamics of the unperturbed
harmonic crystal, in which all its ions are in their ground
states. Then, the second and third terms of H0 open chances
for the internal states of the ions to be excited, or for the
creation and annihilation of defects.

The electronic states � of the ionic core at l� are described

by the one-electron functions ���r�− l��. For the F center,
however, which is simply a single electron substituting a
negative ion in an ionic crystal, or a neutral hydrogenic im-
purity, this conveys a mean field approximation for the elec-

tronic structure of the crystal ion at l�.
As the displacement of a lattice ion from its equilibrium

position l� is

u� l� = �
q

êq� �

2NMl��q
eiq� ·l��aq − aq̄

†� , �4�

where Ml� is the ionic mass and N the number of cells, the
operators aq−aq̄

† are essentially the Fourier components of
the ionic motions around the lattice sites. Formally, the term
H0 is equivalent to the Hamiltonian of a set of uncoupled
displaced harmonic oscillators, with the displacements pro-
portional to the number operators cl

†cl.
The next term of H

H1 = �
l�l�

�
q

gql�lcl�
† cl�aq − aq̄

†� �5�

expresses that the internal dynamics of the crystal ions is
disturbed by the presence of their neighbors. The diagonal
electron-phonon coefficients gql are associated to local dis-
tortions of the lattice, whereas the terms in gql�l may contrib-
ute to the hybridization of the electronic states, turning their
energy levels into bands of finite width. Also, for l and l�
such that l�� l��, H1 is a hopping term, describing electronic
exchanges between the different ions. The sizes of the
electron-phonon coefficients gql and gql�l are expected to be
very dissimilar, and H1 is a comparatively small term. The
neglection of H1 is usually referred to as the Condon ap-
proximation. However, owing to the particularly strong
electron-phonon couplings which characterize F centers, one
may expect that, for these defects, H1 will be large enough to
produce observable effects.5

Alternatively, if one interprets that cl
† and cl create and

annihilate an impurity in site l�, H1 acquires a very interesting

significance: a transition from l= �� , l�� to l�= �� , l��� is a hop-
ping of the defect between two lattice sites, with no change
in its internal state �, and the transition probability per unit
time of such processes is essentially the diffusion coefficient.
Hence, in that case, H1 governs the phonon-assisted quantum
diffusion of the impurity.7–11

The remaining two terms of H

H2 = �
�k�

�ck	�k�
†

	�k� �6�

and

H3 =
e

mc
A� �r�� · p� �7�

represent the Hamiltonian of the free electromagnetic field
and its interaction with the electron, respectively. As usual,
we adopt the Coulomb gauge and neglect the term quadratic

in the vector potential A� , whose representation in a plane
wave basis reads

A� �r�� = �
�k�

ê�k��2
�c

k

1
�V

eik�·r��	�k� − 	��−k��
† � , �8�

where 	
�k�
† creates a photon with well-defined momentum �k�

and polarization index �. The unit vector ê�k� determines the
polarization direction of the field mode ��k��. Vector p� in Eq.
�7� denotes the momentum operator of the electron. When
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expressed in terms of the electronic operators, H3 takes the
form

H3 =� c

V
�
l�l

Ql�l�k�cl�
† cl�	�k� − 	��−k��

† � , �9�

where Ql�l�k� is a coefficient.
The representation �8� of the electromagnetic field by

plane waves is adequate to study the absorption of light
quanta from a collimated beam. The boundary conditions for
the spontaneous emission demand the use of the multipolar
expansion of the field. Since both cases are formally similar,
we consider in detail just the absorption processes.

B. The coefficients

The second quantized Hamiltonian �1� is related with its
correspondent operator H in coordinate representation by

H =� d3r��†�r��H�r�,p����r�� , �10�

where

��r�� = �
l

cl���r� − l��, l = ��,l�� , �11�

is the electron field operator. In terms of coordinate represen-
tation magnitudes, the coefficients appearing in the several
terms of H are then

gql =� �

2NMl��q
êq · �

l��

eiq� ·l��F� ��l�−l���, �12�

where

F� ��l�−l��� =� d3r���
��r�� � v�r� − l�� + l�����r�� �13�

and v�r�− l�� is the screened potential energy of interaction

between the electron and the nucleus at l�. The magnitude

F� ��l�−l��� is the unbalanced force between two ions at l� and l��,
caused by the excitation of one of them.

