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Recently, we have numerically evaluated the current-current correlation function for the ground states of
three-band models for the CuO planes of high-Tc superconductors at hole doping x=1 /8 using systems with 24
sites and periodic boundary conditions. In this paper, the numerical analysis is extended to a wider range of
parameters. Our results show no evidence for the time-reversal symmetry violating current patterns recently
proposed by Varma �C. M. Varma, Phys. Rev. B 73, 155113 �2006��. If such current patterns exist, our results
indicate that the energy associated with the loop currents must be smaller than 5 meV per link even if the
on-site chemical potential on the oxygen sites, which is generally assumed to be of the order of �p−�d

=3.6 eV, is taken to 1.8, 0.9, 0.4, and finally 0 eV. The current-current correlations remain virtually unaffected
as we increase the interatomic Coulomb repulsion Vpd, the term driving the system into the current carrying
phase in Varma’s analysis, from 1.2 to 2.4 eV. Assuming that the three-band models are adequate, quantum
critical fluctuations of such patterns hence cannot be responsible for phenomena occurring at significantly
higher energies, such as superconductivity or the anomalous properties of the pseudogap phase. We further
derive an upper bound for the magnetic moment per unit cell from the upper bound we obtain for spontaneous
currents, and find it smaller than the magnetic moment measured in a recent neutron scattering experiment. In
this context, we observe that if the observed magnetic moments were due to a current pattern, the magnitude
of these currents would be insufficient to determine the phase diagram. Finally, we discuss the role of finite size
effects in our numerical experiments. In particular, we show that the net spin 1 /2 of our finite size ground
states does not infringe on the validity of our conclusions.
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I. INTRODUCTION

High-Tc superconductivity has been one of the most ac-
tive fields of research in condensed matter physics in the past
two decades.1,2 It has turned out to be an exceedingly diffi-
cult problem, with much of the effort invested just deepening
the mysteries, but it has also led to a plethora of new devel-
opments extending far beyond the field. Many ideas, even
though too general to qualify as complete theories of the
cuprates, have inspired a vast amount of research in both
high-Tc and other areas. Most prominently among them are
the notions of a resonating valence bond state,3 the gauge
theories of antiferromagnetism,4 and the notion of quantum
criticality.5 There have been, however, a few concise propos-
als which make falsifiable predictions. Intellectual master-
pieces among them have been the theory of anyon
superconductivity,6 the proposal of kinetic energy savings
through interlayer tunneling,7 the SO�5� theory of a common
order parameter for superconductivity and magnetism,8 and a
more recent proposal that the anomalous properties of the
cuprates may be due to quantum critical fluctuations of cur-
rent patterns formed spontaneously in the CuO planes.9,10 In
a recent Letter,11 we investigated this proposal by finite clus-
ter calculations. Here, we provide supplemental information
and a more elaborate account of the approach.

This paper is organized as follows. In Sec. II, we briefly
review Varma’s proposal of spontaneous T violation in the
CuO planes and discuss some assumptions made therein. In
Sec. III, we introduce the three-band model Hamiltonian we
investigate. In Sec. IV, we compute the current-current cor-

relations of the ground state which we use to obtain informa-
tion about the existence of orbital currents and the magnetic
moment associated with them. We find that if an orbital cur-
rent phase exists in the cuprates, the energy associated with
the spontaneous currents will not be sufficiently high for the
phase to account for the strange metal phenomenology in the
cuprates. In Sec. V, we derive an upper bound for the mag-
netic moment per unit cell from the upper bound we obtain
for spontaneous currents, and find it smaller than the mag-
netic moment measured in a recent neutron scattering
experiment.12 The comparison shows, however, that even if
the observed magnetic moments were due to a current pat-
tern as proposed by Varma,9,10 the magnitude of these cur-
rents would be insufficient to determine the phase diagram.
In search for an alternative explanation of the experiment, we
investigate the spin-spin correlations of the ground state in
Sec. VI. In Sec. VII, the results for various three-band model
parameters are presented. In particular, we vary the on-site
chemical potential on the oxygens �p from previously 3.6 to
1.8, 0.9, 0.4, and finally 0 eV. Furthermore, we vary the
Coulomb interaction scale Vpd from 1.2 to 2.4 eV. The con-
clusion regarding the relevance of an orbital current pattern
for the strange metal phase of CuO superconductors we
reached previously remains intact. In Sec. VIII, we discuss
the role of finite size effects in our numerical experiments,
with particular emphasis on the net spin 1 /2 of our finite size
ground states. In Sec. IX, we conclude that while we cannot
rule out that the orbital current phase exists in the cuprates,
we can infer that the energy associated with these fluctua-
tions is not sufficiently high to account for the strange metal
phase in the cuprates.
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II. HYPOTHESIS OF SPONTANEOUS T VIOLATION IN
THE CUPRATES

The proposal of a spontaneous symmetry breaking
through orbital currents is motivated by experiment. The nor-
mal state of the cuprates at optimal doping shows a behavior
which can be classified as quantum critical, and has been
rather adequately described by a phenomenological theory
called marginal Fermi liquid.13 The linear temperature de-
pendence of the normal-state resistivity in optimally doped
La2−xSrxCuO4 �LSCO� and YBa2Cu3O7 �YBCO�,14–16 which
persists over several magnitudes of temperature, provides
striking evidence in favor of this picture. The marginal Fermi
liquid phenomenology led Varma to assume a quantum criti-
cal point �QCP� at a hole doping level of xc�0.19, an as-
sumption consistent with a significant body of experimental
data.16–20 Critical fluctuations around this point are then held
responsible for the anomalous properties of the strange metal
phase, and provide the pairing force responsible for the su-
perconducting phase which hides the QCP.

