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We develop a microscopic theory of atom scattering from inhomogeneous quantum liquids. Methods devel-
oped previously for elastic atom scattering and sticking are extended to describe transport currents and inelastic
processes. The theory is applied to examine scattering processes of atomic hydrogen and 3He impinging on the
surface of liquid 4He at arbitrary angles. For that purpose, we first calculate the ground state of H and 3He on
the surface of liquid 4He. We obtain for H a binding energy of about 1 K in good agreement with experiments,
and calculate the deformation of the 4He background and impurity-background distribution functions. The
angular distribution of the outgoing particle currents generated by inelastic processes is calculated. We pay
special attention to the case of small deflection angles as well as to low-energy scattering off third sound modes
of the 4He film and off ripplons of the free 4He surface, respectively. In both cases, we obtain an E2 law for the
total direct inelastic scattering probability. Since the self-energy �“optical potential”� obtained in our approach
is consistent with unitarity, the sticking probability can be calculated using the results for elastic and inelastic
scattering. We also investigate the sensitivity of our low-energy results to the long-ranged van der Waals
potential of the substrate and to the film thickness.
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I. INTRODUCTION

We have developed in recent work1–3 a manifestly micro-
scopic theory of the dynamics of interactions between single
atoms and the surface of liquid 4He. These calculations have
provided theoretical tools that are capable of predicting prop-
erties such as effective masses, lifetimes, and scattering fea-
tures of physisorbed impurity atoms. Specializing to 3He im-
purity atoms, we have highlighted the essential role played
by the coupling to surface excitations �ripplons or third
sound�.

This paper provides, as a natural extension of our previ-
ous work, a many-body formulation of inelastic scattering
processes from inhomogeneous Bose liquids. A concept that
needs to be introduced is that of second-order particle cur-
rents. These are expectation values of the current operator
expanded to second order in the fluctuating part of the many-
body scattering wave function which is necessary to describe
particle transport. In Ref. 3, we were able to make some
statements about inelastic processes using unitarity, but basi-
cally at the level of saying “whatever is not elastic must be
inelastic.” Here, we go much farther. By calculating the
aforementioned second-order currents, we can quantitatively
obtain the probabilities of scattering into the various inelastic
channels. Therefore, our work may be considered as a step
toward a completely microscopic formulation of transport
phenomena built upon, and consistent with, a quantitative
ground-state theory.

We apply these techniques to examine the adsorption and
scattering of hydrogen and 3He atoms on the surface of liq-
uid helium films. Atomic hydrogen at low temperatures has
yielded interesting physics and applications: spin waves due
to the quantum nature of atomic collisions,4 the cryogenic
hydrogen maser,5 quantum reflection and sticking,6 as well as
three- and two-dimensional quantum gas physics7 and the
possible formation of a quasicondensate.8,9 The interaction of
hydrogen isotopes with the surface of liquid 4He is an im-

portant aspect of work with atomic hydrogen10 and
deuterium.11 Further application of our theoretical tools is
envisioned in the theoretical description of evaporative iso-
topic purification12 of superfluid 4He.

Particularly important is the fact that the physisorption of
H on 4He is remarkably weak. The first semiquantitative
estimate13 of the binding energy of H to the helium surface
gave a lower bound of 0.6 K for the binding energy of a H
atom on liquid helium, and 2.5�0.6 K for deuterium.11 Pre-
cision measurements of the binding energy of H on liquid
helium suggest that the presently best values are from
1.03�2� K �Ref. 14� to 1.14 K �Ref. 15� for H atoms. Earlier
work16,17 reports values of 1.15�0.05 K and 0.89�0.07 K,
respectively. The binding energy of D atoms has been found
to be 3.97�7� K.18

We have already seen that our theoretical description,
which was thoroughly tested for the helium liquids, is also
valid for hydrogen isotopes in the bulk liquid. There, we
have obtained a solvation energy of 14.9 K for D.19 Extend-
ing the calculations of Ref. 19 for atomic H to zero pressure,
one obtains a solvation energy of 31.6 K. Of course, the
physical scenario studied in this paper is quite different be-
cause the impurity atoms cannot easily intrude into the 4He
liquid, but we will see that the binding energy of hydrogen to
the surface of 4He is also reproduced with good accuracy.
The weak adsorption of H atoms allows for some simplifi-
cation of the theoretical treatment of scattering especially for
low energies, which makes the formalism more transparent.

An interesting question related to the interaction of atomic
hydrogen with helium films is the problem of quantum
reflection.20,21 One must distinguish between two different
aspects of the problem. One is the dependence of scattering
and sticking features on the density of states of the hydrogen
atom at low energies. The precise nature of the long-ranged
van der Waals interaction and, possibly, retardation effects
can play important roles. Many-body theory makes no state-
ment on these questions; for a review, see Ref. 22. The sec-
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ond question, quite unrelated to the first, is the interaction of
the hydrogen atom with the helium surface. Simple estimates
can be made based on the knowledge of the surface wave
dispersion relation, but the accurate description of how an
impinging atom interacts with the helium surface is an intrin-
sic many-body problem. In that sense, this work is comple-
mentary to phenomenological studies of quantum reflection
because it provides unambiguous microscopic input to such
considerations.

Our paper is organized as follows: In Sec. II, we review
the theoretical method of optimizing a correlated N-body
wave function to obtain ground-state properties of the back-
ground boson liquid and the impurity. Section III explains
the method of time-dependent correlated wave functions ap-
plied to the problem of a single particle scattering at a many-
body system, which couples to both virtual and real excita-
tions. The real excitations lead to decay into bound states and
scattering channels other than the elastic channel. For calcu-
lating transport quantities, the expectation value of the cur-
rent operator is expanded to second order in the time-
dependent correlations. The results are specialized in Sec. IV
to the plane surface geometry to obtain probability distribu-
tions for direct inelastic scattering. After deriving the basic
formulas, we discuss unitarity and inelastic scattering. In
Sec. V, we derive low energy–small deflection angle limits
for direct inelastic scattering and sticking probabilities for
films and free liquid surfaces, and relate these, whenever
possible, to other macroscopic observables. Section VI pre-
sents an extensive discussion of our results, and Sec. VII
gives a brief summary and further prospects.

II. THEORY: STATICS

This paper applies the method of correlated variational
wave functions for a microscopic description of scattering
phenomena. The implementation of the ground-state theory
for the helium surface and atomic impurities, and the treat-
ment of scattering problems have been described in Refs. 1
and 3; we restrict ourselves here to defining the essentials of
the theory and give only those equations that are absolutely
necessary for the purpose of the discussion of its physical
content.

A. Background liquid

The theory begins with the Jastrow–Feenberg ansatz for
the ground-state wave function of the form

�N�r1, . . . ,rN� = exp
1

2��i

u1�ri� + �
i�j

u2�ri,r j�

+ �
i�j�k

u3�ri,r j,rk�� . �2.1�

The only phenomenological input to the theory is the micro-
scopic Hamiltonian

HN = �
i
�−

�2

2mB
�i

2 + Usub�ri�� + �
i�j

V��ri − r j�� , �2.2�

where V��ri−r j�� is the 4He-4He interaction, and Usub�r� is
the external “substrate” potential which causes the symmetry
breaking.

