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By incorporating a long-range Coulomb interaction into the framework of the one-band Hubbard model, we
delineate how the low-energy plasmon around 1 eV, which is a universal feature of the charge dynamics of the
cuprates, manifests itself in the resonant inelastic x-ray scattering �RIXS� spectra. The long-range Coulomb
interaction in the doped system controls the form of the intraband RIXS dispersion near the Brillouin zone
center around the � point. The out-of-plane momentum transfer component qz is found to play a key role in
determining whether or not the RIXS spectrum shows a plasmon-related gap at �.
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I. INTRODUCTION

Resonant inelastic x-ray scattering �RIXS� is rapidly
emerging as a unique tool for investigating charge excita-
tions in wide classes of materials. In the strongly correlated
cuprates, RIXS has been used to probe the doping evolution
of Mott physics, which lies at the heart of developing an
understanding of how the insulating state turns into a high-
temperature superconductor. In this connection, it is impor-
tant to understand how the RIXS spectrum is influenced by
the presence of the anomalously low-energy plasmon at
around 1 eV, which is a universal feature of the charge dy-
namics of the cuprates. Plasmon physics has been accessed
traditionally via optical and electron energy loss spec-
troscopies �EELSs�.1–3 However, optical studies are limited
to zero momentum transfer, while RIXS can probe excita-
tions over a wide range of momenta and energies. On the
other hand, EELS involves a charged particle going in and
out of the sample and suffers from multiple scattering ef-
fects, but these complications are ameliorated in a RIXS ex-
periment, which involves the scattering of a photon.

In this paper, we delineate how the low-energy plasmon
manifests itself in the RIXS spectrum of the cuprates. We
proceed by incorporating a long-range Coulomb interaction
into the framework of the one-band Hubbard model. Our
analysis focuses for simplicity on properties of the loss func-
tion, whose energy and momentum dependence is shown to
be related intimately to that of the RIXS spectrum. Illustra-
tive results are presented for insulating Sr2CuO2Cl2 �SCOC�
as well as for �overdoped� metallic Bi2Sr2CuO6 �Bi2201�.
The long-range Coulomb interaction yields little effect in the
insulating case, where the spectrum is dominated by inter-
band transitions across the Mott gap. In contrast, the plasmon
can strongly modify the intraband spectrum in the doped
system near �, depending on the value of the out-of-plane
momentum transfer component qz. For qz=0, we find sur-
prisingly that the plasmon dominates so that the RIXS spec-
trum displays a gap at the � point even though the underly-
ing electronic spectrum does not possess a gap. For qz�0,
the acoustic plasmon leads to a softening of the RIXS spec-
trum around the � point. These results bear directly on the

interpretation of the RIXS spectra and their implications for
the doping evolution of Mott physics in the cuprates. To our
knowledge, the role of the plasmon in creating a gap in the
RIXS spectrum around � and the key importance of the out-
of-plane momentum transfer component qz in this connection
have not been recognized previously in the literature.

II. FORMALISM

A. Resonant inelastic x-ray scattering cross section

In a RIXS process, a photon scatters resonantly to another
state, leaving behind an electron-hole �e-h� excitation of well
defined momentum q and energy �. The K-edge RIXS in-
tensity, which is the focus of this paper, is given by the
general expression4,5

IRIXS�q,�,�i� = �2��3N�w��,�i��2 �
j j�,k

�0j j�
� �q,k,��

��Pj,j��q,k,���2, �1�

where

�0j j�
� �q,k,�� = ��� + Ej�k� − Ej��k + q��nj�k��1 − nj��k + q��

�2�

is related to the joint density of states �JDOS� factor
�0j j�
� �q ,��=�k�0j j�

� �q ,k ,�� as discussed in Refs. 4 and 5,
and

w��,�i� = �
k1

���2

D��i,k1�D�� f,k1�
. �3�

Here, D�� ,k�=�+	1s−	4p�k�+ i�1s, the Cu 1s band is as-
sumed dispersionless at energy 	1s with lifetime broadening
�1s, and the Cu 4p band 	4p�k1� is modeled by a two-
dimensional �2D� tight binding band with nearest neighbor
hopping. Polarization effects arise via the Cu 1s-4p transition
factor �, which is taken for simplicity to be a constant. The
quantities Pj,j� in Eq. �1� are given by the expression

PHYSICAL REVIEW B 77, 094518 �2008�

1098-0121/2008/77�9�/094518�5� ©2008 The American Physical Society094518-1

http://dx.doi.org/10.1103/PhysRevB.77.094518


Pj,j��q,k,�� = �
�,
,
�

eiq·R�V�X�

j �k��
,
���,q�X�
�

j� �k + q� .