Interpreting the phase diagram in these terms, one is im-
mediately led to ask what the phase to the left of the QCP,
i.e., for x�xc, might be. The theory would require a sponta-
neously broken symmetry beyond the global U�1� symmetry
broken through superconductivity. In addition, as the fluctua-
tions are assumed to determine the phase diagram up to tem-
peratures of several hundred Kelvin, the characteristic energy
scale of the correlations associated with this symmetry vio-
lation must be at least of the same order of magnitude. Sev-
eral possibilities of such a broken symmetry have been sug-
gested, including stripes,21 a d-density wave,22 and a
checkerboard charge density wave,23 but no particular type
has been established up to now. Most recently, however, Xia
et al.24 presented evidence for a broken symmetry near the
pseudogap transition in YBCO through polar Kerr effect
measurements.

The general consensus is that the low energy sector of the
three-band Hubbard model proposed for the CuO planes25

�see Eq. �1� below� reduces to a one-band t-t�-J model, with
parameters t�0.44, t��0.06, and J�0.128 �energies
throughout this paper are in eV�.26–30 However, two remarks
are in order. First, the parameters are not exactly known, but
can only be calculated approximately.31 Second, for certain
regimes of the phase diagram, CuO two-leg ladder studies
have shown that the one-band and three-band descriptions
lead to qualitatively different results.32,33

For the undoped CuO planes, the formal valences are
Cu2+ and O2−. As the electron configuration of Cu atoms is
�Ar� 3d104s1, this implies one hole per unit cell, which will
predominantly occupy the 3dx2−y2 orbital. As the on-site po-
tential �p in the O 2px and 2py orbitals relative to the
Cu 3dx2−y2 orbital is generally assumed to be of the order of
�p=3.6 �with �d=0�, and hence smaller than the on-site Cou-
lomb repulsion Ud�10.5 for a second hole in the 3dx2−y2

orbital, additional holes doped into the planes will primarily
reside on the oxygens. The maximal gain in hybridization
energy is achieved by placing the additional hole in a com-
bination of the surrounding O 2px and 2py orbitals with the
same symmetry as the original hole in the Cu 3dx2−y2 orbital,
which requires antisymmetry of the wave function in spin

space, i.e., the two holes must form a singlet. This picture is
strongly supported by data from NMR34 and even more di-
rectly from spin-resolved photoemission.35 In the effective
one-band t-J model description of the CuO planes, these sin-
glets constitute the “holes” moving in a background of spin
1 /2 particles localized at the Cu sites.

In contrast to this picture, Varma9,10 has proposed that the
additional holes doped in the CuO planes do not hybridize
into Zhang-Rice singlets, but give rise to circular currents on
O-Cu-O triangles, which align into a planar pattern as shown
in Fig. 1. He assumed that the interatomic Coulomb potential
Vpd is larger than both the hopping tpd and the on-site poten-
tial �p of the O 2p orbitals relative to the Cu 3dx2−y2 orbitals,
an assumption which is not consistent with the values gen-
erally agreed on �see the list below �1��. Making additional
assumptions, Varma has shown that the circular current pat-
terns are stabilized in a mean field solution of the three-band
Hubbard model. The orbital current patterns break time-
reversal symmetry �T� and the discrete fourfold rotation
symmetry on the lattice, but leave translational symmetry
intact. The current pattern is assumed to disappear at a dop-
ing level of about xc�0.19. The phenomenology of CuO
superconductors, including the pseudogap and the marginal
Fermi liquid phase, are assumed to result from critical fluc-
tuations around this QCP, as outlined above.

Motivated by this proposal, several experimental groups
have looked for signatures of orbital currents or T violation
in CuO superconductors. While there is no agreement be-
tween different groups regarding the manifestation of T vio-
lation in angle-resolved photoelectron spectroscopy
studies,36,37 a recent neutron scattering experiment by Fau-
qué et al.12 indicates magnetic order within the unit cells of
the CuO planes. Their results appear to be consistent with
Varma’s proposal, and call the validity of the one-band mod-
els into question. Studies on one-dimensional systems38 and
most recently cuprate ladders39 indicate that an orbital cur-
rent phase can be stabilized for these geometries with Vpd
playing the crucial role to drive the system into a quantum
critical regime. �The experimental setup of high-Tc cuprates,
i.e., two-dimensional cuprate planes, is of course a funda-
mentally different case.� In a recent article, Aji and Varma40

have mapped the four possible directions of the current pat-
terns in each unit cell onto two Ising spins, and investigated
the critical fluctuations. Within this framework, the couplings
between and the transverse fields for these Ising spins affect
whether or under which circumstances the model displays
long-range order in the orbital currents.

We hence intended to estimate these couplings through
numerical studies of finite clusters containing 8 unit cells,
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FIG. 1. Orbital current pattern proposed by Varma.
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i.e., 8 Cu and 16 O sites, and periodic boundary conditions
�which do not frustrate but should enhance the correlations�.
The total number of holes on our cluster was taken N=9 �5
up spins and 4 down spins�, corresponding to a hole doping
of x=1 /8. We had hoped that the energy associated with a
domain wall, which may be implemented through a twist in
the boundary conditions, would provide information regard-
ing the coupling aligning the orbital currents in neighboring
plaquets, while the splitting between the lowest energies for
a finite system would provide an estimate for the transverse
field. Together, this would account for a description of the
system in terms of Ising-type variables where the quantum
critical behavior could be analyzed.

We find, however, that the current-current correlations in
the ground state show no tendency to align the orbital cur-
rents. There is no context to speak of a coupling of these
Ising variables—or, in other words, the couplings are zero
within the error bars of our numerical experiments.

