
Sonic band gaps in one-dimensional phononic crystals with a symmetric stub

Anne-Christine Hladky-Hennion,1 Jérôme Vasseur,1 Bahram Djafari-Rouhani,1 and Michel de Billy2

1Institut d’Electronique de Microélectronique et de Nanotechnologie (UMR 8520 CNRS), Avenue Poincaré, Boîte Postale 60069,
59652 Villeneuve D’Ascq Cedex, France

2Institut Jean Le-Rond d’Alembert (UMR 7190 CNRS), Université Paris 6, 2, Place de la Gare de Ceinture,
78210 Saint Cyr l’Ecole, France

�Received 19 November 2007; published 21 March 2008�

The propagation of elastic waves through a one-dimensional chain of beads with grafted stubs is experi-
mentally as well as numerically investigated. The results obtained by both approaches are well correlated and
show that the stub introduces a dip in the spectral response of the chain, which is related to the excitation of
a stub mode. A parametric study on the stub is carried out and shows which parameters have an effect on the
position and the shape of the stub mode. The results allow potential applications for the filtering and the
multiplexing of elastic waves.
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I. INTRODUCTION

For many years, the wave propagation in periodic systems
has received a great deal of attention. By analogy with the
studies driven on photonic crystals,1–3 many works were con-
ducted on phononic crystals, which designate two- or three-
dimensional periodic arrangements of inclusions in a matrix.
These heterogeneous materials may exhibit absolute band
gaps, under certain conditions where the propagation of elas-
tic waves is forbidden whatever the direction of propagation
of the waves is. This property confers to phononic crystals
potential applications in various domains, particularly for the
guiding and filtering of acoustic waves.4–12 In the past de-
cade, the transmission of electromagnetic13–18 and acoustic19

waves through photonic and phononic crystals was theoreti-
cally and experimentally studied. Linear and different
periodically stubbed waveguides11,15–18 structures were
considered.

In the case of photonic crystals, Danglot et al.18 reported
experimental and theoretical investigations of a T-stub struc-
ture patterned in a two-dimensional photonic crystal. Trans-
mittivity properties are interpreted in terms of multimode
propagation within the T-stub region. Results on the propa-
gating eigenmodes in this structure are given as a function of
the stub length. Each minimum in the power spectra corre-
sponds to an eigenmode of the photonic stub; thus, propaga-
tion toward the output terminal is forbidden. This phenom-
enon is analogous to the one observed in T-shaped quantum
wire structures.20 Both theoretical and experimental results
were also reported about the transmission in coaxial
waveguides with laterally attached stubs,15–17 showing, in
particular, the possibility of superluminal or subluminal
propagation of electromagnetic waves.

Several authors6–9 have studied the propagation of acous-
tic and elastic waves through a structure made of an infinite
linear waveguide on which stubs are grafted periodically.
Very large band gaps were obtained and by an appropriate
choice of the geometry and of the materials constituting the
waveguide and the stubs, tunability of the complete spectral
gap has been investigated. Similar studies were also con-
ducted by Depollier et al.21 on periodic two-dimensional lat-
tices of slender tubes.

Kafesaki et al.22 applied the finite difference time domain
method to investigate the guiding through rectilinear defects
created by removing a row of cylinders inside a two-
dimensional �2D� phononic crystal made of solid constitu-
ents. Similar studies were done by Khelif et al.4,23 in 2D
phononic crystals composed of fluid and mixed solid-fluid
constituents. References 4, 11, and 23 also showed that a
stub resonator connected perpendicularly to a straight wave-
guide inside a 2D phononic crystal leads to narrow dips in
the transmission spectrum of the phononic crystal based
structure. The length as well as the width of the stub is varied
by removing elements in the periodic arrangement. These
“zeros” of transmission can have potential applications in
filtering �selective transmission of frequency� and demulti-
plexing phenomena. In a recent paper, Pennec et al.10 theo-
retically investigated the properties of acoustic waves
through waveguides constituted of steel hollow cylinders in-
corporated in a phononic crystal made of filled steel cylin-
ders in water. They showed that the transmitted frequency
response can be adjusted by selecting the inner diameter of
the hollow cylinders or the nature of the liquid filling the
tubes. They also discussed the transmission properties of
Y-shaped wave guides constituted of hollow cylinders.