�4�

Here, 
 is the electron spin index, R� is the distance from the
core hole to atom �, and X�,


j are the eigenvectors of the
energy bands j with respect to the different atomic states.

RIXS intensity of Eq. �1� is based on the leading order
Keldysh diagram of Fig. 1, where the upper or the lower
triangle in the figure represents the RIXS amplitude.5 In par-
ticular, The electron-photon vertex � and the 1s and 4p
propagators given by D�� ,k� combine to produce the weight
w of Eq. �3�. The low-energy electron-hole pair depicted by
the polarization diagram in the middle of the figure is as-
sumed to couple predominantly to the core hole, and the 4p
state is assumed to be a delocalized spectator. We emphasize
that the core hole can, in general, induce a complex rear-
rangement of electronic states, including carrier hopping pro-
cesses. Here, we treat the core hole in lowest order as a bare
Coulomb energy V� between an electron on site � and the
core hole, with Vd denoting the corresponding onsite energy.
This Coulomb potential leads to a mixing of various onsite
orbitals, but it does not allow hopping between different
sites. Notably, the present formulation does not include ef-
fects of the electron-hole interaction in the final state.

B. Relation to electron energy loss spectroscopy

Here, we demonstrate a close connection between the
EELS and RIXS response functions within the framework of
the one-band Hubbard model. Recall that EELS measures

IEELS�q,�� � q2L�q,�� , �5�

where the loss function is

L�q,�� = Im�− 1/	�q,��� �6�

and the dielectric function is

	�q,�� = 	0 + V�q��0�q,�� , �7�

in terms of the bare charge susceptibility �0�q ,�� and the
Fourier transform V�q� of the Coulomb interaction, which

includes the effect of the onsite Hubbard term U. For our
model of a layered compound, V�q� is discussed in more
detail in the Appendix. The plasmon dispersion �p�q� is de-
fined via peaks of the loss function L at various momenta q.

Consider the factor P of Eq. �4�. In the antiferromagnetic
�AFM� state, the eigenvectors X�,


j reduce to the �AFM� Bo-
goliubov coherence factors v and u of the lower �LMB� and
upper magnetic bands �UMB�, and Pj,j� becomes a 2�2
matrix, where j=1 denotes the LMB and j=2 the UMB. In
the paramagnetic state, the index j is not needed so that Pj,j�
is a k independent scalar �denoted by P�, X�,


j =1, and if the
vertex correction � is neglected �i.e., �
,
��� ,q�=�
,
��, Eq.

�4� yields P= V̄�q�, the Fourier transform of the total Cou-
lomb interaction of the core hole. The corresponding result
when the vertex correction is approximated by a random

phase approximation bubble sum6,7 is P=	�q ,��−1V̄�q�,
where the dielectric function is given by Eq. �7�. Note that

V̄�q� differs from V�q� defined earlier in that V̄�q� is the
interaction energy of an electron with the core hole, while

V�q� is that between two electrons. Assuming that V̄�q� and
V�q� differ only in the onsite interaction, it follows that

V̄�q�=V�q�+Vd−U. Introducing V̂�q�� V̄�q�2 /V�q�, the
one-band �paramagnetic� RIXS response becomes