An essential part of the approach is the optimization of the
many-body correlations by solving the Euler equations

�EN

�un�r1, . . . ,rn�
= 0 �n = 1, 2, and 3� , �2.3�

where EN is the energy expectation value of the N-particle
Hamiltonian �2.2� with respect to the wave function �2.1�.
The energy is evaluated using the hypernetted chain �HNC�
hierarchy of integral equations.23 The HNC equations pro-
vide relationships between the n-body distribution functions

gn�r1, . . . ,rn� =
�n�r1, . . . ,rn�

�1�r1� . . . �1�rn�
�2.4�

and the correlation functions un�r1 , . . . ,rn�, where �n are the
n-body densities

�n�r1, . . . ,rn� =
N!

�N − n�!

� d3rn+1 ¯ d3rN�N
2 �r1, . . . ,rN�

� d3r1 ¯ d3rN�N
2 �r1, . . . ,rN�

.

�2.5�

These relationships are used to rewrite the ground-state en-
ergy in terms of the physical observables �1�r1�, g�r1 ,r2�,
and u3�r1 ,r2 ,r3�,

EN = EN��1,g,u3	 = T��1	 + Vsub��1	 + Ec��1,g,u3	 .

�2.6�

Here, T��1	 and Vsub��1	 are the kinetic energy of the nonin-
teracting model system and the energy of the particles in the
external potential, respectively:

T��1	 =
�2

2mB
� d3r��
�1�r��2,

Vsub��1	 =� d3r�1�r�Usub�ri� . �2.7�

Ec��1 ,g ,u3	 is the “correlation” energy which is a functional
of �1�r1�, g�r1 ,r2�, and u3�r1 ,r2 ,r3�. The ground-state struc-
ture of the adsorbed film is now calculated by minimization
of the ground-state energy functional �2.6� with respect to the
one-body density, the pair-distribution function, and the
three-body correlation function for fixed particle number per
unit area. Explicit formulas and the essential steps of the
algebraic manipulations, as well as the technique used to
optimize the triplet correlations, are given in Ref. 24. The
resulting one-body equation,
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�−
�2

2mB
�2 + Usub�r� + VH�r��
�1�r� = �B


�1�r� ,

�2.8�

has the formal structure of a local Schrödinger equation with
a self-consistent effective one-body “Hartree potential”

VH�r� =
�Ec

��1�r�
. �2.9�

�B is the chemical potential of a background atom.
The two-body equation, resulting from the minimization

of the variational energy �2.6� with respect to the pair-
distribution function,

�Ec

�
g�r,r��
= 0, �2.10�

is best formulated in terms of the �real space� static structure
function,

S�r,r�� = ��r − r�� + 
�1�r��1�r���g�r,r�� − 1	 ,

�2.11�

the one-body Hamiltonian

H1�r� = −
�2

2mB

1

�1�r�

� �1�r� �
1


�1�r�
, �2.12�

and the so-called particle-hole interaction Vp-h�r ,r��. The
particle-hole interaction is, within the variational theory, de-
fined diagrammatically. It can be represented in terms of the
bare interaction and the distribution functions; an explicit
form may be found in Ref. 24. In an exact theory, one has
also the relationship

Vp-h�r,r�� =
�VH�r�
��1�r��

. �2.13�

A convenient method to solve the Euler equation �2.10� is by
normal-mode expansion. We solve the eigenvalue problem

� d3r��H1�r���r − r�� + 2Ṽp-h�r,r��	H1�r��	�m��r��

= �2
m
2 	�m��r� . �2.14�

Above, we have introduced the “tilde” notation

Ã�r,r�� � 
�1�r�A�r,r��
�1�r�� . �2.15�

The eigenstates 	�m��r� of Eq. �2.14� are orthogonal in the
metric defined by the one-body operator H1; a convenient
normalization is

�	�m��H1�	�n�� = �
m�m,n. �2.16�

The eigenstates of the adjoint equation

� d3r�H1�r��H1�r���r − r�� + 2Ṽp-h�r,r��	��m��r��

= �2
m
2 ��m��r� �2.17�

are

��m��r� =
1

�
m
H1�r�	�m��r� . �2.18�

They can be identified with the density fluctuations in Feyn-
man approximation of the inhomogeneous liquid. The eigen-
states satisfy the following orthogonality and completeness
relations:

�	�m����n�� = �m,n,

�
m

	*�m��r���m��r�� = ��r − r�� . �2.19�

The static structure function �2.11� and its inverse, the
“direct correlation function” X�r ,r��, are obtained from the
eigenstates by a normal-mode expansion

S�r,r�� = �
m

�*�m��r���m��r�� , �2.20�

��r,r�� − X̃�r,r�� = �
m

	*�m��r�	�m��r�� . �2.21�

By construction, the states 	�m��r� satisfy the generalized ei-
genvalue problem

H1�r�	�m��r� = �
m� d3r�S�r,r��	�m��r�� , �2.22�

which is readily identified with the inhomogeneous
generalization25 of the well-known Feynman dispersion rela-
tion �
�k�=�2k2 / �2mBS�k�	. These states and their associ-
ated energies will be useful quantities for the description of
the features of the impurity problem.

B. Impurity atom

Using a simple microscopic model of liquid 4He as a con-
tinuum with sharp interface, Zimmerman and Berlinsky26

showed that for a H atom physisorbed on liquid helium, the
coupling to ripplons is just due to the dependence of the
binding energy on the curvature of the helium surface. It is
difficult to construct such simple paradigms in a truly micro-
scopic theory of the surface because the curvature of the
surface is a result of the calculation and not an adjustable
input to the description. Nevertheless, our formulation
shows, in its essential steps connected with the optimization
of the pair correlations, how virtual excitations play an im-
portant role.

We adopt the convention that coordinate r0 refers to the
impurity particle and coordinates ri, with i=1, . . . ,N, to the
background particles. The Hamiltonian of the N+1 particle
system consisting of N 4He atoms and one impurity of mass
mI is

HN+1
I = −

�2

2mI
�0

2 + Usub
I �r0� + �

i=1

N

VI��r0 − ri�� + HN,

�2.23�

where Usub
I �r0� is the impurity-substrate potential, and

VI��r0−ri�� is the impurity-4He interaction potential.
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The variational wave function �2.1� for an inhomogeneous
N-particle Bose system with a single impurity atom is

�N+1
I �r0,r1, . . . ,rN� = exp

1

2�u1
I �r0� + �

1�i�N

u2
I �r0,ri�

+ �
1�i�j�N

u3
I �r0,ri,r j���N�r1, . . . ,rN� .

�2.24�

The impurity chemical potential is �I�EN+1
I −EN, where

EN+1
I is the energy of the system containing one impurity and

N background atoms, and EN is the energy �2.6� of the un-
perturbed background system.