The work proposed in this paper follows the spirit of the
previous investigations on T-stub waveguides created inside
2D phononic crystals. While in 2D phononic crystals, the
waveguide and the stubs were created by removing a row
and some elements in the periodic arrangement, in the
present work the waveguide is made of a linear chain of
glued metal beads, and the stub is created by placing addi-
tional beads grafted on the waveguide. This study follows
previous works achieved on monoatomic and diatomic
chains of beads;24,25 in particular, localized modes were ob-
served in the forbidden band when the chain is made by the
periodic alternation of two different beads. In the present
paper, the transmission of an acoustic pulse through a chain
is studied; the chain is made of identical beads, and a double
symmetric T-stub is considered �to avoid bending motions of
the chain�. The experimental data are compared with the nu-
merical results, which are obtained with the help of the finite
element method or using a simple atomic model. In the first
part, the linear chain without a stub is considered. Then, a
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symmetric stub is grafted at the middle of the chain. Finally,
we investigate the transmission when the stub contains beads
of various sizes and numbers.

II. LINEAR CHAIN WITHOUT A STUB

In this section, a finite linear chain of Nc=5 identical and
glued beads is considered. The diameter of each bead is
equal to 10 mm. In the theory, it is assumed that each contact
between the beads is identical. The chain is excited by a
longitudinal force applied at one extremity. The experimental
setup has been previously described24 and is not recalled in
this paper. The finite element method, with the help of the
ATILA code,26 is used, and the harmonic analysis gives the
displacement at each node of the finite element mesh for
each frequency given in the calculation. Thanks to the axi-
symmetrical axis of the chain, the mesh is limited to the half
section. The study concerns the first few modes that corre-
spond to the acoustical branch of the chain. In the case of a
chain made up of five identical beads, Fig. 1�a� presents the
experimental power spectrum �in decibel� defined as the
square of the Fourier transform of the signal measured by the
receiver. For a linear approximation, the pressure is propor-
tional to the frequency multiplied by Ux in the case of har-
monic displacement. Therefore, the numerical variations of
frequency times displacement are plotted in decibel in Fig.
1�b� for a comparison with experimental results that measure
the acoustic pressure. Both of these plots are normalized and
clearly show several peaks at nearly the same position in
frequency. On the one hand, the numerical peaks are sharper
than the experimental ones because in the numerical calcu-
lation, the losses are not taken into account. On the other
hand, experimental peaks are wider because the frequency
resolution of the experimental setup is 2 kHz. Small discrep-
ancies in the position of the peaks are probably due to the
coupling between the beads that is assumed to be identical in
the numerical model. By considering five beads with both
ends free, which corresponds to experimental conditions, a
previous study relying on a chain of rigid atoms24 has shown
that five discrete frequencies are obtained, whose wave num-
bers k are equal to n� /L, where L is the total length of the
chain and n is an integer �L is approximately equal to 10R,
where R is the bead radius�. The corresponding angular fre-
quencies are equal to

�n = 2�fn = �4C/m�1/2 sin�kR� with k = n�/10R

�n = 0 – 4� , �1�

where fn is the corresponding frequency, C designates the
coupling constant, and m is the mass of each individual
bead.27 One can notice that the resonance frequency equal to
zero is always the solution of the system �n=0� and is not
reproduced in Fig. 1. Using a normalization on the frequency
f1 of the first mode �n=1�, the four resonance frequencies
deduced from Eq. �1� are f1 , f2=1.9f1, f3=2.6f1, and f4
=3.1f1. The positions of the numerical peaks, which are ob-
tained with the finite element method �Fig. 1�b��, are f1 , f2
=1.9f1, f3=2.7f1, and f4=3.4f1. Numerical frequencies are
very similar to the frequencies calculated by the simple

atomic model �Eq. �1��, particularly for the two first modes.
For higher frequencies, the chain of beads cannot be repre-
sented by a chain of rigid atoms, and more complex phenom-
ena occur.27

In the simple atomic model,24 assuming that the beads
oscillate in harmonic motion with the same frequency, the
displacement field of the modes can be written as A cos�kx�,
where x is the position along the chain and the temporal
factor has been omitted for the sake of simplicity. From the
numerical calculations, one can see that the normalized am-
plitudes of the displacements Ux at a given time are quite
well reproduced by Eq. �1� �Fig. 2� for the first modes

f1
f2

f3

f4

P
ow
er
Sp
ec
tr
um
(d
B
)