IRIXS�q,�,�i� = �2��3N�w��,�i��2V̂�q�L�q,�� , �8�

with the same loss function

L�q,�� = Im�− 1/	�q,��� =
V�q��0��q,��

�	�q,���2
. �9�

III. PLASMON EFFECTS

Equation �8� shows clearly that the low-energy plasmon
involved in the loss function not only controls the behavior
of the EELS spectrum via Eq. �5�, but also plays a significant
role in modifying the RIXS spectrum.8 Accordingly, we turn
now to consider the nature of the loss function in the cu-
prates with the examples of SCOC and Bi2201 in order to
highlight the effects of the plasmon. For this purpose, the
model one-band dispersion �Cu only� employed is of the
form9

	k = − 2t�cx�a� + cy�a�� − 4t�cx�a�cy�a� − 2t��cx�2a� + cy�2a��

− 4t��cx�2a�cy�a� + cy�2a�cx�a�� , �10�

where c
�na�=cos�nk
a�, for 
=x or y, n is an integer, and a
is the in-plane lattice constant. The values of the hopping
parameters t, t�, t�, and t� for SCOC and Bi2201 used in this
study are the same as those given previously in Ref. 9.

A. Coulomb interaction

The key is the treatment of the Coulomb interaction �see
Appendix for details�, which we decompose as10

V�q� = V2D + Vz, �11�

with

Im(χ)

w
4p

4p

1s 1s

1s 1s

V
d

γγ

FIG. 1. �Color online� Lowest-order Keldysh diagram for
K-edge RIXS process, after Ref. 5.
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V2D = V2D
sr + V2D

lr . �12�

Here, V2D is the contribution within a single plane and Vz is
the correction from all other planes. V2D is further broken up
into a short-range part V2D

sr �q�, which is defined by taking a
discrete sum over sites within a sphere of radius R0 and
includes the onsite U term. The long-range part, V2D

lr �q�, is
evaluated by taking a continuous Fourier integral extending
from R0 to �. We emphasize that while the intralayer part
V2D depends only on the in-plane momentum components qx
and qy, the interlayer part Vz also possesses an important
dependence on qz,

11

Vz�q� =
2�e2

a2q�	0
	 cos�qzc� − e−q�c

cosh�q�c� − cos�qzc�
 , �13�

with q� =�qx
2+qy

2. The qz dependence in Eq. �13� is respon-
sible for generating an acoustic branch in the plasmon spec-
trum of a quasi-2D material. In the computations reported in
this study, for simplicity, we have taken all contributions in
Eqs. �11� and �12� to be of the screened Coulomb form
V�r�=e2 /	0r �except for the onsite U�. The model parameters
appropriate to the cuprates are U=2 eV and the background
dielectric constant 	0=6.12 R0 is taken as four lattice con-
stants, but the results are not sensitive to these details.

B. Plasmons and long-range interaction

Figure 2 presents the computed loss spectrum for SCOC.
The system is assumed to be in the AFM insulating state so
that the electronic spectrum consists of the lower and upper
magnetic bands, which are separated by a gap of �U. The
loss function resulting from the inclusion of only the onsite
Hubbard U term in the calculations is shown in �a�. The
corresponding result for the full V�q�, including its longer-
range part, is shown in �b�. Although the theoretical spectra
in �a� and �b� are qualitatively similar, a q-dependent shift to

higher energies can be seen in �b� due to the effect of the
long-range Coulomb interaction.13 This is especially evident
near the zone center along the �− �� ,�� symmetry line
where the peak of the spectrum �whitish trace� drops below
the blue reference line �experimental plasmon dispersion� in
�a�, but it mostly lies above the blue line in �b�.

C. Acoustic plasmons

Figure 3 discusses with the example of Bi2201 the case of
an overdoped cuprate where the magnetic gap has collapsed.
All results in Fig. 3 are based on setting qz=0 in the potential
function; we return below to address the significant effects of
the qz�0 components. The four panels in the figure refer to
the use of different ranges of the screening potential in the
loss function computation. In particular, the potential range
is increased in going from �a� to �d� via the use of different
potential functions as follows: �a� only the onsite term U, �b�
the effect of the in-plane short-range term V2D

sr , which in-
cludes U, �c� effect of the total in-plane term V2D, and �d� the
full V�q�. We see that as the range of the potential increases
from being just the onsite Hubbard U term in �a� to the full
V�q� in �d�, the plasmon spectrum generally shifts in a sys-
tematic manner to higher energies.14 The difference between
panels �a� and �d� is very striking near the zone center at � in
that the dispersion extrapolates to zero energy at � in �a� for
the short-range potential, but in sharp contrast, the long-
range case in �d� displays the presence of a gap �p at �. This
difference is readily understood. For the pure Hubbard
model, the loss function is simply the q-resolved JDOS for
the electronic band. However, in a single band there can be
no vertical �interband� transitions, which forces the JDOS to
start from zero energy at �. Long-range screening then opens
a gap at � associated with the plasmon energy �p.