Similarly, the off-diagonal coefficients gql�l are

gql�l =� �

2NMl��q
êq · �

l��

eiq� ·l��F� ����l��−l����l�−l���, �14�

where

F� ����l��−l����l�−l��� =� d3r����
� �r� − l�� + l��� � v�r�����r� − l� + l���

�15�

and the coefficient appearing in H3 is

Ql�l�k� =
e

mc
�2
�

k
ê�k� · f�k�l�l, �16�

where e /m is the specific charge of the electron and

f�k�l�l = − i�� d3r����
� �r� − l���eik�·r� � ���r� − l�� . �17�

III. THE STATIONARY STATES OF H0

A. Energy spectrum and eigenvectors of H0

The new Bose operators

bq = aq − �
l

gq̄l

��q
cl

†cl, �18�

which satisfy the commutation relations

	bq,cl
 =
gq̄l

��q
cl, 	bq,cl

†
 = −
gq̄l

��q
cl

† �19�

and

	bq,cl
†cl
 = 0, �20�

decouple H0 and separate it into three commuting terms. In
effect, using Eq. �18� to eliminate the operators aq from the
right-hand side of Eq. �2�, H0 becomes

H0 = �
q

��qbq
†bq + �

l
��l − �

q

�gql�2

��q
cl

†cl

+ �
l�l�

gqlgq̄l�

��q
cl

†clcl�
† cl�. �21�

The first term represents the vibrational energy of the ions
around their new equilibrium positions, the second one in-
corporates a lattice accommodation energy associated to
each local electronic state, and the third is an interaction
between different ions, mediated by the local distortions that
their excited states produce in the lattice. Its general form
is reminiscent of the interaction term of the Hubbard
Hamiltonian,14 and should determine lattice mediated corre-
lations between point defects at high concentrations.

The eigenvalue spectrum of H0 is made of direct sums of
the eigenvalues of its three commuting terms. As we are
interested in crystal states with just one excited ion, the third
term of H0 can be disregarded. The eigenenergies for a single
excited ion are

El�nq� = �
�nq�

��qnq + �l − �
q

�gql�2

��q
, nq = 0,1,2, . . . .

�22�

Using the commutation relations �19� and the property

	bq, f�bq
†�
 = f��bq

†� , �23�

where f is an analytic function and f� its derivative, valid for
any set �bq� of Bose operators, it is readily shown that

bq exp��
lq

gq̄l

��q
cl

†clbq
†�

l

�cl
†��l�00� = 0, �l = 0,1.

�24�

Here �00� denotes the ground state of the crystal, with no
vibrational nor electronic excitations, which satisfies
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aq�00� = 0. �25�

Equation �24� defines the vibrational ground state of the
crystal with a set of point defects in internal states �, located

at those sites l� for which �l=1.
In particular, for a single defect, the vibrational ground

state is

�l0� = exp�1

2�
q
� gq̄l

��q
�2exp��

q

gq̄l

��q
bq

†cl
†�00� , �26�

where the first exponential factor in the right hand side was
introduced to ensure that �0l �0l�=1. With this notation, Eq.
�24� reduces to

bq�l0� = 0 for any l . �27�

The alternative expression for �l0�

�l0� = exp��
q

gql

��q
�bq + bq̄

†��cl
†�00� �28�

has the advantage of being expressed in terms of an unitary
operator acting on the bare defect state cl

†�00�. The state �l0�
describes the point defect dressed by the virtual phonon
cloud representing the distortion it produces in the host
lattice. The equivalence between Eqs. �26� and �28�
can be shown with the help of the identity
exp�A+B�exp�	A ,B
 /2�=exp A exp B, valid for any pair of
operators A and B which commute with their commutator
	A ,B
.

Therefore, in general, the one-defect eigenvectors of H0
are

�l�nq�� = �
q

�bq
†�nq

�nq!
exp��

q

gql

��q
�bq + bq̄

†��cl
†�00� . �29�

As �l0 � l0�=1, vectors �29� form an orthonormal set.

