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We derive an equation that relates the elastic constants of a single crystal under isotropic pressure to the
magnitude of this pressure, the characteristics of a small homogeneous strain, and the second derivative of a
specific energy with respect to the magnitude of strain. We also derive two formulas that are valid for cubic,
hexagonal, tetragonal, trigonal, and orthorhombic crystals and relate the elastic constants to the bulk modulus
and the dependence of lattice parameters on volume. Their use is illustrated by examples.
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I. INTRODUCTION

Elastic constants are the important characteristics of sol-
ids whose knowledge is essential to the understanding of
many of their properties. In particular, elastic constants de-
termine the elasticity and mechanical stability of crystals.
There is a considerable interest in the elastic properties of the
high-pressure phases of distinct crystals. An accurate experi-
mental determination of elastic constants under pressure is
often rather difficult, and here computer modeling can play
an important role in establishing properties of specific
phases. However, as mentioned in a classic paper,1 except
when the solid is under zero stress, care is needed both in the
definition and the derivation of the elastic constants.

Several methods are currently used for the ab initio cal-
culation of second-order elastic constants at an arbitrary iso-
tropic pressure. One of them is based on the calculation of
the dependence of specific energy on strain magnitude.1,2

This method is widely used in practice �see, for example,
Refs. 3–12�. Also widely used is a method based on the
analysis of changes in calculated stresses resulting from
changes in the strain.1,13–17 There is a published approach
that used the calculated dependence of Gibbs potential on
strain magnitude,18 but it was subject to criticism.10,19

This paper is devoted to the development of the approach
described in Ref. 2 and to the derivation of formulas that
relate the elastic constants to the bulk modulus and the de-
pendence of lattice parameters on volume. Below, we will
use the traditional tensor notation as well as Voigt’s matrix
notation,20,21 each time specifying which one is used to ex-
clude misunderstandings.

As shown in Ref. 2, if the homogeneous strain of a crystal
at a specific volume V1 and zero temperature is described by
the symmetric matrix

�̂��� = ��11��� �12��� �13���
�21��� �22��� �23���
�31��� �32��� �33���

� , �1�

where

�ij��� = sij� + eij�
2 + ¯ ,

� is the magnitude of strain, and �
d2E�V1,�̂����

d�2 ��=0 is obtained
from ab initio calculations of a specific energy of the crystal
as a function of strain magnitude, then

C̃ijkl = � �2E�V1,	�mn
�
��ij��kl

�
	�mn
=0

,

or, in Voigt notation,

C̃�� = � �2E�V1,	��
�
������

�
	��
=0

satisfies the equation

�
�,�

����C̃��s�s� = 2P�V1��
�

�2 − ���e� + P�V1��
�

��s�
2

+
1

V1
�d2E�V1, �̂����

d�2 �
�=0

. �2�

Here, �ij are Lagrange strain tensor components,

�ij = �ij +
1

2�
k

�ik�kj .

��, s�, and e� are �ij, sij, and eij in Voigt notation, and

�� = �1 if � = 1,2,3

2 if � = 4,5,6.



It is also shown in Ref. 2 that C�� related to C̃�� by the
relations �in Voigt notation�

C�� = C̃�� + P
��2 − ����2 − ��� − �2��	����

����

�3�

should be treated as the second-order elastic constants of an
arbitrary crystal at any pressure. Relation �3� agrees with the
definition introduced in Ref. 1,22. With this definition of elas-
tic constants, the Christoffel equation determining the veloci-
ties of elastic waves and the mechanical stability conditions
for crystals takes identical forms both at zero pressure and at
nonzero pressure.1,2

Some disadvantage of Ref. 2 is that Eq. �4� was derived

there for the intermediate quantities C̃��, not for the elastic
constants. In this paper, the disadvantage is rectified. Also,
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two formulas are derived, which are valid for cubic, hexago-
nal, tetragonal, trigonal, and orthorhombic crystals and relate
the elastic constants to the bulk modulus and the dependence
of lattice parameters on volume.