The impurity chemical potential �I has a structure similar
to that of the background energy,

�I = TI + Vsub
I + Ec��1

I ,�1,gI,g,u3
I ,u3	 , �2.25�

where

TI =
�2

2mI
� d3r0��
�1

I �r0��2, Vsub
I =� d3r0Usub

I �r0��1
I �r0�

�2.26�

depend only on the impurity density �1
I �r0�, and the correla-

tion energy part is Ec��1
I ,�1 ,gI ,g ,u3

I ,u3	.
The definitions of the impurity densities

�n
I �r0,r1, . . . ,rn−1�

=
N!

�N − n + 1�!
�d3rn ¯ d3rN��N+1

I �r0,r1, . . . ,rN��2

�d3r0d3r1 ¯ d3rN��N+1
I �r0,r1, . . . ,rN��2

�2.27�

and the impurity distribution functions

gn
I �r0,r1, . . . ,rn−1� =

�n
I �r0,r1, . . . ,rn−1�

�1
I �r0��1�r1� ¯ �1�rn−1�

�2.28�

are used to derive the explicit expression for the impurity
correlation energy. One must take into account that all back-
ground quantities are changed by the presence of the impu-
rity by terms of the order of 1 /N; these changes give rise to
quantitatively important background rearrangement effects.
The details of the derivation are given in Refs. 1 and 27.

The impurity density is calculated by minimizing the
chemical potential �2.25� with respect to 
�1

I �r0�. This leads
again to an effective one-body Schrödinger equation

�−
�2

2mI
�0

2 + Usub
I �r0� + VH

I �r0��
�1
I �r0� = �I


�1
I �r0� .

�2.29�

The operator

H1
I �r0� = −

�2

2mI

1


�1
I �r0�

�0�1
I �r0��0

1


�1
I �r0�

= −
�2

2mI
�0

2 + �Usub
I �r0� + VH

I �r0�	 − �I �2.30�

defines through

H1
I �r0�
����r0� = ��
����r0� �2.31�

the spectrum �� and the set of states 
����r0�. We will label
these impurity states with Greek subscripts � ,� , . . ., whereas
the background phonons ��m��r�, 	�n��r� defined in Sec. II A
are labeled with Latin subscripts.

The two-body Euler equation is derived24,28 by variation
of the impurity chemical potential with respect to 
gI�r0 ,r1�.
It can be formulated in terms of the direct correlation func-

tion for the impurity X̃I�r0 ,r1�, which is related to the impu-
rity pair-distribution function through the Ornstein–Zernike
relation,


�1
I �r0��1�r��gI�r0,r� − 1	 � SI�r0,r�

=� d3r�X̃I�r0,r��S�r�,r� .

�2.32�

The solution of the Euler equations for the impurity correla-
tions is best formulated in the basis of the impurity states

����r0� and the Feynman phonon states ��m��r1� for the
background,

�
����X̃I���m�� = − 2
�
����Ṽp-h

I ���m��
�� + �
m

. �2.33�

The expressions for the impurity particle-hole interaction

Ṽp-h
I �r0 ,r1� introduced in Eq. �2.33� and the self-consistent

one-body Hartree potential VH
I �r0���Ec /��1

I �r0� seen by the
single impurity have been derived in Ref. 1. The analytic

form of Ṽp-h
I �r ,r�� and of VH

I �r� are immaterial for the further
developments, apart from a special feature �to be discussed
below� that is important in the infinite half-space. The ana-

lytic form �2.33� of X̃I�r ,r�� will prove crucial for some
low-energy scattering results.

III. THEORY: DYNAMICS

A. Equations of motion for time-dependent correlations

The natural generalization of the variational approach to
excited states is to allow for time-dependent correlations
un�r0 , . . . ,rn ; t� in the wave function

��t� =
1



	I�	I�
e−iEN+1

I t/�	I�r0,r1, . . . ,rN;t� , �3.1�

where 	I�r0 ,r1 , . . . ,rN ; t� contains the time-dependent corre-
lations, again written in a Jastrow–Feenberg form,

	I�r0,r1, . . . ,rN;t�

= exp�1

2
�U�r0,r1, . . . ,rN;t���N+1

I �r0,r1, . . . ,rN� ,

�3.2�
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�U�r0,r1, . . . ,rN;t� = �u1�r0;t� + �
1�i�N

�u2�r0,ri;t� ,

�3.3�

where we neglect fluctuations of correlations between three
and more particles. The time-dependent parts
�U�r0 ,r1 , . . . ,rN ; t� of the correlations are determined by the
stationary principle

�S = ��
t0

t1

L�t�dt = ��
t0

t1


��t��HN+1
I − i�

�

�t
���t��dt = 0.

�3.4�

The variation of the action integral with respect to �u
1
*�r0 ; t�

and �u
2
*�r0 ,r1 ; t� leads to coupled one- and two-particle con-

tinuity equations for the first-order density fluctuations

��1
�1��r0;t� �

1

2


�N+1
I ��U*�̂I�r0� + �̂I�r0��U��N+1

I �

�N+1

I ��N+1
I �

− �1
I �r0�

1

2


�N+1
I ��U + �U*��N+1

I �

�N+1

I ��N+1
I �

,

��2
�1��r0,r1;t�

�
1

2


�N+1
I ��U*�̂I�r0��̂�r1� + �̂I�r0��̂�r1��U��N+1

I �

�N+1

I ��N+1
I �

− �2
I �r0,r1�

1

2


�N+1
I ��U + �U*��N+1

I �

�N+1

I ��N+1
I �

, �3.5�

and currents

j1
�1��r0;t� �

1

2


�N+1
I ��U*ĵI�r0� + ĵI�r0��U��N+1

I �

�N+1

I ��N+1
I �

,

j2
�1��r0,r1;t�

�
1

2


�N+1
I ��U*ĵI�r0��̂�r1� + ĵI�r0��̂�r1��U��N+1

I �

�N+1

I ��N+1
I �

,

J2
�1��r0,r1;t�

�
1

2


�N+1
I ��U*�̂I�r0�ĵ�r1� + �̂I�r0�ĵ�r1��U��N+1

I �

�N+1

I ��N+1
I �

,

�3.6�

where �̂I�r0�, �̂�r�, ĵI�r0�, and ĵ�r� are the impurity and back-
ground density and current operators. For the specific choice
�3.3� of the excitation operator, the equations of motion �3.4�
are equivalent to the continuity equations

�0 · j1
�1��r0;t� +

�

�t
��1

�1��r0;t� = 0, �3.7�

�0 · j2
�1��r0,r1;t� + �1 · J2

�1��r0,r1;t� +
�

�t
��2

�1��r0,r1;t� = 0.