B. Some useful properties

The commutation relations �19� can be written as

cl
†bq

† = �bq
† −

gql

��q
cl

†, clbq
† = �bq

† +
gql

��q
cl, �30�

and, applying these equations n times, one has that

cl
†�bq

†�n = �bq
† −

gql

��q
n

cl
†, cl�bq

†�n = �bq
† +

gql

��q
n

cl,

�31�

which can be extended to any analytic function of bq
†. Recall-

ing Eq. �28� and noticing that

	cl,bq + bq̄
†
 = 	cl

†,bq + bq̄
†
 = 0, �32�

one can easily realize that

cl
†cl��l�0� = exp��

q

�Gql� − Gql��bq + bq̄
†���l0� , �33�

where we defined

Gql �
gql

��q
. �34�

Alternatively, in terms of just phonon creation operators,

cl
†cl��l�0� = �

q

exp�−
1

2
�Gql� − Gql�2 + �Gq̄l� − Gq̄l�bq

†��l0�

�35�

and cl
†cl��l�0�=0 for any l�� l�.

Defining also

Gql�l � Gql� − Gql, �36�

from relations �29�, �31�, and �35� one has that

�l�nq��cl
†cl��l��nq + �q��

= �l0��
q

exp�−
1

2
�Gql�l�2

�
bq

nq

�nq!

�bq
† + Gql�l�nq+�q

��nq + �q�!
exp�Gq̄l�lbq

†��l0� . �37�

Using the property �l0�bq
nf�bq

†��l0�= f �n��0�, satisfied by any
set of Bose operators and analytic function f , Eq. �37� can be
written as

�l�nq��cl
†cl��l��nq + �q��

= ��
q

exp�− 1
2 �Gql�l�2�

�nq ! �nq + �q�!

�
dnq

dynq
	�y + Gql�l�nq+�qexp�Gq̄l�ly�
�

y=0

�38�

or, replacing x=−Gq̄l�l�y+Gql�l�,

�l�nq��cl
†cl��l��nq + �q��

= ��
q

exp� 1
2 �Gql�l�2�

�nq ! �nq + �q�!
1

�Gq̄l�l��q

dnq

dxnq
�xnq+�qe−x��

x=�Gql�l�
2

.

�39�

Recalling the Rodrigues formula �dn /dxn��xn+�e−x�
=n !x�e−xLn

��x� for the generalized Laguerre polynomials
Ln

��x� one finally obtains that

�l��nq + �q��cl�
† cl�l�nq�� = �

q

� nq!

�nq + �q�!
exp�−

1

2
�Gql�l�2

��Gql�l��qLnq

�q��Gql�l�2� . �40�

The factor multiplying each Laguerre polynomial in the
equation above is precisely its corresponding weight func-
tion.

IV. THE OPTICAL ABSORPTION AND EMISSION BANDS

A. Temperature-dependent transition rates

As long as the experimental setup selects only one-photon
events, the observed transition rates between the states �� of
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the free electromagnetic field are of first order in the term H3,
which couples it with the charges. Thus, Fermi’s golden rule
is accurate enough to describe their energy transfers.

The matrix element of the interaction H3 between the sta-
tionary states of H0+H2

����l��nq + �q��H3�l�nq���� �41�

separates into two factors. The first one,

� c

V
�
�k�

Ql�l�k�����	�k� − 	��−k��
† ��� , �42�

vanishes when �� and ��� does not differ in just a single
photon. For annihilation of one photon �� ,k��, ���	�k���
=�n�k�, and ���	�k�

† ��=0, with n�k� being the number of

�� ,k�� photons in the volume V. Other terms in the sum �42�,
with indices different from �� ,k��, vanish as well. The second
factor is the matrix element �40�.

Therefore, denoting

J�k� =
n�k�

V
c �43�

the density of flux of �� ,k�� photons, the matrix element for
absorption processes takes the general form

����l��nq + �q��H3�l�nq����

= �J�k�Ql�l�k��
q

� nq!