II. EQUATIONS FOR ELASTIC CONSTANTS

To obtain one of the equations for the elastic constants
C�� of a single crystal under an arbitrary pressure, we sub-
stitute Eq. �3� into Eq. �2�. Then, Eq. �2� takes the form

�
�,�

����C��s�s� = P�V1��
��

��2 − ����2 − ��� − 2��	���s�s�

+ P�V1��2�
�

�2 − ���e� + �
�

��s�
2�

+
1

V1
�d2E�V1, �̂����

d�2 �
�=0

.

Taking into account that

�
��

��	��s�s� = �
�

��s�
2 ,

�
��

�2 − ����2 − ���s�s� = ��
�

�2 − ���s��2
= �s1 + s2 + s3�2,

�
�

�2 − ���e� = e1 + e2 + e3,

we obtain the equation

�
�,�

����C��s�s� = 2P�V1��e1 + e2 + e3 + s1s2 + s1s3 + s2s3 − s4
2 − s5

2 − s6
2� +

1

V1
�d2E�V1, �̂����

d�2 �
�=0

, �4�

which relates, for the strain matrix �Eq. �1��, the elastic con-
stants of a crystal isotropically compressed to a pressure P,
the characteristics of the strain matrix �̂���, and the second
derivative of a specific energy with respect to the strain mag-
nitude.

It is known that the number of independent elastic con-
stants is equal to the number of independent strains in the
crystal. Therefore, having calculated � is the magnitude of

strain, and �
d2E�V1,�̂����

d�2 ��=0 and written Eq. �4� for each inde-
pendent strain of a crystal that has a specific volume V1, we,
in principle, can obtain a system of equations for all elastic
constants of the crystal at this specific volume.

However, in practice, the implementation of this approach
encounters some technical difficulties. The problem is that
for strains that do not preserve volume, an accurate calcula-

tion of � is the magnitude of strain, and �
d2E�V1,�̂����

d�2 ��=0 re-
quires that the dependence of specific energy on strain mag-
nitude be calculated more accurately compared to the case of
volume-preserving strains because a specific energy depends
on volume much strongly than on strain. If required accuracy
is not achievable, the resulting elastic constants will have an
uncontrollable error. In this case, relations that relate the
elastic constants to such quantities as the bulk modulus and
the volume derivatives of lattice parameters that are easier to
calculate with high accuracy are very helpful. For some crys-
tals, specifically cubic, hexagonal and tetragonal, these rela-
tions are known2,7,21 and could be used to replace equations
of the type of Eq. �4� for some strains that change volume.

For a highly symmetric crystal, this technique makes it pos-
sible not to use strains that change volume at all. In this
paper, we derive two relations of that type, which are valid
for orthorhombic, hexagonal, tetragonal, trigonal, and cubic
crystals. The well-known relations are particular cases of
these general relations. However, before we start their deri-
vation, let us consider examples of the calculation of the
elastic constants from papers7,8 that are often cited and com-
pare equations used there for the determination of the elastic
constants under pressure with those obtained in accord with
Eq. �4�.

Steinle-Neumann et al.7 calculated the elastic constants of
hcp Fe, Co, and Re under pressure. To calculate five inde-
pendent constants, i.e., C11, C12, C13, C33, and C44, they con-
sider three independent volume-preserving strains,

�̂1 =�
� 0 0

0 � 0

0 0
1

�1 + ��2 − 1�, �̂2 =�
� 0 0

0 − � 0

0 0
�2

1 − �2
� ,

�̂3 =�
0 0 �

0
�2

1 − �2 0

� 0 0
� .

The specific energy of the crystal deformed in accord with
the matrix �̂1 was calculated as a function of the strain mag-
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nitude � and was used in an equation that, in our notation,
can be written as

2�C11 + C12 + 2C33 − 4C13� =
1

V1
�d2E�V1, �̂1�

d�2 �
�=0

. �5�

Similar results of calculations with the matrix �̂2 were used
in the equation

4�C11 − C12

2
� =

1

V1
�d2E�V1, �̂2�

d�2 �
�=0

, �6�

and the results of calculations with the matrix �̂3 were used
in the equation

4C44 =
1

V1
�d2E�V1, �̂3�

d�2 �
�=0

. �7�

Unfortunately, the expansion of energy in terms of �, which
gives Eqs. �5�–�7� is provided without derivation and refer-
ences.