Insight into the role of the plasmon in the results of Fig. 3
can be obtained by recalling some generic properties of the
lower-dimensional plasmons.11,15 In the present context, it is
helpful to consider a simple 2D model with isotropic disper-
sion and circular Fermi surface, where the high frequency
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FIG. 2. �Color online� Calculated loss function for insulating
SCOC as a function of energy transfer � along the
�-�� ,0�-�� ,��-� high symmetry line in the Brillouin zone. Results
for two different model treatments of the Coulomb interaction are
shown: �a� only the short-range onsite Hubbard U term and �b� the
full V�q� of Eq. �9�. Experimental plasmon dispersion obtained
from EELS data �Ref. 3� is given by solid blue lines for reference in
both panels �a� and �b�. Note that intensities are plotted on a loga-
rithmic scale.
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FIG. 3. �Color online� Calculated loss function for overdoped
Bi2201 using four different ranges of the Coulomb potential, all
restricted to qz=0. Results in �a�–�d� are for an increasing range of
the potential as follows: �a� only the onsite term U, �b� in-plane
short-range term V2D

sr , �c� total in-plane term V2D, and �d� the full
V�q�. The color scheme is the same as in Fig. 2.
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susceptibility is straightforwardly shown to take the form
��q ,���−n0q�

2 /m�2, where n0 is the three-dimensional
�3D� density, so that

�p
2 = n0Vqq�

2/	0m . �14�

Equation �14� leads to several special cases of interest de-
pending on Vq. For the pure Hubbard model, Vq=Ua2c is a
constant �c is the interlayer spacing of CuO2 planes� and Eq.
�14� has the form of an acoustic plasmon, �p�q�, as is the
case in panels �a� and �b� of Fig. 3. For a single layer cuprate
with long-range Coulomb interaction V2D�q� of Eq. �12�, the
U term can be neglected as q→0, so that

�p
2 =

2�n2De2q�

	0m
, �15�

yielding the anomalous dispersion �p�q�
1/2 of Fig. 3�c�. For

a layered cuprate with the long-range Coulomb interaction
V�q� of Eq. �11�,

�p
2 =

4�n0e2q�
2

	0mq2 . �16�

When qz=0, q→q� and the familiar 3D form of �p is recov-
ered in Eq. �16�, leading to the results of Fig. 3�d�. However,
when qz�0, �p→0 as q�→0, leading to an acoustic plas-
mon, as discussed below in connection with Fig. 4.

Figure 4 shows that the behavior of the loss spectrum in
the vicinity of the � point is sensitive to the value of the
out-of-plane momentum component qz. For qz�0, the spec-
tral peak in Fig. 4�a� given by the solid line essentially goes
to zero energy at �, rather like the case of Fig. 3�a�, which
includes just the onsite Hubbard interaction. In other words,
for qz�0 the acoustic plasmon associated with long-range
Coulomb interaction, dominates the loss spectrum around �
consistent with our discussion of Eq. �16� above. In sharp
contrast, for qz=0 in Fig. 4�b�, the acoustic plasmon is ab-
sent, and the peak of the spectrum no longer goes to zero
energy at �, but lies at a finite energy of around 0.5 eV, as
marked by the red arrow.

D. Experimental consequences

As for confronting our theoretical predictions with experi-
ments, we are not aware of any systematic RIXS study in the
cuprates as a function of qz, although recent RIXS results of
Refs. 16–18 on the electron-doped Nd2−xCexCuO4 �NCCO�
are relevant because the data set of Ref. 16 was taken at qz