III. THREE-BAND MODEL FOR THE CUPRATES

To begin with, we wish to study the three-band Hubbard
Hamiltonian H=Ht+HU with41

Ht = �
i,�

�pni,�
p − tpd �

�i,j�,�
�di,�

† pj,� + pj,�
† di,��

− tpp �
�i,j�,�

�pi,�
† pj,� + pj,�

† pi,�� + Vpd �
�i,j�,�,��

ni,�
d nj,��

p ,

HU = Up�
i

ni,↑
p ni,↓

p + Ud�
i

ni,↑
d ni,↓

d , �1�

where �,� indicates that the sums extend over pairs of nearest
neighbors, while di,� and pj,� annihilate holes in Cu 3dx2−y2

or O 2p orbitals, respectively. Hybertsen et al.28 calculated
tpd=1.5, tpp=0.65, Ud=10.5, Up=4, Vpd=1.2, and �p=3.6,
which is the first three-band model discussed below.

In order to be able to diagonalize Eq. �1� for a cluster of
24 sites, i.e., 8 Cu and 16 O sites, with 5 up-spin and 4
down-spin holes, we need to truncate the Hilbert space. A
first step is to eliminate doubly occupied sites. This yields
the effective three-band t-J Hamiltonian

Heff = P̃GHtP̃G + HJ with

HJ = Jpd�
�i,j�

	Si
p · S j

d −
1

4

 + Jpp�

�i,j�
	Si

p · S j
p −

1

4

 , �2�

where

Jpd = 2tpd
2 	 1

Ud − �p
+

1

Up + �p

, Jpp =

4tpp
2

Up
,

and the sums in HJ are limited to pairs where both neighbors
are occupied by holes. Starting from the Ud,p→� point in
the Hubbard model �1�, the model in Eq. �2� thus corre-
sponds to an expansion to first order in the band parameters
tpd,pp /Ud,p. For the parameter regimes we wish to address in
this work, we assume this approximation to be adequate, as

we expect doubly occupied sites to only yield subleading
contributions for a system of 9 holes with relatively strong
on-site repulsions Up,d distributed on 24 sites. There are also
higher order terms such as ring-exchange interactions,42 but
they are again subleading and are not expected to play a
significant role in driving the system into a current carrying
phase. �Note that in the mean field approach by Varma sup-
porting the current pattern shown in Fig. 1, the orbital cur-
rent phase is already found to zeroth order in the expansion,
i.e., Ud,p→�, with only tpd, tpp, and Vpd being relevant.� If

P̃G only eliminates configurations with more than one hole
on a site, i.e., a pure Gutzwiller projection, the dimension of
the Stot

z = 1
2 subsector is 164 745 504, which as such is above

our capabilities.
As a next step, we exploit the translational symmetries on

the cluster, a fourfold symmetry in q1̂ direction and a twofold

symmetry in q2̂ direction according to the conventions given
in Fig. 2. �Throughout this paper, we label the momenta by
�q1 ,q2� rather than �qx ,qy�.� The reduced dimension �2
�108 is still a considerably large Hilbert space. Thus, we
take two further steps. First, we identify the ground state in
the Brillouin zone. As it turns out, for all parameter choices
discussed in this paper, the respective ground state is either at
the � or M point. Second, we apply the rotation symmetry,
which commutes with the translational symmetries at and
only at the M and � points. The system then becomes ame-
nable to exact diagonalization.

In order to identify the momentum of the ground state, we
introduce two ways of truncating the Hilbert space: �a� We
limit the maximal number of holes allowed in the O orbitals
to Nox

max. �b� We limit the maximal number of CuO links
occupied with two holes to Nlink

max. Truncation �a� serves as a
good scheme when the on-site potential �p is large compared
to other parameter scales, but is not practicable in other
cases. Since truncation �b� predominantly projects out states
with high kinetic energy, we expect it to be insensitive to the
value of �p. To check the validity of the truncations, we
consider Hamiltonian �2� with the parameter values by Hy-
bertsen et al. listed above and calculate the ground state en-
ergies of the system �see Tables I and II�.

Both truncation schemes yield similar results. The ground
state is situated at the M point �� ,0� of the Brillouin zone.
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FIG. 2. We define the phases q1 and q2 acquired by translations
shown in �a�. For a system of eight unit cells, i.e., 8 Cu and corre-
spondingly 16 O, the phases can have the values q1=n1� /2 and
q2=n2� with n1� �0,1 ,2 ,3
 and n2� �0,1
. For the Brillouin zone
depicted in �b�, q1 and q2 translate into x and y momenta by qx

=q1 and qy =q1−q2. Thus, the phase description �q1 ,q2� of the �
and M point is �0, 0� and �� ,0�, respectively.
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At this point, it is possible to implement a fourfold rotation
symmetry, which commutes with the translational symme-
tries. Thus, the dimension is reduced by an additional factor
of 4 and the exact state is accessible. We find the energies
E��,0,0�=−0.8513, E��,0,�/2�=−0.8570, and E��,0,��=−0.8883,
where the first two indices label the linear momenta �q1 ,q2�,
and the third labels the angular momentum under discrete
rotations by 90°, qrot=nrot� /4, with nrot� �0,1 ,2 ,3
. The
ground state is hence in the �� ,0 ,�� subspace.