�nq + �q�!

�exp�−
1

2
�Gql�l�2Gql�l

�q Lnq

��q���Gql�l�2� . �44�

The vibrational states of the crystal are not measured,
hence the transition rates wl�l�k� must be summed over all
possible quantum numbers of the crystal modes, weighing
the initial ones with their thermodynamic probabilities.
Therefore, for absorption

wl�l�k� =
2


�
�
�nq�

�
��q�

1

QT
exp�− �

q

��q

kBT
nq�����l��nq

+ �q��H3�l�nq�����2���
q

��q�q + El� − El − �ck ,

�45�

where QT is the partition function of the crystal modes, kB
the Boltzmann constant, and T the temperature. Replacing
Eq. �44� and solving the sum over nq with the help of the
Hille-Hardy formula

�
n=0

�

n !
Ln

����x�Ln
����y�

��n + � + 1�
zn =

�xyz�−�/2

1 − z
exp�− z

x + y

1 − z
I��2

�xyz

1 − z
 ,

�46�

where I� is the modified Bessel function of order �, one
obtains that

wl�l�k� =
2


�
J�k��Ql�l�k��2Fl�l��ck;T� , �47�

where

Fl�l��ck;T� = �
q

exp�− �Gql�l�2 coth� ��q

2kBT
�

� �
�q=−�

�

e��q�q/2kBTI�q� �Gql�l�2

sinh� ��q

2kBT�
����

q

��q�q + El�l − �ck �48�

and El�l=El�−El. Replacing the integral form for the � func-
tion and then the generating function of the modified Bessel
functions, one obtains the integral expression

Fl�l��ck;T� = �
−�

�

dt exp��
q

�Gql�l�2

��− coth� ��q

2kBT
�1 − cos��qt��

+ i sin��qt��� exp	i�El�l/� − ck�t


2
�
�49�

for the line-shape function, alternate to the phonon expansion
�48�.

B. The line-shape function

It is easy to show that

�
−�

�

d��ck�Fl�l��ck;T� = 1. �50�

Hence, in the Condon approximation, the total rate of photon
absorption events does not depend on temperature, its value
is given by the factor multiplying Fl�l��ck ;T� in Eq. �47�,
and the line shape is entirely governed by the distribution
�49�.

Equation �49� has the form

Fl�l��ck;T� = �
−�

�

dt�l�l�t,�ck;T� , �51�

where

��l�l�t,�ck;T�� = e−Jl�l�t;T� �52�

and

Jl�l�t;T� = �
q

�Gql�l�2 coth� ��q

2kBT
	1 − cos��qt�
 . �53�

To gain insight on the general features of Fl�l��ck ;T�, we
derive here explicit expressions for the case of a substitu-
tional point defect in a lattice having the KCl structure. In a
first step, simple Debye and Einstein models are used to deal
with the acoustic and optical modes of the crystal, and only
nearest-neighbor interaction between the defect and the lat-
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tice is assumed. It is easy to realize that the final conclusions,
which are used later to justify a more general treatment,
should remain valid also for the true vibrational modes and
forces.

The mean force exerted by the defect over a neighboring

ion can be written as F� l��=Fl̂�, where l�� is the lattice vector
connecting the two crystal sites, and then the coefficients
�12� now read

gql =� �

2NM�q
Fêq�

l��

eiq� ·l��l̂�. �54�

In the KCl structure,

l�� =
a

2
�� î, � ĵ, � k̂� , �55�

where a is the lattice parameter. Recalling that the polariza-
tion vectors ê�q�, �=1,2 ,3, of the normal modes form an
orthogonal basis for each q� , one can show that

�
�

�Gql�l�2 =
2��F�2

NM��q
3 �

i=x,y,z
sin2�a

2
qi . �56�

The constant �F=F�−F is the variation of the force exerted
by the defect on its neighbors upon excitation.