�3.8�

From Eqs. �3.5� and �3.6�, we obtain for the fluctuating den-
sities and currents

��1
�1��r0;t� = �1

I �r0��u1�r0;t�

+� d3r1�2
I �r0,r1��u2�r0,r1;t� − �1

I �r0�

��� d3r0��1
I �r�0��u1�r�0;t�

+� d3r0�d
3r1�2

I �r�0,r1��u2�r�0,r1;t�� ,

��2
�1��r0,r1;t� = �2

I �r0,r1���u1�r0;t� + �u2�r0,r1;t�	

+� d3r2�3
I �r0,r1,r2��u2�r0,r2;t� − �2

I �r0,r1�

��� d3r0��1
I �r�0��u1�r�0;t�

+� d3r0�d
3r2�2

I �r�0,r2��u2�r�0,r2;t�� , �3.9�

j1
�1��r0;t� =

�

2mIi
��1

I �r0��0�u1�r0;t�

+� d3r1�2
I �r0,r1��0�u2�r0,r1;t�� ,

j2
�1��r0,r1;t� =

�

2mIi
��2

I �r0,r1���0�u1�r0;t� + �0�u2�r0,r1;t�	

+� d3r2�3
I �r0,r1,r2��0�u2�r0,r2;t�� ,

J2
�1��r0,r1;t� =

�

2mBi
�2

I �r0,r1��1�u2�r0,r1;t� . �3.10�

Note that these quantities are defined as operators acting on
the complex functions �u1�r0 ; t� and �u2�r0 ,r1 ; t�. The physi-
cal first-order densities �3.5� and currents �3.6� are obtained
by taking the real part of the above quantities.

The next task is to turn Eqs. �3.7� and �3.8� into a set of
practical equations that can be dealt with numerically. The
simplest nontrivial approximation that contains most of the
right physics is the uniform limit approximation.23 It is again
convenient to work in the basis defined by the phonon states
��m��r� and the impurity states 
����r0�. Without loss of gen-
erality, we can assume harmonic time dependence. We ex-
pand the time-dependent part of the square root of the single-
particle density
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�
�1�r0;t� = e−i
t�
�

r�
����r0� � e−i
t�
�r0� , �3.11�

and can write the equation of motion in the form �the deri-
vation can be found in Ref. 1�

�
r� = �
�

������ + ����
�	r�, �3.12�

where

����
� = − �
�m

W
�m
*���

W�m
���

�
m + �� − �

�3.13�

is the impurity self-energy. The impurity-impurity-phonon
vertex function occurring in the self-energy �3.13� is

W�m
��� =

1

2
� d3r0


����r0�
*����r0�

�1

I �r0�
��� − �� − H1

I �r0�	X̃m�r0�

�3.14a�

=−
�2

2mI
� d3r0
*����r0�
�1

I �r0��0Xm�r0� · �0

����r0�

�1

I �r0�
,

�3.14b�

Xm�r0� � � d3r1XI�r0,r1�
�1�r1���m��r1� . �3.15�

W�m
��� describes an impurity atom scattering off a background

excitation and is given in terms of quantities obtained in the
ground-state calculation.

The structure of the dynamic equations �3.12� and �3.13�
is of the expected form of an energy-dependent Hartree
equation with a self-energy correction involving the energy
loss of the impurity particle by generating the excitations of
the background system. Equations �3.12� and �3.13� have a
form similar to equations obtained in Green’s function per-
turbation theory. An important feature of Eqs. �3.12� and
�3.13� is that ��,�=0�
�=��=0,��
�=0, i.e., the ground state
is not changed by the self-energy, because it is obtained by
optimization of the energy expectation value using the HNC
equations instead of expanding to second order in the corre-
lations.

For the further developments, it will be useful to think of
the matrix elements W�m

��� as transition matrix elements be-
tween two impurity states which depend parametrically on
the phonon quantum numbers m, i.e., we write

W�m
��� = �
����Wm�r0��
���� �3.16�

with the operator

Wm�r0� =
1

2��H1,Xm	�r0� −
1


�1
I �r0�

�H1X̃m��r0��
= −

�2

2mI


�1
I �r0���0Xm�r0�	 · �0

1


�1
I �r0�

.

�3.17�

B. Transport currents

The first-order one-body current j1
�1��r0 ; t� does not lead to

impurity transport, because, for stationary impurity states, it
has the same harmonic time dependence as �u1�r0 ; t� and
�
�1�r0 ; t�. The time average of j1

�1��r0 ; t� therefore vanishes.
Furthermore, Eq. �3.11� shows that j1

�1��r0 ; t� decreases as

�1�r0� for r0 far away from the 4He background, thus yield-
ing no outgoing particle flux.

The flux of impurity atoms is given by the nonfluctuating
part of the second-order current

j�2��r0� �
1

4


�N+1
I ��U*ĵI�r0��U��N+1

I �

�N+1

I ��N+1
I �

�3.18�

for the wave functions �3.2� and �3.3�. Terms of order
O(��U�3) and higher need not be considered.

The second-order current can be expressed in terms of the
first-order currents and densities introduced in Eqs. �3.9� and
�3.11�, and of pair correlation fluctuations as

j�2��r0;t� = jel
�2��r0;t� + jinel

�2� �r0;t� , �3.19�

jel
�2��r0;t� = Re� 1

2�1
I �r0�

��1
*�1��r0;t�j1

�1��r0;t�� , �3.20�

jinel
�2� �r0;t� = Re� �

4mIi
�1

I �r0� � d3r1d3r2A�r0;r1,r2�

��u2
*�r0,r1;t��0�u2�r0;r2;t��1�r1��1�r2�� ,

�3.21�

where

A�r0;r1,r2� = g2
I �r0,r1�

��r1 − r2�
�1�r1�

+ �g3
I �r0;r1,r2�

− g2
I �r0,r1�g2

I �r0;r2�	 . �3.22�

The second-order current j�2��r0 ; t� and the second-order
density

��2��r0;t� �
1

4


�N+1
I ��U*�̂I�r0��U��N+1

I �

�N+1

I ��N+1
I �

�3.23�

satisfy a continuity equation

�0 · j�2��r0;t� +
�

�t
��2��r0;t� = 0. �3.24�

This is obtained from the first-order one- and two-particle
continuity equations �3.7� and �3.8� by taking the real part of

�u1
*�r0� � ��0 · j1

�1��r0� +
�

�t
��1

�1��r0�� +� d3r1�u2
*�r0,r1�

� ��0 · j2
�1��r0,r1� + �1J2

�1��r0,r1� +
�

�t
��2

�1��r0,r1�� = 0.

Equation �3.18� describes the second-order impurity cur-
rent. The analogous construction for the 4He current can be
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written in a very similar manner, but is not considered in this
work; however, we note that the second-order 4He current
satisfies a continuity equation only in the asymptotic regime,
but not inside the 4He system.

The structure �3.19�–�3.21� of the second-order current
shows clearly the important role played by the fluctuating
pair correlations �u2�r0 ,ri ; t�. These correlations describe the
coupling to the excitations of the 4He background in the
wave function ��r0 , . . . ,rN ; t� and have the consequence that
our description of scattering processes also includes inelastic
processes. In the approximations �3.2� and �3.3�, these in-
elastic components consist of

�1� one outgoing impurity atom, leaving the 4He in an
excited state or promoting a 4He atom above the chemical
potential; the impurity currents of all these processes sum up
to jinel

�2� ;
�2� states where the impurity atom is physisorbed, depos-

iting its energy into bound excitations of the 4He system or
promoting a 4He atom above the chemical potential; these
processes do not contribute to an asymptotic impurity cur-
rent, but to the sticking probability.