IV. CURRENT-CURRENT CORRELATIONS

With the current operator for an O-O and a Cu-O link
given by

jk,l =
itpp

	
�
�

�pl,�
† pk,� − pk,�

† pl,�� �3�

and

jk,l =
itpd

	
�
�

�pl,�
† dk,� − dk,�

† pl,�� , �4�

respectively, we evaluated the correlation function �jk,k+x̂ jl,m�
with O-O and Cu-O links as reference links for the exact
ground state. Up to deviations due to the single occupancy
projection from Eqs. �1� and �2�, these “projected” operators
correspond approximately to the physical currents observed
in the system.43 The results are shown in Figs. 3 and 4. The
correlations fall off rapidly and there is no indication of or-
der.

We now use the correlations to find indications regarding
the existence or nonexistence of the orbital current pattern,
given in Fig. 1. The numerical experiments for the finite
cluster can, as a matter of principle, never rule out directly
that a symmetry, in our case time-reversal symmetry T, is
violated. As only real parameters enter the Hamiltonian, the
computed ground states are real by construction and do not
allow for a direct indication of time-reversal symmetry
breaking. If it were to exist, the computed ground state
would be a symmetric superposition of the different sepa-
rately T-violating ground states, which itself is T symmetric
again and described by a real wave function. The current-
current correlation function, however, allows us to put an
upper bound on the size of the spontaneous currents: If a
current pattern as sketched in Fig. 1 were to exist, the
current-current correlations �jk,k+x̂ jl,l+x̂� for links far away

from each other in a rotationally invariant ground state
should approach 1

2 �x̂�jk,k+x̂�x̂�2, where �x̂� denotes a state with
a spontaneous current pointing in x̂ direction �the factor 1

2
arises because by choosing our reference link in x direction,
we effectively project onto two of the four possible direc-
tions for the current pattern�. From the values of 102

� �jk,k+x̂ jl,l+x̂� for the four horizontally connected links in the
center of Fig. 3, −0.0488, +0.0552, −0.0583, and +0.0552,
which should all be positive if a current pattern were present,
we estimate 102� �jk,k+x̂�2�0.05 and hence �x̂�jk,k+x̂�x̂�2�1
�10−3 as an upper bound for a current pattern we are unable
to detect through the error bars of our numerical experiment.
�Throughout this paper, currents are quoted in units of
eV /	.� We now denote �x̂�jk,k+x̂�x̂� by jpp.

TABLE I. Ground state energies per unit cell for �p=3.6, Vpd

=1.2 for the inequivalent points in the Brillouin zone and truncation
�a�.

Nox
max �0,0� ��

2
,0� �� ,0� �0,��

3 −0.7025 −0.6948 −0.7051 −0.6924

4 −0.8256 −0.8204 −0.8350 −0.8198

5 −0.8719 −0.8611 −0.8774 −0.8617

TABLE II. Ground state energies per unit cell for �p=3.6, Vpd

=1.2 for the inequivalent points in the Brillouin zone and truncation
�b�.

Nlink
max �0,0� ��

2
,0� �� ,0� �0,��

2 0.0640 0.0693 0.0631 0.0715

3 −0.6285 −0.6224 −0.6351 −0.6215

4 −0.8473 −0.8356 −0.8520 −0.8359
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FIG. 3. Current-current correlations �jk,k+x̂ jl,m� multiplied by 102

and in units of eV
	 for the ground state of Eq. �2� with �p=3.6,

Vpd=1.2 on a 24 site cluster �8 Cu=open circles, 16 O=filled
circles� with periodic boundary conditions �PBCs�. The reference
link is indicated in the top and �due to the PBCs� bottom left corner.
Except for the vertical lines, positive numbers indicate alignment
with the pattern shown in Fig. 1.
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We roughly estimate the kinetic energy 
pp per link asso-
ciated with a spontaneous current jpp of this magnitude using
jpp=npv and 
pp= 1

2npmv2 with m=1 /2tpp, where np is the
hole density on the oxygen sites �np=0.14 for the state ana-
lyzed in Fig. 3�, and obtain


pp �
	2jpp

2

4tppnp
� 3 � 10−3. �5�

A similar analysis with a Cu-O reference link �shown in
Fig. 4� yields with 102� �jk,k+x̂+ŷ�2�1.0 and hence jpd

2

�10−2 �there is no factor 1
2 in this case� an estimate of


pd �
	2jpd

2

4tpd
�npnd

� 5 � 10−3, �6�

where we have determined nd via 8nd+16np=9. We also
checked the lowest-lying excited states and likewise found
no current correlation pattern or decisive deviations in the
correlation scale compared to the ground state.

Note that this energy of 3 �or 5� meV is not the conden-
sation energy Ec per unit cell, but a positive contribution to
the energy of the current carrying state, which would have to
be �more than� offset by other contributions �like the energy
gain from aligning the circulating currents according to the
pattern Varma proposed� if such a state were realized. We
would expect the transition temperature Tc of such a state to

be of the order of the effective coupling of the Ising spins
introduced by Aji and Varma,40 while we would expect that
Ec�Tc.

V. MAGNETIC MOMENTS

Making contact to the quantities observed in experiment,
we now derive an upper bound of the magnetic moment from
the upper bound for the spontaneous currents we obtained
through numerics. The magnetization is related to the angu-
lar momentum of circulating electrons by M =−�BLz /	 with
Lz=merv, where r denotes the distance to the center of rota-
tion and v the velocity of the electrons.

With a Cu-Cu distance a0�3.8 Å, the side lengths of the
isosceles O-Cu-O triangle are

a0

2 for the two equal legs and
a0
�2

for the third side, as shown in Fig. 5. The distance of the
sides to the center-of-mass point are given by rpd=

a0

6 and
rpp=

a0

6�2
. Given the upper bound on the current-current cor-

relations 102� �x̂�jk,k+x̂�x̂�2�0.1� eV
	

�2, we infer a bound for
the particle current

jpp � 0.03
eV

	
. �7�

Note that the units correspond to 1/time �1 eV /	=1.517
�1015 1 /s�. Assuming that each triangle is occupied by one
hole only, this current corresponds classically to the inverse
time the hole takes to go around the triangle once.