Separating the sums over � into acoustic and optical
branches, the exponent Jl�l�t ;T� splits into two terms

Jl�l�t;T� = Jl�l
�ac��t;T� + Jl�l

�op��t;T� . �57�

In the Debye model for the acoustic modes

��q� = �vsq , q = �q� � � qD,

0, otherwise,
� �58�

where the speed of sound vs does not depend on the branch
index � and aqD=2�3
2�1/3 for the KCl structure. Substitut-
ing this and Eq. �56� in Eq. �53�, and replacing

�
q

→�
�

V

�2
�3� d3q� , �59�

one obtains the nonperiodic function of t

Jl�l
�ac��t,T� =

3��F�2


2��vs
3�

0

aqD dx

x
�1 −

sin x

x


�coth� �vs

2akBT
xsin2�vstx

2a
 , �60�

where �=NM /V. More explicitly, in terms of the Debye tem-
perature �D,

Jl�l
�ac��t,T� =

3��F�2


2��vs
3�

0

6.187 dx

x
�1 −

sin x

x


�coth�8.081 � 10−2�D

T
x

�sin2�1.058 � 1010�Dtx� . �61�

Assuming a fixed frecuency �0 for the optical modes, the
same procedure gives the optical component

Jl�l
�op��t,T� =

3��F�2


2��vs
3 � 1.422 coth� ��0

2kBT
sin2��0t

2
 ,

�62�

which is periodic in t. In this way, Fl�l��ck ;T� is the Fourier
transform of the product of a nonperiodic function with a
periodic function of t.

On the other hand, for

F��� = �
−�

�

dtf�t�g�t�ei�t, �63�

where g�t+��=g�t�, one can write

F��� = �
n=−�

�

gn�
−�

�

dt f�t�ei��+2
n/��t, �64�

where gn is a Fourier coefficient. Then

F��� = �
n=−�

�

gnF1�� + 2
n/�� , �65�

where

F1��� = �
−�

�

dt f�t�ei�t. �66�

Thus, if F1��� is a sharp distribution whose width is much
smaller than 2
 /�, the effect of the periodic function g is to
produce a periodic series of copies of F1���, modulated by
the coefficients gn. The shape of the peaks depends entirely
on the nonperiodic function f .

In conclusion, for our purposes, we can attribute the line
shape just to the acoustic modes of vibration, and the optical
ones can be disregarded when shape is the only concern.
However, the total area under the main peak �n=0� is influ-
enced by the optical modes through the Fourier coefficient g0
in Eq. �65�. Although the total absorption is temperature in-
dependent, the area under just the main peak is reduced by
the temperature-dependent coefficient g0, which accounts for
the area under the subsidiary maxima produced by the opti-
cal modes. Anyway, for the shape function of the main maxi-
mum �i.e., in the frequency range ����
 /��, one can put

Jl�l�t;T� = Jl�l
�ac��t;T� . �67�

An illustrative example is given by Fig. 1, which shows
Jl�l�t ;T�, as given by Eq. �61�, for �D=400 K, T=100 K,
and 3��F�2 / �
2��vs

3�=1. The function does not diverge for
t→ ��, but goes to a constant. Hence the integral
Fl�l��ck ;T� has a component that diverges to a � function
centered at �ck=El�l. This is called the zero-phonon line.

V. WIDE AND NARROW BANDS

A. The wide band approximation

The function Jl�l�t ;T� has a minimum and vanishes at t
=0. The coefficients Gql�l, and hence Jl�l�t ;T�, are propor-
tional to the variation �Fi of the forces exerted by the defect
on the neighboring crystal ions. Index i denotes the order of
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vicinity. If just one of these force variations is such that

�Fi ��
2

3
��vs

3 �68�

then Jl�l�t ;T� grows rapidly as t departs from t=0,
��l�l�t ,�ck ;T�� falls rapidly to a very small constant, and the
zero-phonon line is negligibly weak. For �Fi large enough,
the absolute value of the subintegral function in Eq. �49� is
significant only for ��Dt��
 /2. Replacing in it 1−cos��qt�
��q

2t2 /2 and sin��qt���qt, and then integrating, one ob-
tains the Gaussian distribution

