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Low-temperature phase boundary of dilute-lattice spin glasses
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The thermal-to-percolative crossover exponent ¢, well known for ferromagnetic systems, is studied exten-

sively for Edwards—Anderson spin glasses. The scaling of defect energies are determined at the bond perco-
lation threshold p, using an improved reduction algorithm. Simulations extend to system sizes above N=108 in
dimensions d=2, ...,7. The results can be related to the behavior of the transition temperature 7, ~ (p— P)®
between the paramagnetic and the glassy regime for p ™\ p,. In three dimensions, where our simulations predict
¢=1.127(5), this scaling form for T, provides a rare experimental test of predictions arising from the equilib-

rium theory of low-temperature spin glasses. For dimensions near and above the upper critical dimension, the
results provide a challenge to reconcile mean-field theory with finite-dimensional properties.
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The exploration of low-temperature properties of disor-
dered systems remains an important and challenging
problem.!? The paradigmatic model for such phenomena is
the Edwards—Anderson (EA) spin glass,’

H=-2Jxx; (= *1). (1)
(i.j)
Disorder effects arise via quenched random bonds, J; i mix-
ing ferro- and antiferromagnetic couplings between nearest-
neighbor spins, which lead to conflicting constraints and
frustrated variables. It is believed that an understanding of
static and dynamic features of EA may aid a description of
the unifying principles expressed in glassy materials.> Most
insights into finite-dimensional systems have been gained
through computational approaches that elucidate low-T
properties.*~¢
Here, we extract the response induced through defect
interfaces’® at T=0, created by fixing the spins along the two
faces of the open boundary in one direction. Ground state
energies E, and E|, of an instance of size N=L9 are deter-
mined, which differ by reversing all spins on one of
the faces. The distribution P(AE) of interface energies
AE=E;-E, created by this perturbation of scale L on the
boundary is obtained. The typical energy scale, represented
by the deviation o(AE), grows as

o(AE) ~ L. (2)

This relation defines®’® the stiffness exponent y characteriz-
ing the defect energy, a fundamental quantity assessing low-
temperature fluctuations: a positive value of y, as found® in
EA for d>d;=5/2, denotes the increase in the energetic cost
accompanying a growing number of variables perturbed
from their position in the ground state (i.e., “stiffness”). The
rise in strain for stronger disturbances signals the presence of
an ordered state. In turn, for systems with y <0, such order is
destabilized by fluctuations that spread unimpeded.

Instead of determining the interface scaling on a compact
lattice structure, we will focus here on the interface energy
o(AE) on a bond-diluted lattice, particularly at the percola-
tion threshold p, (see Fig. 1). Due to the tenuous fractal
nature of the percolating cluster at p., no long-range order
can be sustained, and!'°
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U(AE)L,pL. ~ [P with yVp = O, (3)

i.e., defects possess a vanishing interface energy. Interest in
the exponent yp stems from its relation to the “thermal-
percolative crossover exponent” ¢ defined via'®

Tg(P) -~ (p_pc)(ZS with d): —Vyp, (4)

where v is the correlation-length exponent associated with
lattice percolation,'"1? &~ (p—p,)~". Of particular experi-
mental interest is the result for d=3, yp=—1.289(6), predict-
ing ¢=1.127(5), with v=0.87436(46)."3 All results for
d=2,...,7 are listed in Table I.

The exponent ¢ was studied intensely numerically, theo-
retically, and experimentally'>19-22 for ferromagnetic sys-
tems some 30 years ago and was just recently discussed for
quantum spins.>* However, aside from its initial treatment in
Ref. 10, there are no other investigations on spin glasses.
This is even more surprising since this exponent provides a
nontrivial, experimentally testable prediction derived from
scaling arguments of the equilibrium theory at low tempera-
tures. Such tests are few as disordered materials by their very
nature fall out of equilibrium when entering the glassy state.
The phase boundary itself provides the perfect object for
such a study: It can be approached by theory from below and
by experiments from above where equilibration is possible.
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FIG. 1. (Color online) Phase diagram for bond-diluted spin
glasses (d>d,). In the spin glass phase (SG) for T<T, and p>p,,
y in Eq. (2) is >0, while y=yp<0 in Eq. (3) at p=p, and T=T,
=0. In the paramagnetic phase (PM) for p<p,, defects decay ex-
ponentially for all 7. The exponent ¢ in Eq. (4) describes the