Assuming further that the hole dwells equal amounts of
time on each link defining the triangle, the velocity on the
O-O link is given by

vpp =
a0

�2�	1

3

1

jpp

 =

3a0

�2
jpp

and on the Cu-O links by

vpd =
a0

2 �	1

3

1

jpp

 =

3a0

2
jpp.

With Lz=merppvpp=merpdvpd, we find an upper bound for the
associated angular momentum

Lz
pp � 0.015	 . �8�

As there are two current carrying triangles per unit cell in the
pattern shown in Fig. 1, we find an upper bound of the mag-
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netic moment induced by the currents as follows.

Mcell = 2M
 � 0.03�B. �9�

The result is below the estimate of M �0.05–0.1�B found
experimentally by Fauqué et al.12 �As we lower �p in Sec.
VII below, however, the upper bounds for jpp and jpd we are
able to obtain from our numerical experiments increase, and
become comparable to the experimental estimate.�

This provides an interesting perspective on the strength of
the magnetic moment observed in the experiment. If a pat-
tern as shown in Fig. 1 were responsible for this moment, the
associated current would be in a range of �0.05–0.1 eV /	,
a signal strength which we do not observe in the numerics.
Even if currents of this magnitude were present in the CuO
layers, however, following the previous derivation, the en-
ergy associated with this current strength would only be in
the range of 10–30 meV and thus too small to explain the
phase diagram of the high-Tc cuprates. This suggests that
even if orbital current alignment were responsible for the
magnetic moment measured in experiments, these currents
would not be sufficiently large to account for the strange
metal phenomenology of high-Tc superconductivity.

The immediate conclusion we draw from our numerical
results, however, is that if the CuO planes are adequately
described by a three-band model with a set of couplings in
the range we investigated, the antiferromagnetic ordering ob-
served by Fauqué et al.12 is not due to an orbital current
pattern as shown in Fig. 1. We are hence led to ponder
whether our models might be consistent with an alternative
explanation of this experiment. The correlations we observe
would be consistent with another orbital current pattern,
shown in Fig. 6, which had been proposed by Varma
earlier.9,10 This pattern, however, has been successfully ruled
out by neutron scattering experiment,44 and is not consistent
with the experiment of Fauqué et al.12 The correlations we
observe, on the other hand, provide no indication that such a
pattern is realized, as our system sizes are way too small to
establish the existence of any kind of long-range order. We
are merely not able to rule out order according to this pattern
with our numerical data. Considering the possibility of this
pattern being realized, however, does in any event not bring
us closer to understanding the magnetic moment observed by
Fauqué et al.12

VI. SPIN-SPIN CORRELATIONS

If the observed magnetic moment is not due to orbital
currents, what other possibilities are there? The only other

explanation which comes to mind within the confines of our
three-band models is antiferromagnetic order of the spins on
the oxygen lattice. The characteristic term driving the system
into this kind of order would be the antiferromagnetic cou-
pling Jpp in our effective Hamiltonian �2�. According to our
intuition about the system, there is no reason to expect this
kind of order, but as it is straightforward to obtain the spin-
spin correlations for our finite cluster, we discuss them
briefly in this section.

We have evaluated the static spin-spin correlation of spins
at sites i and j given by

Sij = �S� iS� j� ,

with an O or a Cu as reference site. The results are shown in
Figs. 7 and 8, respectively. For the O sublattice, we only
observe a very small staggered spin correlation which falls
off rapidly with distance on the scale of the lattice constant,
regardless of whether we choose an O or a Cu as reference
site. We do not observe any indication of antiferromagnetic
order on the O sites, as the required long-range correlations
are clearly absent. We will hence not discuss the spin-spin
correlations any further and focus on the current-current cor-
relations instead.

Regarding the experiment by Fauqué et al.,12 we believe
that the explanation will require a model which goes beyond
the projected three-band models studied here. The explana-
tion might, for example, involve orbital currents localized at
the O atoms.

VII. RESULTS FOR DIFFERENT PARAMETER SETTINGS

We now consider various parameter choices for the three-
band Hubbard model. The two parameters which Varma10

O O

O O O O

O O O O
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FIG. 6. An orbital current pattern proposed earlier by Varma,
which has subsequently been ruled out by experiment.
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assumed to differ significantly from the values used above
are the relative on-site potential �p, which he assumed to be
small compared to all other energy scales, and the inter-
atomic Coulomb interaction Vpd, which he assumed to be the
leading energy scale of the system generating the orbital cur-
rents.

Thus, our strategy is as follows. Firstly, we successively
decrease �p from 3.6 to 1.8, 0.9, 0.4, and finally 0, and ana-
lyze each model as explained above. Secondly, for small val-
ues of �p, we double Vpd from the standard value 1.2–2.4 and
look whether this significantly influences the system. In do-
ing so, we implicitly sweep over a broad range of the charge
transfer gap, which is dependent on Vpd and �pd. To begin
with, we have computed the ground state energies per link
for all inequivalent points in the Brillouin zone for all pa-
rameter choices we consider �see Table III�. We found that
the ground states are either situated in the � point or M point
of the Brillouin zone. This is not surprising as it is plausible
that the ground state does not carry any net momentum, and
also consistent with the current pattern shown in Fig. 1. For
the states at the � and M points, we then implement the
rotation symmetry discussed above and compute the ground
state energies per link in the respective subspaces exactly.
The results are shown in Table IV.