Fl�l��ck;T� =
1

�
�l�l�T�
exp�−

��ck − El�l − �l�l�2

�l�l
2 �T� � ,

�69�

where the Stokes shift �l�l is given by

�l�l = �
q

��q�Gql�l�2, �70�

and whose standard deviation is

�l�l�T� = �2�
q

�2�q
2�Gql�l�2 coth� ��q

2kBT
�1/2

. �71�

The condition for this approximation to hold is

�l�l�T� �
2��D



, �72�

which is well satisfied at any temperature by F centers in
ionic salts. In effect, Eqs. �69�–�71� fit the data on these
defects within the experimental uncertainties.5

Additionally, from Eqs. �70� and �71� one has the simple
relation between the Stokes shift and standard deviation of
the bands at high temperatures

	�l�l�T�
2 = 4kB�l�lT �T � �D/2� . �73�

Since the two quantities can be easily obtained from the
experimentally measured bands, Eq. �73� provides a

parameter-free test of theory. The data on F centers prove to
follow quite accurately the asymptotic relation �73�.5

B. Narrow bands

Equation �49� can be rewritten as

Fl�l��ck;T� = �
−�

�

dt exp��
q

�Gql�l�2�− 2�q
2 coth� ��q

2kBT


�� sin��qt/2�
�q

2

+ i�q
sin��qt�

�q
��

�
exp	i�El�l/� − ck�t


2
�
. �74�

For large enough t,

sin��qt�
�q

� 
�1��q�
t

�t�
→ �
���q� �t → �� ,

− 
���q� �t → − �� ,
�

�75�

� sin��qt/2�
�q

�2

�



2
�1��q��t� →




2
���q��t� �t → � �� ,

where �1 is a finite distribution which approaches a � func-
tion for large t. Replacing in Eq. �74� and integrating one
obtains that

Fl�l��ck;T� = cos �l�lFl�l
�e���ck;T� + sin �l�lFl�l

�o���ck;T� ,

�76�

where the first component of Fl�l��ck ;T� is the even Lorent-
zian distribution

Fl�l
�e���ck;T� =

1




�l�l�T�

��ck − El�l�2 + 	�l�l�T�
2 �77�

and the second one is the odd function of �ck−El�l

Fl�l
�o���ck;T� =

1




�ck − El�l

��ck − El�l�2 + 	�l�l�T�
2 . �78�

Fl�l
�o���ck ;T� gives account for the asymmetry of the band,

which implicitly conveys a Stokes shift. The half width at
half height of the distribution is

�l�l�T� = 
�
q

��q
2�Gql�l�2 coth� ��q

2kBT
�1��q� �79�

and the constant �l�l governing the asymmetry reads

�l�l = 
�
q

�q�Gql�l�2�1��q� . �80�

The functions of q� multiplying �1��q� in Eqs. �79� and �80�
go to zero at q� =0, as �q does, and hence �1��q� cannot be
replaced by a true � function. The real meaning of �1 is that
the region of the minimum of Jl�l�t ;T�, shown in Fig. 1,
gives the main contribution to the integral Fl�l��ck ;T�. The
approximation implicit in Eqs. �76�–�80� is to replace the

FIG. 1. The function Jl�l
�ac��t ;T�, as given by Eq. �61�, for T

=100 K and �D=400 K. Segmented lines represent the parabolic
approximation �wide bands�, the linear approximation �narrow
bands�, and the asymptotic behavior giving rise to the zero phonon
line.
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true function Jl�l�t ;T� by Jl�l�t ;T�=Al�l�t�, with Al�l depend-
ing only on �q, as is represented in Fig. 1 by the segmented
straight line. The zone close to the minimum at t=0 is then
approximated by a linear function, instead of a parabolic one,
as was done for wide bands in the previous subsection.

To have an estimation for the error involved in the just
explained approximation, recall that Fl�l��ck ;T� is normal-
ized 	Eq. �50�
. The Lorentzian function Fl�l

�e���ck ;T� also
encloses the unit area, but the integral of the odd component
Fl�l

�o���ck ;T� vanishes. Hence the area under the approximate
distribution given by Eq. �76� is cos �l�l, instead of unity. The
error of the approximation can be estimated as the lost area,
and is then of the order of �l�l

2 . The weight sin �l�l of the odd
component is then within the range in which the approxima-
tion is valid.