0 and that of Refs. 17 and 18 at qz=12.5�4� /c�, which
corresponds to qz�0 when reduced into the first Brillouin
zone.19 In the qz=0 case, the spectra display �see Fig. 5�c� of
Ref. 16� the presence of a prominent band of interband RIXS
transitions, which softens significantly with doping, but does
not show a full collapse around � at optimal doping, much
like the theoretically predicted behavior of Fig. 4�b�.20 On
the other hand, the qz�0 data �see Fig. 2�d� of Ref. 17 and
Fig. 2 of Ref. 18� in the optimally doped NCCO display a
RIXS band, which would appear to extrapolate to near zero
energy around �, similar to our computed spectra of Fig.
4�a�. Notably, optical spectra on Pr2−xCexCuO4, a closely re-
lated electron-doped cuprate,21 show that by 15% doping
�see Fig. 4 of Ref. 21�, a large portion of the spectral weight
shifts into a broad peak below 1 eV, in sharp contrast to the
qz=0 RIXS data. This, however, is to be expected since op-
tical absorption is insensitive to �longitudinal� plasmon phys-
ics while RIXS is not.

IV. CONCLUSIONS

In conclusion, by incorporating a long-range Coulomb in-
teraction into the Hubbard model, we have delineated the
important role of acoustic plasmons in modifying the RIXS
spectra of the doped cuprates. Most dramatic modifications
in the spectrum occur in the low momentum region around
the � point and show sensitivity to the out-of-plane momen-
tum transfer component qz. Our study bears on the interpre-
tation of the RIXS spectra from the cuprates and shows how
RIXS can probe the properties of acoustic plasmons in these
and related materials. Such studies should also enable a
quantitative assessment of the possible relevance of acoustic
plasmons in the mechanism of high-temperature
superconductivity22 and of the importance of long-range
Coulomb interaction on the Mott transition.23
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APPENDIX: LONG-RANGE COULOMB INTERACTION

The treatment of the long-range Coulomb interaction V�r�
for the correlated electronic system in a layered structure

requires some care.10 We model V�r�=�iṼ�Ri���r−Ri�, so

V�q�=�iṼ�Ri�exp�i�q ·Ri��. V�Ri� is taken as an onsite Hub-

bard term Ṽ�0�=U=2 eV plus screened Coulomb contribu-
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FIG. 4. �Color online� Calculated loss spectra for Bi2201 illus-
trating effect of qz: �a� qz=2� /c; �b� qz=0. Blue solid lines show
positions of the spectral peaks. The arrows show a peak position at
�. The logarithmic color scale is the same as in Fig. 2.
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tion for Ri�0 given by Ṽ�Ri�=e2 / �	0Ri�, using a back-
ground dielectric constant 	0=6. We define Ri=Ri0+�cẑ,
where Ri0 is a two-dimensional lattice vector, ẑ is a unit
vector perpendicular to the layers, � is a positive or negative
integer or zero, and a and c are the in-plane and perpendicu-
lar lattice constants. V�r� can now be expressed as a sum
over layer contributions: V�r�=��V��r�, with

V��r� = �
i

Ṽ��Ri0���r − �Ri0 + �cẑ�� , �A1�

with Ṽ��Ri0�= Ṽ�Ri0+�cẑ�. Vq,� can then be obtained via a
lattice Fourier transform.

To simplify the resulting expression, while still capturing
properly the long-range �q→0� part of Vq,�, we employ a
Lorentz cavity approximation by summing the contributions
of all �-plane Cu terms for r�R� and approximating the
remaining contributions for r�R by a continuum in order to
recover the correct q→0 limit of Vq,�. Thus,

Vq,� = �
i

�V��Ri0�e−iq·Ri + Vq,�
lr , �A2�

where the prime means Ri0�R� and

Vq,�
lr = e−iqz�c�

R�

� d2r

a2

e2

	0
�r2 + ��c�2

e−iq�·r =
2�e2e−iqz�c

	0a2q�

J�q�,�� ,

�A3�

with

J�q�,�� = �
q�R�

� xJ0�x�dx
�x2 + �q��c�2

. �A4�

For �=0, the integral can be done exactly,

J�q�,0� = 	1 − xJ0�x� +
�x

2
�J0�x�H1�x� − J1�x�H0�x��


x=q�R0

,

�A5�

where Hi are Struve functions.24 In the actual calculations,
we take R0=4a and R�=0 for ��0, in which case

J�q�,�� = e−q��c. �A6�

Finally, by summing over Vq,� for ��0, one obtains the net
interplane contribution Vz�q� of Eq. �13�.
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