We now turn to the different choices for the model param-
eters. Except for �p and Vpd, we use the three-band Hubbard
parameters calculated by Hybertsen et al.28 We label the dif-
ferent sections by the values for �p and Vpd we specifically
investigate.

A. �p=1.8, Vpd=1.2

As we decrease �p from 3.6 to 1.8, the ground state
switches from momentum �� ,0� to �0,0�, i.e., from the M to

the � point in the Brillouin zone �see Table III�. Implement-
ing the rotational symmetry yields E�0,0,0�=−1.4551,
E�0,0,�/2�=−1.4350, and E�0,0,��=−1.4857 �see Table IV�, i.e.,
the ground state is at �0,0 ,��. The current-current correla-
tions for this state are depicted in Fig. 9. There is no evi-
dence for a pattern along the lines of Fig. 1. Instead, the
correlations decrease rapidly with distance. The “fluctua-
tions” or “noise” inherent in finite size calculation are com-
parable to the preceding case �p=3.6. The values of 102

� �jk,k+x̂ jl,l+x̂� for the four horizontally connected links in the
center of Fig. 9, +0.0028, +0.0199, −0.0430, and +0.0199
indicate no relevant scale of correlations. Recall that the or-
bital current pattern shown in Fig. 1 would require all the
numbers to be positive.

B. �p=0.9, Vpd=1.2

As we decrease �p further to 0.9, the lowest state remains
in the � point, i.e., �0,0 ,��. The ground state correlations
are depicted in Fig. 10. They fall off less rapidly with dis-
tance than for larger values of �p. Again, there is no indica-
tion of a current pattern. The values of 102� �jk,k+x̂ jl,l+x̂� for
the four horizontally connected links in the center of Fig. 10,
−0.420, +0.0338, −0.0647, and +0.0338, indicate likewise no
relevant scale of correlations.

C. �p=0.4, Vpd=1.2

The correlations for the ground state, which remains at the
�0,0 ,�� point, are depicted in Fig. 11. We have now reached
a parameter regime for which Varma proposed that a current
pattern should occur: �p is small compared to Vpd, and Vpd is
of the order of the other scales. However, we still find no
indication of a current pattern. The values 102� �jk,k+x̂ jl,l+x̂�
for the four horizontally connected links in the center of Fig.
11, −0.0971, +0.0220, −0.0795, and +0.0220, remain small.
Nonetheless, let us estimate the energy associated with an
upper bound for the currents as elaborated on above. We
estimate 102� �jk,k+x̂�2�0.1 and hence �x̂ � jk,k+x̂ � x̂�2�2
�10−3 as an upper bound for a uniform contribution accord-
ing to a current pattern as depicted in Fig. 1. As above,
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FIG. 8. Spin-spin correlations multiplied by 102 for the ground
state of Eq. �2� with �p=3.6, Vpd=1.2 with PBCs. The Cu reference
site to the upper left is indicated by a big black circle.

TABLE III. Ground state energies per unit cell for the different
momentum subspaces in the Nlink

max=4 approximation. The numbers
for the subspace with the lowest energies, corresponding to the
ground state of the full Hamiltonian, are underlined.

�p Vpd �0,0� ��

2
,0� �� ,0� �0,��

3.6 1.2 −0.8473 −0.8356 −0.8520 −0.8359

1.8 1.2 −1.4187 −1.3888 −1.4104 −1.3925

0.9 1.2 −1.7852 −1.7508 −1.7732 −1.7569

0.4 1.2 −2.0290 −2.0011 −2.0185 −2.0066

0.4 2.4 −1.6486 −1.6381 −1.6433 −1.6387

0.0 1.2 −2.2543 −2.2427 −2.2438 −2.2407

0.0 2.4 −1.9199 −1.9265 −1.9342 −1.9261
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�x̂�jk,k+x̂�x̂� is denoted by jpp. For the kinetic energy 
pp per
link associated with a spontaneous current

jpp � 0.05
eV

	
,

we obtain with np=0.24


pp �
	2jpp

2

4tppnp
� 3 � 10−3.

If spontaneous currents were hence to exist, the energy asso-
ciated with them would be too small to allow for an inter-

pretation of the strange metal phase in terms of the quantum
critical fluctuations around this phase.

D. �p=0.4, Vpd=2.4

For �p=0.4, we have also doubled the Coulomb repulsion
between the Cu and O sites to Vpd=2.4, which then becomes
the leading energy scale before the copper-oxygen hopping
tpd=1.5. The ground state remains at the � point of the Bril-
louin zone �see Table III�. Compared to Vpd=1.2, the ener-
gies of the � and M ground states are now much closer to
each other. The correlations for the ground state at �0,0 ,��
are shown in Fig. 12. Again, there is no evidence of a current

TABLE IV. Exact ground state energies for the � point �0,0 ,qrot�, and the M point �� ,0 ,qrot�, with
additionally applied rotation symmetry �qrot=3� /2 is degenerate to qrot=� /2�. The numbers for the subspace
with the lowest energies, corresponding to the ground state of the full Hamiltonian, are underlined.