Consider relations between the elastic constants, which
can be obtained from the general equation �Eq. �4�� for
strains �1, �2, and �3. For �1, we have

s1 = 1, e1 = 0; s2 = 1, e2 = 0; s3 = − 2, e3 = 3;

s4 = s5 = s6 = e4 = e5 = e6 = 0. �8�

For �2,

s1 = 1, e1 = 0; s2 = − 1, e2 = 0; s3 = 0, e3 = 1;

s4 = s5 = s6 = e4 = e5 = e6 = 0. �9�

For �3,

s1 = 0, e1 = 0; s2 = 0, e2 = 1; s3 = 0, e3 = 3;

s5 = 1, e5 = 0; s4 = s6 = e4 = e6 = 0. �10�

By successively substituting the values of Eqs. �8�–�10� for si
and ei into the general equation �Eq. �4�� obtained here and
by using the relations between the elastic constants, which
arise from the symmetry properties of hcp crystals, we can
easily see that the corresponding equations fully coincide
with Eqs. �5�–�7�. For two equations that are lacking for the
determination of the five independent elastic constants,
Steinle-Neumann et al.7 use

B =
C33�C11 + C12� − 2C13

2

C11 + C12 + 2C33 − 4C13
, �11�

d ln�c/a�
d ln V

=
C11 + C12 − C33 − C13

C11 + C12 + 2C33 − 4C13
, �12�

where B is the bulk modulus, and c and a are lattice param-
eters for the hcp crystal. As we will see below, these expres-
sions also follow from more general relations.

Tsuchiya and Kawamura8 calculated the elastic constants
of cubic MgO, CaO, SrO, and BaO under pressure. To cal-
culate three independent elastic constants, i.e., C11, C12, and
C44, they used three independent strains,

�̂4 = �� 0 0

0 0 0

0 0 0
�, �̂5 = �0 � �

� 0 �

� � 0
� ,

�̂6 = �� 0 0

0 − � 0

0 0 0
� .

The specific energy of the crystal deformed in accord with
the matrix �̂4 was calculated as a function of the strain mag-
nitude � and was used in an equation that, in our notation,
can be written as

C11 =
1

V1
�d2E�V1, �̂4�

d�2 �
�=0

. �13�

Similar results with �̂5 were used in the equation

C44 = −
P

2
+

1

12

1

V1
�d2E�V1, �̂5�

d�2 �
�=0

, �14�

and results obtained with �̂6 were used in the equation

C11 − C12 = − P +
1

2

1

V1
�d2E�V1, �̂6�

d�2 �
�=0

. �15�

Taking into account that for �̂4 we have

s1 = 1, e1 = 0;

s2 = s3 = s4 = s5 = s6 = e2 = e3 = e4 = e5 = e6 = 0, �16�

for �̂5 we have

s4 = 1, e4 = 0; s5 = 1, e5 = 0; s6 = 1, e6 = 0;

s1 = s2 = s3 = e1 = e2 = e3 = 0, �17�

and for �̂6 we have

s1 = 1, e1 = 0; s2 = − 1, e2 = 0;

s3 = s4 = s5 = s6 = e3 = e4 = e5 = e6 = 0, �18�

then by substituting the values of Eqs. �16�–�18� for si and ei
into Eq. �4� and using relations between the elastic constants,
which arise from the symmetry properties of cubic crystals,
we see again that the corresponding equations fully coincide
with Eqs. �13�–�15� used in Ref. 8.

III. RELATION OF ELASTIC CONSTANTS TO BULK
MODULUS AND VOLUME DEPENDENT

LATTICE PARAMETERS

Consider a small uniform and isotropic �hydrostatic� com-
pression of a crystal that is prestressed to a specific volume
V1 by a hydrostatic pressure P. Determine first the compo-
nents �ij of the strain matrix corresponding to the small com-
pression. For the hydrostatic compression, the stress tensor is


Tij = − 
P	ij . �19�

By Hooke’s law,
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�ij = �
lm

Sijlm
Tlm = − 
P�
lm

Sijlm	lm

= − 
P�Sij11 + Sij22 + Sij33� , �20�

where Sijlm is the elastic modulus or the elastic compliance
constant in accord with current American usage.21

For crystals from each crystal class, there are relations
between Sijlm that describe the symmetry properties of crys-
tals in the class.21 By using these relations, we find that for
crystals that fall into the cubic, hexagonal, tetragonal, trigo-
nal, and orthorhombic classes, the strain matrix �Eq. �20�� for
hydrostatic compression is diagonal,

�ij = �ii	ij .