U
x
D
is
pl
ac
em
en
t
x
fr
eq
ue
nc
y
(d
B
)

(a)

(b)

Frequency (kHz)

0

-45

0

-80
0 20 40 60 80 100

Frequency (kHz)

FIG. 1. Chain made up of five identical steel beads 10 mm in
diameter. �a� Experimental power spectrum. �b� Numerical curve
showing the displacement Ux at the end of the chain multiplied by
the frequency as a function of the frequency. Both curves are nor-
malized. The vertical scales are in decibel. The vertical line repre-
sents the correspondence between the experimental and numerical
peaks.
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�n=1–4�. In Fig. 2, the five circles represent the rest position
of the beads. The displacement for the mode at frequency
equal to zero �n=0� is not drawn because the related dis-
placement is a simple translation.

�1� The displacement of the chain for mode n=1 is pre-
sented in Fig. 2�a�. It can approximately be written as
A cos��x /10R� and, as expected, the displacement is equal to
zero at the middle of the chain �x=5R� and is symmetric
with respect to the middle of the chain.

�2� For mode n=2, the displacement is presented in Fig.
2�b� and can approximately be written as A cos��x /5R�:
It is maximum at the middle of the chain and at the two
extremities.

�3� For mode n=3, the corresponding displacement is
roughly A cos�3�x /10R�. It is also equal to zero at the

middle of the chain �Fig. 2�c�� and is antisymmetric with
respect to the middle of the chain. The first two beads have a
displacement in the opposite direction.

�4� For mode n=4, the displacement is approximately
written as A cos�4�x /10R�, as expected, and is maximum at
the middle of the chain �Fig. 2�b��.

Finally, Fig. 2 shows that the simple atomic model can be
used as a first approximation to describe the motion of the
chain of beads although the quantitative behavior is more
complex and involves the deformation of the beads.

III. LINEAR CHAIN WITH A SYMMETRIC STUB
GRAFTED AT THE MIDDLE OF THE CHAIN

In this section, we symmetrically attach two beads
�10 mm in diameter� at the sides of the previous chain made
of five beads �Nc=5�. The new beads are attached at the
middle of the chain. This ramification is named stub, in ref-
erence to work on photonic18 and phononic4,7 crystals. The
total number of beads in the stub �Ns� is equal to 3, including
the bead contained in the linear chain �Ns=3�. In the present
study, the case of a symmetric stub has been privileged to
avoid bending motions of the whole chain that are generated
with a nonsymmetric stub. The analysis is performed using
the previous experimental procedure, as well as simple
atomic model and numerical calculations.

First, it is worth noting that in the frame of a simple
atomic model considering only the interaction between adja-
cent beads, a dip occurs in the transmission spectrum at the
angular frequency �dip=�C� /M�, where C� designates the
coupling constant between the atom at the center of the chain
and the atom in the stub and M� is the mass of the atom in
the stub. This frequency is the resonance frequency of the
latter atom when the atom at the center of the chain is rigidly
fixed.

The experimental and numerical analyses of the stubbed
waveguide constituted by the beads follow the same idea,
although the origin of the resonances in the stub is more
complex due to the deformation of the beads during their
motion.

To limit the time of the numerical simulations, infinite
cylinders instead of beads are considered, and the plane
strain condition is used. In this way, the discretized mesh is
only two dimensional instead of being three dimensional, as
in the case of beads. Several numerical tests have been per-
formed to verify this hypothesis and have shown that it is
valid using a multiplicative factor on the frequency scale
between the bead and cylinder results.

Figure 3 presents the experimental power spectrum of the
transmitted signal and the numerical displacement at the end
of the chain as a function of frequency. A good agreement is
obtained between experimental and numerical results, as
concerns the position of the peaks. These curves clearly
show a dip in the response, as previously noticed in the
simple atomic model.