�p Vpd �0,0,0� �0,0 ,
�

2 � �0,0 ,�� �� ,0 ,0� �� ,0 ,
�

2 � �� ,0 ,��

3.6 1.2 −0.8544 −0.8545 −0.8843 −0.8513 −0.8570 −0.8883

1.8 1.2 −1.4551 −1.4350 −1.4857 −1.4462 −1.4448 −1.4769

0.9 1.2 −1.8440 −1.8136 −1.8672 −1.8345 −1.8304 −1.8557

0.4 1.2 −2.0986 −2.0820 −2.1149 −2.0932 −2.0859 −2.1053

0.4 2.4 −1.6864 −1.6788 −1.7007 −1.6950 −1.6741 −1.6923

0.0 1.2 −2.3269 −2.3400 −2.3389 −2.3317 −2.3280 −2.3372

0.0 2.4 −1.9508 −1.9613 −1.9647 −1.9766 −1.9543 −1.9619
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for the ground state of Eq. �2� with �p=1.8, Vpd=1.2 on a 24 site
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pattern. The values of 102� �jk,k+x̂ jl,l+x̂� for the four horizon-
tally connected links in the center of Fig. 12, −0.1501,
−0.0487, −0.0399, and −0.0487, are comparable to the case
Vpd=1.2 discussed above. Note that the four horizontal links
we consider are now aligned. Unfortunately, the sign of all
four numbers is opposite to the sign required by the pattern
shown in Fig. 1.

E. �p=0, Vpd=1.2

This setting has already been discussed previously.11 In a
sense, �p=0 is the most favorable choice for Varma’s mean
field approach. It should be kept in mind, however, that �p
must be positive and finite in the experimental system to
account for the antiferromagnetic order in the undoped cu-
prates. The ground state is now doubly degenerate and found
at �0,0 , �� /2�. There is no current pattern observable, but
the values of 102� �jk,k+x̂ jl,l+x̂� for the four horizontally con-
nected links in the center of Fig. 13, 0.3726, −0.1483,
−0.4123, and −0.1483, are larger than for any of the other
parameter settings we investigated. The uniform current is
still zero, but with larger fluctuations or noise due to the
finite size of our system. We estimate an upper bound for a
uniform positive correlation 102� �jk,k+x̂�2�0.2 and hence
�x̂�jk,k+x̂�x̂�2�4�10−3. As above, �x̂�jk,k+x̂�x̂� is denoted by
jpp, and the approximate kinetic energy 
pp per link associ-
ated with a spontaneous current

jpp � 0.06
eV

	

yields with Eq. �5� and np=0.34,


pp � 5 � 10−3.

The correlations with Cu-O reference link are shown in Fig.
14. A similar analysis yields with Eq. �6�


pd � 4 � 10−3.

The upper bound of 5 meV we found for the energy associ-
ated with spontaneous currents corresponds to a temperature
Tcurrent�60 K. To explain the strange metal phase, however,
the energy scale responsible for the quantum critical fluctua-
tions would have to extend at least to a range of several
hundred Kelvin.

Note that the upper bound for the magnetic moment per
unit cell is now given by

Mcell = 2M
 � 0.06�B, �10�

a value roughly comparable to the range of M
�0.05–0.1�B found experimentally by Fauqué et al.12 This
does not imply that these orbital currents exist, but only
states that if we assume a three-band model with �p=0, we
are not able to rule out an orbital current pattern as shown in
Fig. 1 as an explanation for the experimentally observed
magnetic moment. On the other hand, even if the observed
moments are due to such a pattern, the energies involved are
too small to explain the phenomenology of the strange metal
phase.

F. �p=0, Vpd=2.4

Finally, we double the repulsion Vpd for �p=0. The ground
state is now at the M point, at �� ,0 ,0� �see Table IV�. The
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corresponding correlations are shown in Fig. 15. Again, there
is no evidence for a current pattern. The values of 102

� �jk,k+x̂ jl,l+x̂� for the four horizontally connected links in the
center of Fig. 15, 0.0909, −0.0885, 0.0865, and −0.0885, are
rather small. We estimate an upper bound 102� �jk,k+x̂�2

�0.1 and hence �x̂�jk,k+x̂�x̂�2�2�10−3 for the contribution
from spontaneous currents. For the associated kinetic energy

pp per link we find with np=0.36


pp � 2 � 10−3.

Note that since Vpd is driving the orbital currents in the mean
field theory proposed by Varma,10 his theory would predict
the model to show the strongest propensity to form current
patterns for this choice of parameters. By contrast, we find
no indication of such a propensity in our numerical experi-
ments.

This concludes our analysis of different parameter settings
for the three-band t-J-V model �2�. As a side remark, we
have also analyzed the zeroth order expansion of the three-
band Hubbard model �1� in terms of 1 /Up, 1 /Ud, i.e., the
Hamiltonian �2� with Jpd=Jpp=0, and likewise found no evi-
dence for a current pattern. �This model is a less adequate
description of the CuO planes than the three-band t-J-V
model we have studied extensively above, but possibly rel-
evant to the discussion as it is the model for which Varma
obtained a current carrying phase in mean field theory.�

VIII. FINITE SIZE EFFECTS

The numerical calculations we report here were per-
formed on a cluster of 8 unit cells, i.e., 24 sites �8 copper and

16 oxygen�. The question we wish to address in this section
is whether any of the finite size effects might affect our over-
all conclusion. Due to the finite size, we have not been able
to measure the current-current correlations at long distances,
where they would accurately provide the size of a spontane-
ous current if such a current were to exist. Instead, we have
only been able to establish upper bounds on such currents.
These upper bounds, however, turned out to be small enough
to allow us to rule out that an orbital current pattern as pro-
posed by Varma and shown in Fig. 1 is responsible for the
anomalous properties of the strange metal phase in the cu-
prates.

There are, however, three other finite size effects which
may limit the validity of our conclusion. The first is that the
ground states in our systems have spin S=1 /2, as we have a
total of nine holes, corresponding to a doping of one hole
away from half filling. The current carrying state proposed
and investigated by Varma, by contrast, is in general a spin
singlet. Could it be that the extra spin 1 /2 destroys the or-
bital current pattern in our numerical experiments, while the
currents would be present if we had an infinite system? We
will argue now that any possible effect would not affect our
conclusions.