For cubic crystals, �11=�22=�33; for hexagonal, tetragonal,
and trigonal ones, �11=�22��33; and for orthorhombic crys-
tals, �11��22��33. Just the diagonal form of the strain ma-
trix for hydrostatic compression allows us to obtain for these
crystals relatively simple relations relating the elastic con-
stants to the bulk modulus and the volume derivative of lat-
tice parameters. To obtain such relations, we will consider
below crystals whose atoms form Bravais lattices, related to
the above crystal classes and having an arbitrary basis. It
should be emphasized that basis atoms are assumed to com-
pletely relax under strain.

The primitive lattice vectors of the deformed Bravais lat-

tice �R� 1� ,R� 2� ,R� 3�� relate to the corresponding vectors

�R� 1 ,R� 2 ,R� 3� of the undeformed Bravais lattice as

R� i� = �Î + �̂�R� i, i = 1,2,3. �21�

Here, Î is a unit matrix. The specific volume V1� of the de-
formed crystal can be obtained if we take the absolute value
of the vector-scalar product of vectors �Eq. �21��. For cubic,
hexagonal, tetragonal, trigonal, and orthorhombic crystals
under hydrostatic pressure, we obtain �taking into account
that their strain matrices are diagonal�

V1� = �R� 1� · R� 2� � R� 3�� = �1 + �1��1 + �2��1 + �3��R� 1 · R� 2 � R� 3�

= V1�1 + �1��1 + �2��1 + �3� . �22�

Here, �i are components of the strain matrix in Voigt nota-
tion. Assuming that the strains are small and limiting to the
first-order strain terms, we obtain


V = V1� − V1 = ��1 + �2 + �3�V1. �23�

Let us calculate the bulk modulus of a crystal that has a
specific volume V1 from the definition

B = − V1 lim

V→0


P


V
. �24�

For this end, we use Hooke’s law, which relates strains and
associated stresses as


Tij = �
kl

Cijkl�kl. �25�

Here, 
Tij are stress components and Cijkl are elastic con-
stants. Taking into account Eq. �19� and the fact that the

strain matrix is diagonal, Eq. �25� gives the following system
of equations for strains resulting from the increase of pres-
sure by 
P:

�
k

Cijkk�kk = − 
P	ij .

The system contains nine-equations. By using the symmetry
properties of the elastic constants,21 one can easily show that
for cubic, hexagonal, tetragonal, trigonal, and orthorhombic
crystals, six of these equations satisfy identically and three
others in Voigt notation take the form

C11�1 + C12�2 + C13�3 = − 
P ,

C21�1 + C22�2 + C23�3 = − 
P ,

C31�1 + C32�2 + C33�3 = − 
P . �26�

After solving simultaneous equations �Eq. �26��, we obtain

�1 + �2 + �3 = − 
P
D1 + D2 + D3

D
, �27�

where

D = C11C22C33 + 2C12C13C23 − C11C23
2 − C22C13

2 − C33C12
2 ,

D1 = C22C33 + C12C23 + C13C23 − C23
2 − C12C33 − C13C22,

D2 = C11C33 + C12C13 + C13C23 − C13
2 − C11C23 − C12C33,

D3 = C11C22 + C12C23 + C13C12 − C12
2 − C11C23 − C13C22.

By substituting Eq. �27� into Eq. �23� and by using the re-
sulted equality in Eq. �24�, we obtain a relation between the
bulk modulus and the elastic constants, which is valid for
cubic, hexagonal, tetragonal, trigonal, and orthorhombic
crystals,

B =
D

D1 + D2 + D3
. �28�

For hexagonal, tetragonal, and trigonal crystals, this relation
can be simplified by using the symmetry properties C11
=C22 and C13=C23, which hold in this case. We obtain

B =
C33�C11 + C12� − 2C13

2

C11 + C12 + 2C33 − 4C13
, �29�

which coincides with Eq. �11� used in Refs. 5 and 7. For
cubic crystals whose elastic constants additionally satisfy the
relations C33=C11 and C13=C12, Eq. �29� becomes yet sim-
pler, giving the well-known relation

B =
C11 + 2C12

3
.