In the aim of determining the origin of the minimum ob-
served in Fig. 3, the displacement Ux of the chain is pre-
sented in Fig. 4 for the main peaks and dip of the curves. The
circles represent the rest position of the beads.
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FIG. 2. Chain made up of five identical steel beads 10 mm in
diameter. Numerical displacement Ux as a function of the position
in the chain for the first modes. �a� Mode n=1�f1�, �b� mode n
=2�f2�, �c� mode n=3�f3�, and �d� mode n=4�f4�. The amplitude is
normalized. The five circles show the rest position of the beads.
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�1� A mode at f1 �n=1� is obtained, and the corresponding
displacement field �Fig. 4�a�� is very similar to the one ob-
tained without the stub �Fig. 2�a��. One can notice that intro-
ducing a stub does not change the frequency of this mode
because the additional beads are attached on a fixed bead:
The displacement along the chain is equal to zero for the
bead at the middle of the chain.

�2� The frequency of mode n=2 is significantly changed
by introducing the stub �f2=1.6f1 instead of 1.9f1�. The cor-
responding displacement at f2 �Fig. 4�b�� is very similar to
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FIG. 3. Chain made up of five identical steel beads, with a
symmetric stub grafted at the middle of the chain, all 10 mm in
diameter. �a� Experimental power spectrum. �b� Numerical curve
showing the displacement Ux at the end of the chain multiplied by
the frequency as a function of the frequency. Both curves are nor-
malized. The vertical scales are in decibel. The vertical line repre-
sents the correspondence between the experimental and numerical
peaks.
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FIG. 4. Chain made up of five identical steel beads, with a
symmetric stub grafted at the middle of the chain, all 10 mm in
diameter. Numerical displacement Ux as a function of the position
in the chain at the following frequencies: �a� f1, �b� f2, �c� fdip, �d�
f4, and �e� f3. The amplitude is normalized. The circles show the
rest position of the beads.
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the case without a stub �Fig. 2�b��, but the frequency is quite
different because the additional beads are attached on a mov-
ing bead.

�3� At the frequency of the dip �fdip=2.5f1�, the numerical
displacement �Fig. 4�c�� shows that the vibration is located in
the left part of the chain and in the stub, whereas it is negli-
gible in the right part. Thus, the dip is related to an eigen-

mode of the stub, which forbids propagation of waves to-
ward the output terminal. The stub has an important
influence on the propagation of elastic waves from one ex-
tremity to the other: the wave enters the stub, is reflected at
the end of the stub, and returns back to the beginning of the
chain. Similar trends were obtained in 2D photonic crystals18

and in 2D phononic crystals containing a stub grafted on a
linear waveguide,6 in analogy to the prediction of a simple
atomic model. However, in the latter model, the atom at the
center of the chain and the following atoms to the right re-
main at rest at the frequency of the dip. In the case of the
chain of beads, the atom at the center of the chain still dis-
plays a small motion that expresses the departure of the
quantitative result with respect to that of a simple model.

�4� At 2.7f1, a small peak appears in the curves of Fig. 3.
The related displacement field �Fig. 4�d�� shows a motion
similar to the n=4 mode �Fig. 2�d�� but disturbed due to
additional beads. The frequency of the mode has drastically
decreased �f4=2.7f1 instead of 3.4f1� because the additional
beads are attached on the moving third bead.

�5� Figure 4�e� presents the displacement field at 2.8f1,
which corresponds to the n=3 mode. It is very similar to the
displacement presented in Fig. 2�c�. The frequencies with
and without a stub are close because the additional beads are
attached on a fixed bead �f3=2.8f1 instead of 2.7f1�.
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FIG. 5. Chain made up of five identical steel beads 10 mm in
diameter, with a symmetric stub grafted at the middle of the chain
15 mm in diameter. �a� Experimental power spectrum. �b� Numeri-
cal curve showing the displacement Ux at the end of the chain
multiplied by the frequency as a function of the frequency. Both
curves are normalized. The vertical scales are in decibel.

FIG. 6. Chain made up of five identical steel beads 10 mm in
diameter, with a symmetric stub grafted at the middle of the chain
15 mm in diameter. Numerical displacement field at the frequency
of the dip in the spectrum. The amplitude is normalized. The arrows
show the displacement directions. The dots show that the bead does
not move.
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FIG. 7. Variations of the frequency of the dip observed on the
experimental power spectra, as a function of the radius of the beads
in the stub �Nc=5, Ns=3�.
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More generally, in some frequency range, the stub has a
strong influence because it cancels the transmission from one
extremity of the chain to the other, whereas its influence is
weak in other frequency ranges where the waves travel along
the chain without being perturbed by the stub.