To begin with, assuming that no magnetic spin order is
present, the ground state of the infinite system will be a spin
singlet, regardless of whether the state carries a spontaneous
current or not. This also holds for any finite system with an
even number of electrons, even if long-range antiferromag-
netic correlations in the spins were present. The ground state
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for a finite system with an odd number of electrons, as we
have investigated in this work, will correspond to the ground
state for an even number of electrons supplemented by an
excitation which carries spin 1 /2. This excitation will cost a
finite amount of energy. The question relevant for the valid-
ity of our conclusion is whether the energy cost of this spin
1 /2 excitation is higher for a current carrying state than it is
for a state without currents, and if it is higher, by which
amount. Since the term driving the spontaneous currents in
Varma’s analysis is Vpd, the energy associated with this term
has to be lower in the current carrying state, while we would
expect most other terms in the Hamiltonian, but, in particu-
lar, the antiferromagnetic exchange terms Jpd and Jpp, to be
slightly higher in energy. As the excitation energy for the
extra spin 1 /2 amounts mostly to an extra energy cost in Jpd
and Jpp, we expect that this excitation will cost less energy in
the current carrying state than in the state without currents.
In other words, unless the antiferromagnetic exchange terms
in Eq. �1� were to contribute toward driving the system into
a current carrying phase, the spin 1 /2 excitation in our finite
system would enhance the stability of this phase. The fact
that we do not observe a current pattern in the presence of
the extra spin 1 /2 makes our conclusion even more robust
than it would be without the excitation.

To rule out any doubt completely, let us be unreasonable
and assume that the antiferromagnetic exchange terms do, in
fact, enhance the systems’ propensity to develop spontaneous
currents, and that the antiferromagnetic exchange energy in
the current carrying phase is maybe about 10% below the
energy of the phase without the currents. For the parameter

choice �p=0 and Vpd=1.2, the antiferromagnetic exchange
energy per unit cell is

�J = 1
8 ��0�HJ��0� = 122 meV, �11�

with HJ given in Eq. �2�. To estimate the energy cost of the
spin 1 /2 excitation, we compare the ground state energy for
S=1 /2 obtained for 5 up- and 4 down-spin holes with the
ground state energy for S=3 /2 obtained for 6 up- and 3
down-spin holes, and find an energy difference of 

=230 meV. Since the ground state energy for the different
spin sectors should roughly be proportional to S2, the energy
cost of the S=1 /2 excitation should be roughly 1 /8 of this
difference, or about 30 meV. The energy cost of the excita-
tion per unit cell of our finite cluster is hence of the order of
4 meV. If we now assume that the energy cost for this S
=1 /2 excitation increases by 10% if spontaneous currents
are present �the cost increases because the excitation disturbs
the current driving antiferromagnetic correlations�, the addi-
tional energy cost for the currents due to the extra spin 1 /2
would be of order 0.4 meV per unit cell, or roughly
0.04 meV per link. If this energy cost were to destabilize the
spontaneous currents, the energy associated with them would
be below the upper bounds estimated from the current-
current correlations above.

As a second point, we have to keep in mind that with a
leading energy scale tpd�1 eV and 24 sites, we can calculate
the total ground state energy per link only to an absolute
accuracy of roughly 100 meV. With an energy per link in the
range of 1 eV as reported in Table IV, this corresponds to a
relative deviation of 10%. We expect this deviation to trans-
fer to all other calculated quantities, and, in particular, the
current-current correlations. This leaves the conclusions we
draw from our numerical experiments intact provided that
the ground state we obtain does not significantly change or
flip into a state with different properties as we approach the
thermodynamic limit.

The third finite size effect we briefly wish to mention is
that the special geometry of periodic boundary conditions
might have an unintended influence on the system, maybe in
that it stabilizes a state without currents which would not be
stable in the infinite system. We have hence twisted and var-
ied the boundary conditions in any way we could think of,
but found that the correlations, and, in particular, the fluctua-
tion or noise level due to the finite size which limits or abil-
ity to put upper bounds on the correlations, remained un-
changed.

IX. CONCLUSION

Let us summarize the results of our numerical studies on
three-band Hubbard models for the cuprate planes in CuO
superconductors. For the commonly accepted parameter val-
ues as calculated by Hybertsen et al.,28 we find no orbital
current pattern as shown in Fig. 1 as well as no significant
antiferromagnetic spin-spin correlation on the oxygen sites.
As we sweep over a considerable parameter regime of �p and
Vpd and compute the current-current correlations for the re-
spective ground states, we likewise do not observe any evi-
dence for a pattern as advocated by Varma’s mean field
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analysis. Instead, we find that the correlations change quan-
titatively, but not qualitatively, as we move through the pa-
rameter space. We also observe that there is no clear depen-
dence of the correlations on Vpd, which is not consistent with
what one would expect from Varma’s analysis. We conclude
that while we cannot rule out that orbital current patterns
exist, we can rule out that they are responsible for the prop-
erties of the strange metal phase or the anomalous normal
state properties extending up to temperatures of several hun-
dred Kelvin, as the energy associated with the spontaneous
loop currents would be less than 5 meV per link if such
currents were to exist. We have assumed that the CuO planes
are adequately described by the �projected� three-band Hub-
bard model �1�, but we have allowed �p to be much smaller
and Vpd larger than generally agreed upon, and based our

estimate for the upper bound of 5 meV on, for this purpose,
the most unfavorable case �p=0.

Note added. After this work was completed, we learned of
a slave boson mean field calculation by Kremer, et al.,45 who
likewise found no spontaneous currents in the ground state of
the model originally analyzed by Varma.
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