To derive one more relation, let us write the strain matrix
for the hydrostatic compression of cubic, tetragonal, hexago-
nal, trigonal, and orthorhombic crystals in the form
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�̂0��� = �� 0 0

0 ���� 0

0 0 ����
� , �30�

where

lim
�→0

���� = lim
�→0

���� = 0. �31�

Here, � is the magnitude of strain. For tetragonal, hexagonal,
and trigonal lattices, ����=� for cubic, ����=�. Equation
�4� for the strain matrix �Eq. �30�� is

C11 + 2���0�C12 + 2���0�C13 + ����0��2C22 + 2���0����0�C23 + ����0��2C33 = P����0� + ���0� + 2���0� + 2���0�

+ 2���0����0�� + �d2E�V1, �̂0����
d�2 �

�=0
. �32�

In this notation, Eq. �22� for the specific volume V1� of the deformed crystal takes the form

V1� = V1�1 + ���1 + ������1 + ����� . �33�

Let us calculate 1
V1

�
�2E�V1,�̂0����

��2 ��=0 in the case of hydrostatic compression. Provided that energy only depends on volume in this
case, we can write

1

V1
� �2E�V1, �̂0����

��2 �
�=0

=
1

V1
� �2E�V1�����

��2 �
�=0

=
1

V1
�dE�V�

dV
�

V=V1

· �d2V1�

d�2 �
�=0

+
1

V1
�d2E�V�

dV2 �
V=V1

· ��dV1�

d�
�

�=0
�2

.

Since

�dE�V�
dV

�
V=V1

= − P�V1�, �d2E�V�
dV2 �

V=V1

=
B�V1�

V1
, �34�

we obtain

1

V1
� �2E�V1, �̂0����

��2 �
�=0

= −
P�V1�

V1
· �d2V1�

d�2 �
�=0

+
B�V1�

V1
2 · ��dV1�

d�
�

�=0
�2

. �35�

Here, P�V1� and B�V1� are pressure and bulk moduli for the undeformed crystal at V=V1 and T=0, respectively. By using
Eq. �33�, we obtain

1

V1

dV1�

d�
= �1 + ������1 + ����� + �1 + ���1 + ���������� + �1 + ���1 + ���������� .

1

V1

d2V1�

d�2 = �1 + ��	�1 + ���������� + �1 + ����������
 + �1 + ���1 + ���������� + �1 + ���1 + ���������� .

By passing the limit as �→0 and by using Eq. �31�, we obtain

1

V1
�dV1�

d�
�

�=0
= 1 + ���0� + ���0� , �36�

1

V1
�d2V1�

d�2 �
�=0

= ���0� + ���0� + 2����0� + ���0� + ���0����0�� . �37�

With Eqs. �36� and �37�, Eq. �35� takes the form

1

V1
� �2E�V1, �̂0����

��2 �
�=0

= − P�V1�	���0� + ���0� + 2����0� + ���0� + ���0����0��
 + B�1 + ���0� + ���0��2. �38�

Substituting Eq. �38� into Eq. �32� gives

C11 + 2���0�C12 + 2���0�C13 + ����0��2C22 + 2���0����0�C23 + ����0��2C33 = B�1 + ���0� + ���0��2. �39�
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Now, we will derive a relation between ���0�, ���0�, and
the volume derivatives of lattice parameters for hydrostatic
pressure and use it in Eq. �39� to obtain the second of the
sought relations. It is easy to see that the strain described by
Eq. �30� only changes the lengths, not the directions, of the
primitive lattice vectors of the Bravais lattice in the crystals
under consideration. The relations that connect the new lat-
tice parameters with the old ones take the form

a�

a
= 1 + �,

b�

a�
=

1 + ����
1 + �

b

a
,

c�

a�
=

1 + ����
1 + �

c

a
.