The inelastic component of the impurity current is given
by the second term of the exact expression �3.19�. Again, the
simplest nontrivial approximation for the three-point func-
tion A�r0 ;r1 ,r2� is the uniform limit approximation, which
we have also used for obtaining the equation of motion
�3.12�,

A�r0;r1,r2� �
��r1 − r2�

�1�r1�
+ g�r1,r2� − 1. �3.25�

In this approximation, we can write jinel
�2� �r0� as

jinel
�2� �r0� = Re

�

4mIi

�� d3r1d3r2�ũ2
*�r0,r1��0�ũ2�r0;r2�S�r1,r2�

= Re
�

4mIi
�
m

�ũm
* �r0��0�ũm�r0� , �3.26�

where

�ũm�r0� = �
�


����r0��ũ�m =� d3r�ũ2�r0,r���m��r� ,

�3.27�

and the matrix elements �ũ�m��
��� ��ũ2 ���m�� of the time-
dependent correlations are given by

��� + �
m − �
��ũ�m = i�� d3r0

*����r0�

�1

I �r0�
j�1��r0� · �0Xm�r0�

�3.28�

�cf. Eq. �G.6� of Ref. 1	.
The expression �3.26� for the inelastic second-order cur-

rent can be interpreted in terms of scattering channels, which
will become evident in the application to scattering off films
in Sec. IV B. Each quantum number m denotes a “channel

wave function” �ũm�r0� into which the impurity atom, ini-
tially having energy �
, can decay if allowed by energy
conservation �open channel�. The first-order density fluctua-
tion �
�r0� �Eq. �3.11�	 is called elastic channel wave func-
tion and accounts for elastic specular reflection, see Sec.
IV A. Both �ũm�r0� and �
�r0� have the usual quantum me-
chanical interpretation of a one-body wave function only in
the asymptotic region, i.e., where the ground-state back-
ground and impurity densities, shown in Fig. 1, are exponen-
tially small. The second-order impurity current jinel

�2� �r0� is, in
principle, observable also in the interaction region, but it is
detected in scattering experiments only in the asymptotic re-
gion.

IV. PLANE SURFACE GEOMETRY

We assume from now on translational invariance in the
film plane �x-y plane�. Hence, Usub�r� and Usub

I �r0� are func-
tions of the z coordinate only. Then the 4He density is only a
function of the coordinate perpendicular to the film, the z
coordinate, �1�r�=�1�z�, and the areal density of the film is
given by the surface coverage

4He − background
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FIG. 1. The figure shows the density profile of the 4He back-
ground �shaded region�, the ground state ���z��2 of the impurity
particle, and the effective mean field �Hartree� potential seen by the
impurity �dotted line� for H and 3He atoms. The underlying model
is always a 4He film with coverage n=0.39 Å−2. Also shown is the
bare substrate potential �dash-dotted line�.
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n = �
0

�

dz�1�z� . �4.1�

All states are characterized by two quantum numbers, � and
k�, associated with the motion perpendicular ��� and parallel
to the film �k��. As above, we shall use bold labels �e.g.,
� ,� , . . ., for impurity states and m ,n , . . ., for film states� to
collectively represent both quantum numbers, i.e., �
��� ,k�� and m��m ,km�.

The phonon states ��m��r� and the Xm�r0� are of the form

��m��r� =
1

L
��m��z,km�eikm·r�, Xm�r0� =

1

L
Xm,km

�z�eikm·r� ,

�4.2�

where L2 is the size of the normalization area in the plane of
the film. The energy of state ��m��r� is �
m=�
m�km�.

The impurity states 
����r0� depend only trivially on the
parallel coordinate,


����r0� =
1

L

����z0�eik�·r� . �4.3�

The corresponding energies are

�� = ���k�� = �� +
�2k�

2

2mI
, �4.4�

where �� are the eigenvalues of Eq. �2.31� for k�=0. In par-
ticular,


�0��r0� =
1

L

�1

I �z0�eik0·r� �4.5�

and �0=�2k0
2 /2mI.

The coupling matrix elements �3.14b� depend on the par-
allel momentum k� only through momentum conservation;
they have the form

�
����Wm�r0��
���� =
1

L
�km+k�,k�

�
����Wm�z,km,k���
���� ,

�4.6�

Wm�z,km,k�� =
1

2��H1
I �z�,Xm,km

�z�	 −
1


�1
I �z�

�H1
I �z�X̃m,km

�z�	

+
�2

mI
km · k�Xm,km

�z��
= −

�2

2mI
�dXm,km

�z�

dz

�1

I �z�
d

dz

1


�1
I �z�

− Xm,km
�z�km · k�� . �4.7�

In coordinate space, and in the adopted plane-surface geom-
etry, Eq. �3.12� reads

�H1
I �z� +

�2k�
2

2mI
��
�z� +� dz���z,z�,k�;
��
�z�� = �
�
�z� ,

�4.8�

where

H1
I �z� = −

�2

2mI

1


�1
I �z�

d

dz
�1

I �z�
d

dz

1


�1
I �z�

�4.9�

and

��z,z�,k�;
�

= −
1

L2 �
�,m,km

Wm
† �z,km,k��
����z�
����z��Wm�z�,km,k��

�
m�km� + �� +
�2�km + k��2

2mI
− �


.

�4.10�

Equations �3.12� and �3.13� or, alternatively, Eq. �4.8� de-
termine the energetics of bound states, the impurity motion
parallel to the surface, and the dynamics of atom scattering.
The solutions have, in configuration space, the form

�
�r� = �
�z�eik�·r� . �4.11�

Depending on the energy �
, the solutions describe the mo-
tion of physisorbed adatoms ��
�−�I� or scattering states
��
�−�I�. In the latter case, we can write �
=E−�I

=�2�k�
2 +k�

2� /2mI−�I, where k� and k� are the perpendicular
and parallel components of the wave number for z→�, re-
spectively.

A. Elastic scattering and unitarity

The continuum solutions of the effective Schrödinger
equation �4.8� describe scattering processes. For a particle
impinging with a perpendicular momentum component k�

and parallel momentum k�, �
�r� has the asymptotic form

�
�r� = �
�z�eik�·r� ——→
z→�

eik�·r�e−ik�z + R�k�,k��eik�z	 .

�4.12�

Superficially, we appear to be describing a quantum me-
chanical single-particle scattering problem. In fact, a number
of notions such as that of a reflection coefficient can be car-
ried over from single-particle models, but the physical situ-
ation is far richer: Since the scattering film is composed of
helium atoms, this is a generically nonlocal problem when
viewed at the one-body level. Moreover, the film is dynamic:
the incoming particle may produce excited states of the back-
ground. This may result in the capture of the particle and/or
the emission of particles in states other than the elastic chan-
nel. This possibility has been introduced by the inclusion of
time-dependent pair correlations and is reflected in the sec-
ond term of Eq. �3.19�, i.e., the expression �3.21�.