boundary T,(p) for p\,p..
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TABLE 1. List of the parameters used and exponents found in
our simulations for d=2,...,7. L, denotes the largest lattice size
considered. We have used the bond-percolation thresholds p. from
Ref. 14 for d=3 and Ref. 15 for d=4. The correlation-length ex-
ponents v for percolation are from Ref. 13 in d=3 and from Ref. 11
for d=4, where v=1/2 is exact above the upper critical dimension,
d=6.

d Pe v yp ¢=—vyp L
2 1/2 4/3 -0.993(3)  1.323(4) 1000
3 0.2488126  0.87436(46) —1.289(6) 1.127(5) 300
4 0.1601314  0.70(3) —-1.574(6)  1.1(1) 100
5 0.118172  0.571(3) -1.84(2)  1.05(2) 35
6 0.0942019 0.5 -2.01(4)  1.00(2) 25
7 0.0786752 0.5 —2.28(6)  1.14(3) 15

There is reason to believe that the phase boundary in Eq.
(4) and Fig. 1 is experimentally accessible for certain mate-
rials. Reference 24 already provided highly accurate results
for the freezing temperature 7, as a function of dilution x for
a doped crystalline glass, (La;_,Gd,)goAuy, proposing a lin-
ear dependence, T, ~ x. The tabulated data are equally well
fitted by Eq. (4) in that regime. Reference 25 determined a
phase diagram for (Fe,Ni,_,);5P¢B¢Als, an amorphous alloy,
for a wide range of temperatures 7 and site concentrations x
but did not discuss its near-linear behavior at low x. A similar
phase diagram for the insulator CdCr,Iny;_yS, can be
found in Fig. 1.1a of Ref. 26. Experiments dedicated to the
limit x\ x. should provide results of sufficient accuracy to
test our prediction for ¢.

A match of computational prediction and experiment
would lend credibility to the EA model and its simplifying
assumptions, such as universality with respect to the details
of the bond distribution P(J), an issue recently revisited by
Ref. 27. Our simulations, conducted here for Gaussian
bonds, can be repeated for any P(J) of zero mean and unit
variance but would significantly increase computational cost.
Simply to demonstrate that theoretically such universality
exists, we have repeated our simulations with a Lorentzian
bond distribution argued for by Ref. 28 and with power-law-
distributed bonds P(J)|J|*! for [J|=1 at a=-1/2. This
comparison, presented below in Fig. 3, clearly shows repro-
ducibility for a wide class of P(J). Reference 10 also consid-
ered power-law distributions, but for >0 and |J|<1, to
point out that the response to perturbations is, in principle,
nonuniversal at p.: Without a long-range order, it is y<0 in
Eq. (2) and energy scales do not divere. Then, y (and ¢)
becomes dependent on the details of P(J) near J=0, and Ref.
10 finds an interesting change in behavior for
a<a,~0.75. Such a diverging bond distribution results
from integrating the RKKY couplings (see Ref. 3) over many
weak bonds in its far-distance tail. In realistic materials, such
bonds are screened out (see, for instance, Ref. 24), and P(J)
is bounded, justifying the use of Gaussian bonds.

Following the discussion in Refs. 10 and 29, for diluted
lattices at p— p,., we have to generalize the scaling relation
for the defect energy o(AE) in Eq. (2) to
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o(AE)L, ~ Wp)L*fILIE(p)]. (5)

Here, Y~ (p—p.)'~&"" is the surface tension and
&p)~ (p—p,.)~" is the correlation length for percolation. The
scaling function f is defined to be constant for L> &(p)> 1,
where percolation (and, hence, &) plays no role and we re-
gain Eq. (2) for p>p,.