To be accurate to the �-order-of-magnitude terms, these can
be rewritten as

b�

a�
�

b

a
�1 + ����0� − 1��� ,

c�

a�
�

c

a
�1 + ����0� − 1��� . �40�

By limiting them to the same accuracy for hydrostatic com-
pression, we can write

b�

a�
�

b

a
+ �d�b/a�

dV
�

V=V1

· �V1� − V1�

�
b

a
�1 + ��1 + ���0� + ���0���� , �41�

Similarly,

c�

a�
�

c

a
�1 + ��1 + ���0� + ���0���� , �42�

Here,

� =
V1

b/a
�d�b/a�

dV
�

V=V1

, � =
V1

c/a
�d�c/a�

dV
�

V=V1

,

and we have shown that Eq. �33� can be written accurate to
the �-order-of-magnitude terms as

V1� − V1

V1
� �1 + ���0� + ���0��� .

Comparing Eq. �40� and Eqs. �41� and �42�, we obtain a
system of equations relating ���0� and ���0� to � and �,
which are the volume derivatives of lattice parameters, in the
case of isotropic compression,

���0� − 1 = ��1 + ���0� + ���0�� ,

���0� − 1 = ��1 + ���0� + ���0�� .

Solving the system, we find that

���0� =
1 + 2� − �

1 − �� + ��
, �43�

���0� =
1 + 2� − �

1 − �� + ��
, �44�

whence

���0����0� =
1 + � + � + 5�� − 2�2 − 2�2

�1 − �� + ���2 ,

1 + ���0� + ���0� =
3

1 − �� + ��
, �45�

By substituting Eqs. �43�–�45� into Eq. �39�, we obtain the
sought relation connecting the elastic constants to the bulk
modulus and the quantities that characterize the dependence
of lattice parameters on volume for hydrostatic compression,

C11 + 2
1 + 2� − �

1 − �� + ��
C12 + 2

1 + 2� − �

1 − �� + ��
C13

+ � 1 + 2� − �

1 − �� + ���2

C22 + � 1 + 2� − �

1 − �� + ���2

C33

+ 2
1 + � + � + 5�� − 2�2 − 2�2

�1 − �� + ���2 C23 =
9B

�1 − �� + ���2 .

�46�

This relation is valid for cubic, tetragonal, hexagonal, trigo-
nal, and orthorhombic crystals.

For hexagonal, tetragonal, and trigonal crystals, it can be
simplified by using the symmetry properties C11=C22 and
C13=C23, which hold in this case, and the equality �=0,
which follows from the equality of the parameters a and b
for the lattices of these crystal classes,

2C11 + 2C12 + 4
1 + 2�

1 − �
C13 + �1 + 2�

1 − �
�2

C33 =
9B

�1 − ��2 .

�47�

This equality was earlier derived in Ref. 2. If we substitute
into it equality �29�, which relates the bulk modulus to the
elastic constants for hexagonal, tetragonal, and trigonal crys-
tals, and solve the resulted quadratic equation for �, we ob-
tain

� =
C11 + C12 − C33 − C13

C11 + C12 + 2C33 − 4C13
, �48�

which coincides with Eq. �12� used in Refs. 5 and 7.
For cubic crystals whose elastic constants additionally

satisfy the relations C33=C11 and C13=C12 and for which
�=0, Eq. �47� becomes yet simpler and we again obtain the
well-known relation

C11 + 2C12 = 3B .

As an example, let us apply formulas �28� and �46� to
experimental data obtained for some orthorhombic crystals.
Reference 23 presents experimentally determined elastic
constants for orthorhombic single-crystal forsterite Mg2SiO4
at room temperature and different pressures. It also provides
a third-order Birch–Murnaghan equation fit to static com-
pression data �K0=125 GPa, K0�=4�, which can be used to
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determine the experimental values of the bulk modulus at
different pressures. By using these data, we can, with for-
mula �28�, find out how the measured elastic constants and
bulk modulus agree with each other at different pressures.
Unfortunately, Zha et al.23 did not provide the dependence of
lattice parameters on pressure, but it is nevertheless possible
to use formula �46� if we notice that it can be rewritten as

B = B0 + 
B1 + 
B2,

where

B0 = �C11 + 2C12 + 2C13 + 2C23 + C22 + C33�/9, �49�

and 
B1 and 
B2 contain only terms that are linear and
quadratic with respect to � and �, respectively,


B1 = 2��� + ���C23 − C11� + �� − 2���C12 − C33�

+ �� − 2���C13 − C22��/9,


B2 = 2��� + ��2C11 + 2��2 − �� − 2�2�C12 + �� − 2��2C22

− 2�2�2 − 5�� + 2�2�C23 + �� − 2��2C33

+ 2��2 − �� − 2�2�C13�/9.