One of the key quantities of interest is the elastic reflec-
tion coefficient R�k� ,k��. This quantity is directly deter-
mined by the coupling of the motion of the impinging par-
ticle to the excitations of the quantum liquid. The absolute
value of the reflection coefficient can differ from unity only
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if the self-energy ��r ,r� ,
� is non-Hermitian. This happens
when the energy denominator in the self-energy �3.13� has
zeroes; for scattering solutions, this is the case for all scat-
tering energies E= �2

2m �k�
2+k�

2 � down to E→0. A detailed dis-
cussion of the elastic reflection coefficient R�k� ,k�� and its
relation to properties of the film as well as results for 3He
scattering can be found in Ref. 3.

Unitarity of the many-body scattering matrix implies that
the sum of all probabilities to scatter into channel m or into
the elastic channel is unity. We use this property to obtain the
sticking probability s from the asymptotic elastic and inelas-
tic currents, where, for the rest of the paper, the superscript
�2� denoting second order is omitted. The elastic current is
given by

jel = − �1 − �R�2�
�k�

mI
ez +

�

mI
k� , �4.13�

and jinel will be calculated in the next section. The integration
of the total current j= jel+ jinel over a plane parallel to and at
large distance from the film yields the flux of particles lost
due to sticking; the sticking probability is therefore

s = 1 − �R�2 −
j�,inel

�k�/mI
� 1 − �R�2 − rinel, �4.14�

where rinel is the probability for inelastic scattering, also
called direct inelastic scattering as opposed to the combina-
tion of sticking and subsequent desorption at finite film
temperatures.29 �R�2 is easily obtained from the equation of
motion either by appropriately scaling and fitting the
asymptotic form of the solution of Eq. �4.8� to the form
�4.12�, or by integrating Eq. �4.8� with �



*�r� and subtracting

its complex conjugate:

1 − �R�2 =
2mI

�2k�
� dzdz��



*�z�Im ��z,z�,k�;
��
�z�� ,

�4.15�

where we have again used the asymptotic form �4.12�.
We will show in Sec. V B that, for low incident energies

E= �2k2

2mI
, rinel falls off as rinel�E2. Inelastic reflection can,

therefore, be neglected compared to 1− �R�2 and s for low
energies, and we can obtain the sticking coefficient from s
�1− �R�2, which is proportional to 
E �cf. Refs. 20 and 21;
see also Sec. V A�. This is no longer valid for energies of the
order of 1 K or higher, where all three probabilities �R�2, rinel,
and s are of the same order of magnitude.

B. Inelastic scattering

Elastic and inelastic scattering processes are described
by their respective asymptotic second-order currents
�3.19�–�3.21�. According to Eq. �3.26�, we can write these
currents as

j�z → �� = jel + jinel = jel + �
m

�jinel
�m�, �4.16�

where the first term is the elastic current �3.20� which takes
the asymptotic form �4.13� with wave number k

= �2mIE�1/2 /�. The second term is the inelastic current
which, according to Eq. �3.26�, can be written as a sum over
the inelastic currents of channel m. The prime denotes sum-
mation over only open inelastic scattering channels, i.e.,
those where �ũm�r0� is characterized by a real-valued outgo-
ing wave vector.

Having specified the geometry, we will now further evalu-
ate the �ũm�r0�. We assume normalization of all wave func-
tions to a box of length L and L� in the directions parallel
and perpendicular to the surface, respectively. According to
Eq. �3.28�, �ũm�r0� depends on the first-order current which
has the form

j�1��r0� = j�1��z0,k��eik�·r� . �4.17�

In the uniform limit approximation, we use the Feynman
approximation for the incoming current j�1��r0�,

j�1��r0� �
�

2mIi
�1

I �r0��0
��1

I �r0�
�1

I �r0�
=

�

mIi
�1

I �r0��0
�
�r0�

�1

I �r0�
.

�4.18�

In this geometry, and with the definitions �3.17� and �4.7�,
the matrix elements �3.28� of the fluctuating pair correlation
induced by the current �4.18� are

��� + �
m − �
��ũ�m = − 2�
����Wm�r0���
�

= −
2

L
�km+k�,k�

�
����Wm�z,km,k����
� .

�4.19�

We are now ready to calculate

�ũm�r0�

= −
2

L
ei�km+k��·r��

�


����z��
����Wm�z�,km,k����
�

�� +
�2

2mI
�km + k��2 + �
m�km� − �


=
2

L
ei�km+k��·r� � dz�G�z,z�;���Wm�z�,km,k���
�z�� ,

�4.20�

where G�z ,z� ;��� is the Green’s function of the one-body
Hamiltonian �4.9� for energy

�� = �
 −
�2

2mI
�km + k��2 − �
m�km� . �4.21�

The Green’s function may also be written as

G�z,z�;��� =
2mI

�2

1

C

1

����z��
2
*����z�� , �4.22�

where C is the Wronskian of the two linearly independent
solutions 
1

����z� and 
2
����z� of Eq. �2.29�. We are interested

in scattering states, i.e., the energy �� associated with the
state ��� must be above the evaporation threshold −�I and
can, hence, be written as
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�� = − �I +
�2k�,out

2

2mI
. �4.23�

The wave function 
2
����z��
����z� is regular as z→0,

whereas the irregular solution 
1
����z� has the form of an out-

going plane wave:


1
����z� =

1

L�

eik�,outz+i��, 
����z� =
 2

L�

sin�k�,outz + ��� .

�4.24�

Then, C=
2k�,out /L�, and, hence, for large z,

G�z,z�;��� →
2mI

�2k�,out
eik�,outz+i��
��z��, z → � ,

�4.25�

where we have defined 
��z��
L� /2
����z�.
We can now go back to Eq. �4.20� and write, for large z,

�ũm�r0� =
2mI

�2k�,out

2

L
ei��km+k��·r�+k�,outz+��	�
��Wm�z,km,k����
�

�
2

L
ei��km+k��·r�+k�,outz+��	Mm�km,k�� , �4.26�

with

Mm�km,k�� =
2mI

�2k�,out
�
��Wm�z,km,k����
� . �4.27�

With this we can now write Eq. �3.26� as

jinel = �
m,km

�jinel
�m,km� �4.28�

with the current of channel m= �m ,km� given by

jinel
�m,km� =

�

mIL
2kout�Mm�km,k���2. �4.29�

The wave number of the inelastically scattered impurity is

kout � km + k� + k�,outez,

k�,out
2 =

2mI�E − �
m�km�	
�2 − �k�,out�2. �4.30�

It is a function of the energy and the parallel wave number of
the incoming current as well as of the energy and wave num-
ber of the film mode which is excited. The parallel compo-
nent k�,out is determined by momentum conservation in the
direction parallel to the film, whereas the perpendicular com-
ponent k�,out is determined by energy conservation �Eq.
�4.21�	. The prime on the sum in Eq. �4.28� again denotes
summation over open channels, where the impurity states are
unbound, ��� ��I�, i.e., k�,out is real.