IV. PARAMETRIC STUDIES

A. Influence of the diameter of the grafted beads: Ns=3, Nc=5

Studies are performed for several beads in the stub, with
the diameter of the additional beads varying from
6 to 15 mm and the stub being still symmetric. The number
of beads in the stub Ns and the number of beads in the chain
Nc are fixed to 3 and 5, respectively. Figure 5 presents the
experimental data and the numerical results as a function of
the frequency for grafted beads 15 mm in diameter. The dif-
ferent extrema are identified in the figure. There is a reason-
ably good agreement between the results in terms of the rela-
tive positions of the peaks. The experimental data and the
numerical calculations clearly show that with heavier beads
in the stub, the dip moves toward lower frequencies, as ex-
pected by the simple relation giving the position of the dip
with the help of the simple atomic model ��dip=�C� /M��. In
this case, M�, the mass of the bead in the derivation, is
higher. Thus, the frequency of the dip is lower than the pre-

vious one. At the frequency of the dip �f =1.5f1�, the numeri-
cal displacement field is drawn in Fig. 6 and shows again
that the motion is limited to the left part of the chain. Similar
results have been observed on photonic crystals18 and on
arrays of cylinders in water,4 where a longer stub induces a
decrease in the dip frequency.

Figure 7 presents the experimental variations of the fre-
quency position of the dip as a function of the diameter of
the bead in the stub. This frequency decreases as the diam-
eter of the beads in the stub increases. However, it was not
possible to derive a simple relation describing this behavior
due to the complex nature of the resonance frequency of the
stub. Nevertheless, this curve can be used for adjusting the
frequency of the dip.

B. Influence of Ns, number of beads in the stub, with Nc=5

Experiments have been performed for investigating the
influence of the number of beads in the stub on the transmis-
sion. The reference case �Ns=3 and Nc=5� is presented in
Fig. 8�a�. Figure 8�b� presents the experimental power spec-
trum when the total number of beads in the stub is equal to 9
�Ns=9�, grafted at the middle of the chain. A comparison of
these curves shows a very small decrease of the dip fre-
quency in the second case, which supports the fact that this
frequency is essentially determined by the nature of the first
bead in the stub.

C. Influence of Nc, number of beads in the chain, with Ns=3

In this section, experiments have been performed on a
longer chain with a symmetric stub. The total number of
beads in the stub is 3 �Ns=3�, grafted at the middle of the
chain. The reference case �Ns=3 and Nc=5� is presented in
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FIG. 8. Experimental power spectrum of a chain �Nc=5� with a
stub grafted at the middle of the chain. �a� Three beads in the stub
�Ns=3�; �b� nine beads in the stub �Ns=9�. The vertical scales are in
decibel.
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�Ns=3� grafted at the middle of the chain. �a� Five beads in the
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Fig. 9�a�. Figure 9�b� presents the experimental power spec-
trum when the length of the chain is equal to 9 �Nc=9�. The
increase in the number of beads in the chain gives rise to new
modes, as previously observed,24 but the position and the
shape of the dip are not affected. This again shows the close
relationship between the dip and the presence of the stub.

V. CONCLUSION

The propagation of waves along a chain of beads with
symmetric stubs, grafted at the middle of the chain, has been
performed both experimentally and theoretically. The results
have shown that the presence of a stub in the chain intro-
duces a dip in the transmission response, as previously ob-
served in 2D photonic and phononic crystals where the stub
was grafted on a linear waveguide.4,18 The numerical analy-
sis has shown that this dip is due to the excitation of a stub

mode that cancels the transmission from one extremity of the
chain to the other. The position and the shape of the dip in
the response are related to the geometry and nature of the
stub: A heavier stub shifts the position of the dip to lower
frequencies, whereas a longer stub with identical beads does
not significantly change the frequency of the dip because this
is mainly determined by the interaction of the waveguide
with the first bead in the stub. The results show that it is
possible to adjust the position of the dip and it opens poten-
tial applications of these structures for filtering or demulti-
plexing. In this paper, the stub was always grafted at the
middle of the chain of beads, but other potentialities can be
forecast by changing the position of the stub in the chain as
well as by introducing periodically grafted stubs in the chain.
Although both the experimental and theoretical investiga-
tions reported in this paper belong to the linear acoustic re-
gime, our structure should also be suitable for further studies
in the nonlinear regime, implying more intense excitations.28
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