Since for similar crystals, � and � are usually small,
�
B1+
B2�


B0

is also small. Hence, one can expect that B0 will be a good
estimate of the bulk modulus B. It should be noted that B0
was earlier used to estimate the bulk modulus in Ref. 24.
Table I provides values for some elastic constants and bulk
modulus of single-crystal forsterite Mg2SiO4, obtained in the
experiment in Ref. 23 at different pressures, and the corre-
sponding values of B1 and B0 calculated from Eqs. �28� and
�49�, respectively. Since Ref. 23 does not provide elastic con-
stants at P=0, Table I contains experimental data from

Ref. 25. B�P=0� was calculated from the third-order Birch–
Murnaghan formula with parameters provided in Ref. 23.
Table I shows that the elastic constants at 15.1 and 16.2 GPa
are determined with the biggest errors.

References 26 and 27 provide the experimental elastic
constants, bulk modulus, and linear compressibilities �a, �b,
and �c of a MgSiO3 perovskite. With these data, we can
evaluate the consistency of the experimental elastic constants
and bulk modulus by using both Eqs. �28� and �46� with �
and � calculated as

� = B��b − �a�, � = B��c − �a� . �50�

The results of this evaluation are presented in Table II. The

TABLE I. Orthorhombic single-crystal forsterite Mg2SiO4: experimental elastic constants Cij �GPa� and
bulk modulus B �GPa� �Ref. 23� and the value of the bulk modulus B1 from Eq. �28� and its estimate B0 from
Eq. �49�.

P �GPa� 0 3.1 6.1 9.6 10.5 12.2 15.1 16.2

C11 328.4 341.93 363.27 376.59 390.54 391.56 443.15 437.18

C22 199.8 215.69 227.84 251.16 256.18 261.67 277.74 279.11

C33 235.3 248.46 261.37 284.48 283.18 286.02 310.93 319.47

C12 63.9 77.23 89.42 105.34 104.17 107.53 123.55 125.40

C13 68.8 78.50 86.62 95.12 102.96 102.96 126.42 128.19

C23 73.8 83.73 93.69 104.09 107.28 112.77 128.28 130.52

B 125 137.26 148.88 162.20 165.59 171.94 182.67 186.71

B1 126.5 138.73 150.17 165.33 168.77 172.38 192.32 194.63
B1−B

B

1.2% 1.1% 0.9% 1.9% 1.9% 0.3% 5.3% 4.2%

B0 130.7 142.78 154.66 169.04 173.19 176.20 198.70 200.44
B0−B

B

4.6% 4.0% 3.9% 4.4% 4.6% 2.5% 8.8% 7.4%

TABLE II. Orthorhombic single-crystal MgSiO3 perovskite: ex-
perimental elastic constants Cij �GPa� and bulk modulus B �GPa�
�Refs. 26 and 27�, and the bulk modulus B1 from Eq. �28�, the bulk
modulus B2 from Eq. �46�, and the estimate B0 from Eq. �49�.

Ref. 26 Ref. 27

C11 515 482

C22 525 537

C33 435 485

C12 117 144

C13 117 147

C23 139 146

B 246.4a 264

B1 245.3903 263.6940
B1−B

B

−0.4% −0.1%

B2 245.3907 263.6948
B2−B

B

−0.4% −0.1%

B0 246.78 264.22
B0−B

B

+0.15% +0.08%

aIsotropic aggregate �VRH� adiabatic bulk module.
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linear compressibilities from Refs. 26 and 27, as well as �
and � calculated from Eq. �50�, are provided in Table III. It
is interesting to note that B1 and B2 are almost identical in
experiments both in Refs. 26 and 27 though the values of �
and � markedly differ. In both cases, B0 is a very good
estimate to the bulk modulus.