From jinel we can finally determine rinel as the ratio of the
inelastically scattered current perpendicular to the film and
the incoming current jin=�k /mI,

rinel = � j�,inel

j�,in
�

=
2mI

�2k�

1

L2 �
m,km

�
2mI

�2k�,out
��
��Wm�z,km,k����
��2

�4.31a�

=
1

L2 �
m,km

�
k�,out

k�

�Mm�km,k���2. �4.31b�

Information about properties of the inelastic currents
other than the total probability rinel can be obtained by “bin-
ning” into the various decay channels, which amounts to
weighing the current operator ĵ�r� with appropriate window-
ing functions. For example, the expectation value of the op-
erator ĵ�r����−�ĵ� gives the differential current, i.e., the
current density into the solid angle element d� pointing into
the direction ê�, where �ĵ is the solid angle in the direction
of ĵ:

jinel��� = �
m

���� − �out
�m��jinel

�m� = ê��
m

���� − �out
�m��jinel

�m�,

�4.32�

where �out
�m� is the solid angle in the direction of the current of

channel m, jinel
�m�, i.e., the direction of kout. With m= �m ,km�,

the angular current density becomes

jinel��� = �
m

�� d2km

�2��2��� − �out
�m,km��jinel

�m,km� �4.33a�

=
1

�2��2�
m

��
i
�d�out

�m,km�

dkm
�

km
�i�

−1

jinel
�m,km

�i��,

�4.33b�

where the km
�i� are the �in general, multiple� roots of �

−�out
�m,km�=0 and the Jacobian is

�d�out
�m,km�

dkm
� =

1

cos �kout
2 �1 + �
̄m� �km�

km · k�,out

kout
2 � .

�4.34�


̄m� �km� is the derivative of the dispersion relation 
m�km�
with respect to

�2km
2

2mI
. We can then define the inelastic differ-

ential scattering probability per particle as the ratio between
outgoing inelastic current jinel��� and incoming current �k

mI
,

d�inel���
d�

=
1

�2��2�
m

��
i
�d�out

�m,km�

dkm
�

km
�i�

−1 kout

k
�Mm�km

�i�,k���2,

�4.35�

where Eq. �4.29� was used.
Other differential scattering probabilities can be defined in

a similar fashion as the ratio between the inelastic current of
outgoing energy Eout or perpendicular momentum k�,out, and
the incoming current,
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d�inel�Eout�
dEout

= �
m

�� d2km

�2��2��Eout −
�2kout

2

2mI
�

�
kout

k
�Mm�km,k���2, �4.36�

d�inel�k̄�,out�

dk̄�,out

= �
m

�� d2km

�2��2��k̄�,out − k�,out�

�
kout

k
�Mm�km,k���2. �4.37�

The latter would be measured in a time-of-flight experiment,

while the first quantity corresponds to measuring the outgo-
ing energy or the energy lost to the film E−Eout.

C. Unitarity and relation between s, rinel, and Im �

We can now close the circle and relate the result �4.31b�
for the inelastic scattering probability rinel to the expression
of the elastic reflection probability �R�2, in terms of the
imaginary part of the self-energy �Eq. �4.15�	.

Taking the limit L�→�, the summation over the Hartree
states, ��, in the expression �4.10� for the self-energy con-
sists of a sum over the bound states, ��i

, plus an integral,

�
dk�,�

� , over all scattering states of wave number k�,� and

energy ��=
�2k�,�

2

2mI
−�I. We define

���z,z�,k�;
� = −
1

L2 �
m,km

�
�

�
Wm

† �z,km,k��
����z�
����z��Wm�z�,km,k��

�
m�km� + �� +
�2�km − k��2

2mI
− �


, �4.38�

where the superscripts � and � stand for ��+�I�0 and �0, respectively. The imaginary part of �� is determined by
integration over k�,� and using 1

x+i� = P� 1
x

�− i���x�:

Im ���z,z�,k�;
� = −
2

L2 �
m,km

�
Wm

† �z,km,k��
��z�
��z��W�m�z�,km,k��
�2k�,out/mI

, �4.39�

where we have taken the limit L�→�. In Eq. �4.39�, � is
determined just as for the inelastic current �Eq. �4.21�	 and
the prime on the sum denotes again summation over open
channels, i.e., such that Eq. �4.21� yields ��+�I�0, since
otherwise Im �� vanishes. Comparing with Eq. �4.31b�, we
find that

rinel =
2mI

�2k�
� dzdz��



*�z�Im ���z,z�,k�;
��
�z�� .

�4.40�

By unitarity, the remainder of 1− �R�2−rinel must be s and the
comparison with Eq. �4.15� finally yields

s =
2mI

�2k�
� dzdz��



*�z�Im ���z,z�,k�;
��
�z�� .

�4.41�

Thus, we conclude that the probability s for the incoming
atom to be scattered into any of the sticking channels is
given by 2mI /�2k� times the expectation value of Im ��

with respect to the elastic channel wave function �
, where
Im �� is the contribution of the bound Hartree states �i.e.,
the sticking channels� to Im �. Conversely, the probability
rinel that the atom is scattered back inelastically is determined
by the expectation value of Im ��, which is the part of Im �
arising from scattering states of the Hartree equation. Intu-
itively, we expect such a result from an exact calculation, but

the fact that our approximate treatment leads to the same
conclusion documents the consistency of our treatment be-
cause rinel and 1− �R�2 were obtained by entirely different
calculations.

V. LOW-ENERGY AND SMALL ANGLE SCATTERING

A number of exact statements can be made in the low-
energy limit as well as in the limit of the small deflection
angles, which both imply low-energy transfer. In particular,
we will be able to express some of the microscopically de-
fined quantities by macroscopic derivatives, thereby elimi-
nating several diagrammatic approximations. We restrict our-
selves for simplicity to scattering perpendicular to the
surface, i.e., the parallel momentum k� of the incoming cur-
rent is zero. This poses no restriction for the sticking coeffi-
cient s�k� because s�k� depends, in the low-energy limit,
only on the perpendicular component of the wave number
k�, i.e., s�k�→s�k��.