For ¢>L>1, Eq. (5) requires f(x) ~x* for x—0 to sat-
isfy o0— 0 with some power of L, which is needed to cancel
the & dependence at p=p,.. Thus, u=—t/v, and if we define
yp=y+u=y—t/vto mark the L dependence of o at p=p,. as
in Eq. (3), we get r=v(y—yp). Finally, at the crossover
&~ L, where the range L of the excitations o(AE) reaches the
percolation length beyond which spin glass order ensues, Eq.
(5) yields with ¢ from Eq. (4),

o(AE) ), ~ (P =)' EPY 1) ~(p-p)?.  (6)

Associating a temperature with this crossover by
0(AE) g, ,~ T, (for T>T,, thermal fluctuation destroy or-
der) leads to Eq. (4), relating p and T,.

In our simulations, we have used the method of bond
reductions described previously.’*32 A set of rules is defined
and applied recursively to trace out spins, assuming that
T=0. These exact rules apply to general Ising spin glass
Hamiltonians as in Eq. (1) with any bond distribution P(J),
discrete or continuous, on arbitrary sparse graphs and lead to
fewer but more highly interconnected spins and renormalized
bonds (see Ref. 32). Starting from a Hamiltonian as in Eq.
(1), in general, new terms are generated by this procedure
that have not been part of the Hamiltonian before, such as
multispin interactions. Although the number of spins de-
creases one by one, the number of new terms grows expo-
nentially and the procedure usually becomes inefficient. Yet,
near p,., we can apply a subset of these rules efficiently while
leaving the form of the two-spin Hamiltonian in Eq. (1) in-
variant.

Our recursive set of rules is based on the following ob-
servations. Near p., most spins have a low degree of inter-
connectivity; on average, that degree fluctuates around unity
in any dimension d. In fact, many spins are entirely discon-
nected, do not contribute to the Hamiltonian, and can thus be
discarded. Degree-1 spins can always be satisfied and are
easily traced out, with their bond weight always (at T=0)
lowering the energy. Once all degree-1 spins have been re-
cursively traced out, any degree-2 spin can be reduced also
by replacing it by a new bond between its two neighbors and
another offset to the global energy. Having reduced all
degree-1 and -2 spins, there is even a “star-triangle” rule to
reduce any degree-3 spins while only producing new 2-spin
interactions between its neighbors.3! Although this step
could, in principle, create a 3-spin interaction not present in
the Hamiltonian in Eq. (1), all such terms involving an odd
number of spins vanish due to Z, symmetry.

A new rule® that proved particularly effective at p, fo-
cuses on spins of arbitrary degree but with “superbonds.” A
spin x; has a superbond if one bond’s absolute weight domi-
nates, |J; >Ej¢k|J,"j , all other bonds attached to x;. In the
ground state (7=0), that bond is always satisfied and its spin
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FIG. 2. (Color online) Plot of o(AE) in Eq. (3) as a function of
system size N=L? in extrapolated form. Plotting In(c)/In(N) vs
1/In(N) and linearly extrapolating (dashed lines), we extract the
asymptotic values for yp/d in Table I at 1/In(N)=0. Note that the
fitted asymptotic regime here corresponds to orders of magnitude of
scaling in a (less insightful) plot of In o vs In N. Note the increasing
corrections to scaling for larger d before asymptotic behavior is
obtained.

determined by its neighbor along that bond. This rule often
triggers new avalanches of further reductions with the sim-
pler rules.