As another example, we apply formulas �28� and �46� to
the results of ab initio calculations. Reference 16 provides
calculated single-crystal elastic moduli and bulk modulus for
orthorhombic MgSiO3 perovskite at T=298 K and several
pressures in the interval of 0–150 GPa. Unfortunately, the
authors did not provide the dependence of lattice parameters
on pressure. Therefore, formula �49� was used instead of
Eq. �46�.

Table IV contains the calculated elastic constants and bulk
modulus of the orthorhombic modification of the MgSiO3
perovskite16 for different pressures, as well as B1 and B0
calculated from Eqs. �28� and �49� with the use of the elastic
constants from Ref. 16. The data provided in Table IV sug-
gest that the mathematical error of the elastic constants cal-
culated in Ref. 16 is small and roughly equal for different
pressures. In this case, the difference of the calculated elastic
constants from experiment is mainly associated with the
physical approximations that were made in the description of
atomic interactions in the crystal.

It is necessary to note the following. Expressions �4�,
�28�, and �46� were obtained for zero temperature when en-
tropy is constant and zero. It is easy to see that the formulas
are valid for any constant entropy and can be used to deter-
mine the adiabatic elastic constants. As an illustration, let us

consider the results of Ref. 28, where measurements of the
adiabatic elastic constants of the single-crystal Mg2SiO4 for-
sterite are reported for the temperature range of 300–1700 K
at ambient pressure. The adiabatic bulk modulus of the single
crystal was not measured; only the adiabatic bulk modulus of
an isotropic solid was determined by the Hill averaging
method.29 Nevertheless, formula �28� allows calculating the
adiabatic bulk modulus of the single-crystal forsterite for the
temperature range of 300–1700 K at ambient pressure, using
experimental data from Ref. 28. The results of this calcula-
tion are presented in Table V. Also, the derivation remains
valid, and formulas �4�, �28�, and �46� do not change their
forms for any nonzero temperature T0 if we use the free
energy F�V , �̂��� ,T0� instead of energy E�V , �̂����. In this
way, one can obtain the isothermal elastic constants.

IV. CONCLUSION

To summarize, we derived an equation that relates the
second-order elastic constants of an arbitrary single crystal
under hydrostatic pressure to the magnitude of this pressure,
the characteristics of a small homogeneous strain, and the
second derivative of a specific energy with respect to the
magnitude of strain. The equation is convenient for ab initio
calculations of the elastic constants. Also, two relations were
derived, which are valid for cubic, hexagonal, tetragonal,
trigonal, and orthorhombic crystals and relate the elastic
constants to the bulk modulus and the volume dependence of
lattice parameters. They help improve the accuracy of

TABLE III. Experimental linear compressibilities of MgSiO3 perovskite and � and � calculated from
Eq. �50�.

�a

�GPa−1�
�b

�GPa−1�
�c

�GPa−1� � �

Ref. 26 0.00131 0.00120 0.00156 −0.0271 0.0616

Ref. 27 0.00133 0.00114 0.00131 −0.0502 −0.00528

TABLE IV. Some calculated single-crystal elastic constants Cij �GPa� and bulk modulus B �GPa� �Ref.
16� and the bulk modulus B1 from Eq. �28� and its estimate from Eq. �49� for the orthorhombic MgSiO3

perovskite.

P �GPa� 0 30 60 90 120 150

C11 492 629 746 851 947 1036

C22 550 727 888 1044 1196 1344

C33 472 661 833 995 1150 1298

C12 142 246 349 449 546 639

C13 148 216 287 360 433 505

C23 160 237 311 385 457 528

B 267 379 483 583 681 775

B1 267.22 377.45 481.19 581.13 677.12 769.12
B1−B

B

0.08% −0.41% −0.37% −0.32% −0.57% −0.76%

B0 268.22 379.44 484.56 586.44 685.00 780.22
B0−B

B

0.46% 0.11% 0.32% 0.59% 0.59% 0.67%
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calculated elastic constants for crystals with a lower symme-
try, evaluate the accuracy of their calculated and experimen-
tal values, and also calculate the bulk modulus using the
measured elastic constants.
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