The dispersion relations �q can be calculated from the
force constants of the solid, which are known from neutron
scattering experiments with high accuracy and for many ma-
terials. But for the force variations �Fi, this is the only input
required by Eq. �49� or �74� to yield the line shape
Fl�l��ck ;T� after a numerical integration. However, the ap-
proximate methods introduced in this section produce
closed-form equations that give better insight in the origin of
the general features displayed by the spectra.

VI. COMPARISON WITH EXPERIMENTAL RESULTS

The local modes of U centers and heavier impurities in
alkali halides provide a good example of narrow photon ab-
sorption bands, showing the asymmetries predicted by Eqs.
�76�–�78�. Kittel’s solid state textbook exhibits a beautiful
example of such kind of asymmetric bands to illustrate opti-
cal absorption by localized modes in solids.12 The spectral
lines of U center modes and massive point defects are not
sharp, but show bands whose widths are about 10% the De-
bye energy, indicating a rather strong interaction with the
other degrees of freedom.

A main part of the harmonic forces between the crystal
ions comes from the adiabatic shifts played by their elec-

tronic energies when the relative positions change. By virtue
of the adiabatic approximation, the electronic degrees of
freedom disappear and become implicit in the dynamics of
the ions. Now we leave aside the adiabatic scheme for the U
center, and take the substitutional H− ion simply as a proton
and two electrons trapped inside an anionic vacancy. The
same strategy is applied to other impurities. From this view-
point, the localized modes are electronic states, which we
assimilate to the quantum numbers l and l�.

Figures 2 and 3 show part of the experimental data pub-
lished by Schaefer6 on the infrared absorption bands of U
centers in KCl at T=57 and 90 K, together with the curves
given by Eqs. �76�–�78�. Experiment measures, for different
photon energies �ck, a magnitude that is essentially the tran-
sition rate wl�l��ck ;T�, which is, in turn, proportional to the
normalized shape function Fl�l��ck ;T�. Hence, there is a
scale factor between the two magnitudes. To accomplish the
comparison, we simply fitted the curve

Fl�l��ck;T� =
A




� cos � + ��ck − El�l�sin �

��ck − El�l�2 + �2 �81�

to each set of data, proceeding independently for T=57 and
90 K, choosing the parameters � and �, which determine the
shape, and the scale factor A. As discussed in Sec. IV, A is
temperature dependent because of the coefficient g0.

According to theory, � should not depend on the tempera-
ture T. Table I shows the values of the parameters giving the
curves of Figs. 2 and 3. As expected, the asymmetry param-
eter � shows a small variation, but still within reasonable
bounds. Since the error of the approximation can be esti-
mated as �2, the uncertainty in Fl�l��ck ;T� is close to 2.5%.
As the asymmetry is not very pronounced, small errors in
Fl�l��ck ;T� may induce larger relative variations in �.

TABLE I. U centers in KCl. Values for the parameters appearing
in Eq. �81�.

T �K� A �cm−1� −� �rad� � �10−2 eV� El�l �10−2 eV�

57 0.848 0.12 0.022 6.190

90 0.880 0.14 0.034 6.174

FIG. 2. Infrared absorption by localized modes of substitutional
H− �U center� in KCl at T=57 K. The circles represent experimen-
tal data of Schaefer �Ref. 6� and the solid line depicts Eqs.
�76�–�78� with the parameters of Table I.

FIG. 3. Same as Fig. 2 but for T=90 K.
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A similar procedure was accomplished for the data on
KBr,6 and the results are displayed by Figs. 4 and 5 and
Table II. The asymmetry parameter � exhibits again small
shift with temperature.

The parameter � turns out to be negative in both cases.
The next section is devoted to discuss the physical meaning
of this circumstance.

At temperatures higher than 90 K the height of the spec-
tral peaks fall rapidly 	�2.5 cm−1 for both KCl and KBr at
T=194 K �Ref. 6�
, and the quality of the fit between the
theoretical curves and the data become much worse. It is
expected that the term H1 of the Hamiltonian, which was
neglected in the present analysis, would acquire increasing
importance with temperature, because it is proportional to
the vibrational amplitudes.