Previously, we have applied these rules above p,. to study
the defect energy within the spin glass (SG) state (see Fig.
1). Considering dilute lattices with p>p. but well below
p=1 allowed the study of larger lattice sizes L for improved
scaling and produced results®3! in dimensions up to d=7,
unattainable with undiluted lattices. For p > p,., an optimiza-
tion heuristic was essential to approximate the ground state
of the remainder graph, consisting of highly interconnected
spins that remain after all reduction rules have been ex-
hausted. In contrast, at p=p,, these remainder graphs are
almost gone entirely. Thus, the attainable system sizes
N=L¢ are nearly unrestricted and have reached well above
N=10®% in our simulations, mostly limited by the need to
generate sufficient statistics (i.e., about 10* instances for
N=25%or 157). Yet, in d=2 and 3, the remainder graphs are
the limiting factors on system sizes (at about N=107). Al-
though remainders have less than 100 spins, typically well
approximated with a good heuristic, we implemented costly
exact methods®® to optimize them. The slightest inaccuracy
affected the statistical averages, as defect energies AFE are the
difference of two almost equal ground state energies E, and
Ej. One technical problem in implementing our algorithm
with such large system sizes is posed by memory limitations.
Instead of constructing an entire lattice with N spins, each
with potentially 2d bonds, before applying the reduction
rules, we build up the L¢spin lattice as a sequence of L
hyperplanes of L% spins. During the process, we keep the
first and the most recently added plane fixed but already
reduce recursively all spins in the intervening planes as far as
possible before the next hyperplane is added. This process
requires extensive bookkeeping and backtracking, which can
be done fast while reducing memory use by ~1/L.

In Fig. 2, we present all data of our simulations for
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FIG. 3. (Color online) Comparison of the data for d=3 (top) and
d=4 (bottom) for different bond distributions P(J), plotted in the
same way as in Fig. 2. There is little difference between the Gauss-
ian and the Lorentzian bonds even in d=3, as both are similarly
smooth near J=0. For our power-law bonds with vanishing support
for |J |< 1, our methods are very inefficient. Yet, at least in d=4,
those bonds produce results far from but consistent with Gaussian
bonds.

d=2,...,7 in an extrapolation plot. In Fig. 3, we compare
the same data from d=3 (d=4), together with those from the
Lorentzian (power-law) bond distribution P(J), as discussed
above. Since our data reach above the upper critical
dimension d,=6 (of both percolation and spin glasses) and
should approach mean-field behavior, it is most natural to
replace 1’7 with N’P¥ in Eq. (3) and extrapolate for
yp/d~In(c)/In(N). As Fig. 2 shows, aside from d=2<d|,
the extrapolations for d>d, all seem to share common char-
acteristics and appear to vary smoothly with d. In particular,
we have pushed the simulations in d=7 to large enough N to
conclude that there appears to be no drastic change in the
scaling behavior above d,. Increasing corrections make it
harder to reach asymptotic scaling beyond d=7. Interest-
ingly, all transients in Fig. 2 themselves extrapolate to an
intercept consistent with —1/2, indicative of a higher-order
correction term with a d-independent exponent.
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FIG. 4. (Color online) Plot of the exponents yp/d (top) and phi
(bottom) in Table 1 as a function of 1/d. For comparison, also
plotted (top) are the stiffness exponents y/d inside the spin-glass
regime (Ref. 9) (p>p,). Some of the large error bars for ¢=—vyp
originate with uncertainties in v (Ref. 11).
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The result in d=2, where Tg=0, is very close to that theo-
retically predicted in Ref. 10, yp=~-0.99, and could conceiv-
ably be=-1 exactly, as it is in d=1 (where p.=1). That
would suggest that the spin glass on a d=2 percolation clus-
ter essentially consists of a spanning linear backbone of
bonds.

In Fig. 4, we plotted yp/d and ¢ from Table I vs 1/d to
explore the large-d limit. This extrapolation plot suggests a
trend toward a vanishing value for yp/d at 1/d=0; i.e., yp
varies sublinearly with d. In comparison, the data for the
stiffness exponents y/d inside the spin-glass regime replotted
from Ref. 9 appear consistent with the prediction®** of
y/d~1/6. It would be difficult to suspect a systematic bias
in the apparent drift of the high-d data points for yp/d, as the
computations are exact. Yet, statistical errors clearly become
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increasingly significant for larger d (see Fig. 2). It is not
obvious how to directly obtain yp for d=%, which may cor-
respond to a (replica-symmetric) 7=7,=0 Viana-Bray
model®® at the Erdos-Rényi percolation point. [Such a calcu-
lation has been undertaken for the fully connected (replica-
symmetry broken, T7<T,) SK model.*’] Finally, we note a
distinct minimum in ¢, with ¢gs=1, exactly at the upper
critical dimension d,=6 due to the product of increasing |y |
and decreasing v.
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