Experimental results published by Takeno and Sievers15

provide a chance for testing the theory at lower temperatures
and higher mass. Figures 6 and 7 show the fit of the theoret-
ical expression �81� to part of the data of these authors for KI
crystals with Ag+ substitutional impurities. The fit of the the-
oretical curve to the experimental points is striking, and the
parameters giving that fit, shown in Table III, exhibit the
expected behavior: both � and E have the same value at the
two temperatures.

VII. THE SIGN OF �l�l

By its definition �80�, the constant �l�l is a positive mag-
nitude. It determines both the asymmetry of the band and the
Stokes shift. A positive value of �l�l modifies the maximum

of the absorption band, and also the average photon energy
transfer, to figures higher than El�l. This is the normal situa-
tion, because, in the mean, it is expected that the excitation
processes be accompanied by phonon radiation seizing net
energy. This can be seen also in the phonon exchange series,
Eq. �48�, whose terms are weighted by an exponential func-
tion of �q. Creation processes ��q�0� are then much more
likely than annihilation ones.

For deexcitation processes, Eq. �48� holds as well, but
with −�El�l�+�ck placed instead of El�l−�ck in the argument
of the � function. Now the term ��q

��q�q, which is most
likely positive, subtracts energy to the photons, and

��ck� � �El�l� . �82�

In the scheme of the previous sections, �����0 for deexci-
tation of the defect.

Therefore, the theory suggests that the infrared absorption
bands observed by Schaefer in KCl and KBr correspond to
deexcitation processes. From this viewpoint, the initial im-
purity state is a metastable excited state, close to the ground

TABLE II. U centers in KBr. Values for the parameters appear-
ing in Eq. �81�.

T �K� A �cm−1� −� �rad� � �10−2 eV� El�l �10−2 eV�

57 2.138 0.077 0.0269 5.522

90 1.842 0.079 0.0572 5.505

FIG. 4. Infrared absorption by U centers in KBr at T=57 K.
The circles represent experimental data of Schaefer �Ref. 6� and the
solid line depicts Eqs. �76�–�78� with the parameters of Table II.

FIG. 5. Same as Fig. 4 but for T=90 K.
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FIG. 6. Infrared absorption by Ag+ in KI at T=7.4 K. The
circles represent experimental data of Takeno and Sievers �Ref. 15�,
and the solid line depicts Eqs. �76�–�78� with the parameters of
Table III.
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state, and the photon provides the energy necessary to jump
over the potential barrier.

To understand the origin of this metastability, recall that
we deal with states of very low energy, close to the Debye
energy. On the other hand, the energy of a defect state l is of
the general form

El = �l − �
q

�gql�2

��q
, �83�

where the term �l is the energy of the impurity in a rigid
undeformed lattice, and the other term is the energy released
by the lattice when reaching equilibrium with the impurity in
state l. Calculations of the lattice relaxation energies show
that they are of the order of the Debye energy,13 and then the
two terms of Eq. �83� are comparable. Hence, the different

eigenenergies El and their terms �l are not necessarily in the
same order.

Consider two states l and l�, such that

El � El�, El � �l��l� , �84�

where �l��l� is the energy of the defect state l�, taking the
lattice distortion caused by l as the reference undistorted lat-
tice. According to the Franck-Condon principle, electronic
excitations occur with no lattice modification, and lattice re-
laxation takes place subsequently. Therefore, the deexcitation
process l→ l� would follow the scheme

El →
��ck+��

�l��l� →
�−���

El�, �85�

where � is an uncertainty in the energy transfer due to the
fact that �l��l� is not the energy of a true stationary state, and
�−�� is precisely the lattice relaxation energy.
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TABLE III. Substitutional Ag in KI. Values for the parameters
appearing in Eq. �81�.

T �K� A �cm−1� � �rad� � �cm−1� El�l /�c �cm−1�

7.4 4.21 0.12 0.70 17.17

10.4 3.08 0.12 0.80 17.17
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FIG. 7. Same as Fig. 6 but for T=10.4 K.

LAGOS et al. PHYSICAL REVIEW B 77, 104305 �2008�

104305-10