A. Low-energy limit of s

The calculation of low-energy sticking becomes particu-
larly simple if the impurity attached to the 4He surface has
only one bound state. For sufficiently thick films, this is the
case for atomic hydrogen which is of interest not only in
connection with the observation of universal quantum
sticking,6,30 but also with the possibility of observing a two-
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dimensional Bose-condensed atomic gas.8,9,31

To study the low-energy features of the solutions of either
the Hartree equation �2.31� or the full equation of motion
�4.8�, we divide the z axis into three regions �see Fig. 2�: The
interaction region I coincides with the actual film region in-
cluding its surface, i.e., where the film density �1�z1� is finite;
the self-energy is normally complex in this regime. The in-
termediate region II is where the substrate potential is larger
or comparable to the energy of the incoming particle. Finally,
the interaction is negligible in the far region III where the
atom propagates freely. We give a brief summary of the
properties of the solutions of the equation of motion �4.8�,
and also of the Hartree equation �2.31�:

�I� Close to and within the 4He film, only fully solving
Eq. �4.8� can yield �
�z�. Since E is by assumption much
smaller than the interaction energy between the scattered
atom and the film, we are allowed to set E=0, i.e., �

= ��I�, in Eq. �4.8�. Provided that there is no resonance at E
=0, the correctly normalized solution can depend, to leading
order, only through a scaling factor on the energy. This scal-
ing factor is determined by the asymptotic behavior of the
solution in region III.

�II� Region II glues regions I and III. We have to distin-
guish between van der Waals fields that have a potential
U�z�→−C3z−3, and shorter-ranged substrate potentials �e.g.,
if retardation is taken into account�. The van der Waals po-
tential has been studied in detail in Ref. 32. Equation �4.8�
has, for E=0, the solution

�̄�z� = a
zJ1�
D

z
� + b
zY1�
D

z
� with D =

8mIC3

�2 ,

�5.1�

where a and b are integration constants. In the limit C3
=0, the solution is

�̄�z� � a0 + b0z . �5.2�

�III� The solution in region III is a free wave given by Eq.
�4.12�

�
�z� = 2i sin�k��z +
�k�

k�

�� . �5.3�

The three expressions for the wave functions in regions
I–III match at their respective boundaries. In region I, we can
write the wave function of the incoming particle as

�
�z� � k��̄�z� , �5.4�

where �̄�z� is the zero-energy solution of Eq. �4.8�, normal-
ized such that in region II b= i�
D or b0=2i, respectively,
implying the leading behavior �̄�z��2iz in region III. The
factorization �5.4� of the elastic channel wave function �
�z�
in the limit k�→0 leads for the elastic reflection probability
�4.15� to

�R�k���2 → 1 − s1k�, �5.5�

where the proportionality constant s1 is determined by the
expectation value of Im � with respect to �̄�z�; it will be
calculated below. The above low-energy behavior �R�k���2
→1 is the well-known effect of universal quantum
reflection.20,21

In the following analysis, we assume that the impinging
atom has a single bound �Andreev� state and couples only to
the ripplon or third sound modes �i.e., the mode with perpen-
dicular quantum number m=0, henceforth denoted by a sub-
script r�. This is the case for H for low scattering energies,
but does not apply to 3He which not only has two Andreev
states,33 but also can penetrate into the bulk. A quantitative
analysis of the differences between 3He and H scattering will
be given in Sec. VI.

We need to retain only the coupling matrix element of the
incoming atom to the third sound and the bound state

�0��z�=
�1

I �z�,

�
�0��Wm�z,km,0���̄� =� dz�̄�z�H1
I �z�X̃r,kr

�z� , �5.6�

which yields for Eq. �4.41�

s → −
2mI

�2k�

Im � d2kr

�2��2

�k��
�0��Wm�z,km,0���̄��2

�
m�km� +
�2km

2

2mI
− ��I�

→
mIk0k�

�2

���̄�H1
I �z��X̃r,k0

��2

�
r��k0� +
�2k0

mI

for E → 0, �5.7�

where k0 is the solution of

�
r�k0� +
�2k0

2

2mI
− ��I� = 0. �5.8�

In the distorted wave Born approximation �DWBA�, �̄�z�
in expression �5.7� for s is replaced by the analogously nor-
malized impurity eigenstate 
̄�z�. We can then use the two-
body Euler equation �2.33� to write s as

He−film

region IIIregion IIregion I

FIG. 2. �Color online� Illustration of the division of the z axis
into the three different regions for the discussion of low-energy
scattering wave functions in Sec. V A.
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sDWBA → k�

4mIk0

�2 � ��I�

��I� + 
r�k0� +
�2k0

2

2mI
�

2 ��
̄�Ṽr,k0
��2

�
r��k0� +
�2k0

mI

= k�

mIk0

�2

��
̄�Ṽr,k0
��2

�
r��k0� +
�2k0

mI

for E → 0, �5.9�

where Vm,km
�z� is defined analogously to Xm,km

�z� �see Eq.
�3.15�	, and Eq. �5.8� was used. A similar result was obtained
from a Green’s function approach.34

The situation is more complicated for scattering of atoms
which are bound more strongly to the film, like, for example,
3He. First, falling into a lower chemical potential �I releases
more energy, and film modes other than the third sound
mode, such as bulk and layer phonons and rotons as well as
standing waves perpendicular to the surface, can be excited;
second, the atom can be trapped into states other than the
Andreev state on the surface.35 Overall, this leads to a larger
sticking probability, as we will show in Sec. VI.

B. Low-energy limit of rinel for thin films

We next derive the low-energy limit of rinel. For simplic-
ity, we restrict ourselves again to perpendicular incidence,
k� =0. From the previous section, we know the total inelastic
current �4.28�. Hence,

rinel =
1

2�
�
m

��
0

Q

dkmkm
k�,out

k�

�Mm�km,0��2, �5.10�

where the integration boundary Q assures that k�,out is real; it
is determined further below.

We have argued in Sec. V A that the wave functions �
�z�
and 
����z� are, within the interaction region and at low en-
ergies E and Eout, proportional to 
E and 
Eout, respectively,

�
�z� = k��̄�z�, 
��z� =
k�,out

2

̄�z� , �5.11�

where k�,out=
2mI�E−�
m�kr�	 /�2=
k�
2 −2mI
m�kr� /�;


̄�z� is normalized according to the same conventions as �̄�z�
as spelled out in Sec. V A, 
̄�z�→2z for z→�.

As above, the subscript r shall denote the lowest �ripplon
or third sound� mode. Only film modes m of energy
�
m�kr��E can be excited. For films �as opposed to a free
surface�, energetically higher modes m�r are separated by
an energy gap from the third sound spectrum m=r and can-
not fulfill this inequality for sufficiently low incident E.
Therefore, all modes m�r can be ignored in the investiga-
tion of the E→0 limit.

The calculation of rinel is a delicate matter since, in the
low-momentum limit, Xr,kr

�z� becomes very long ranged.
Hence, we need a formulation that avoids large cancellations
in the z integral for Mr�kr ,0�. From the first of the two for-
mulations �4.7�, we find for perpendicular incidence

Mr�kr,0� =
2mI

�2k�,out

1

2
� dz


��z�

�1

I �z�
����
�z� − �H1

I �z��
�z�	

− �
�z�H1
I �z��X̃r,kr

�z� , �5.12�

where ��= ��I�+Eout. The term �H1
I �z��
�z�	 is expressed in

terms of the self-energy by using the equation of motion

�4.8�, and H1
I �z�X̃r,kr

�z� can be expressed as �cf. Eq. �2.33�	

H1
I �z�X̃r,kr

�z� = − ��
r�kr� +
�2kr

2

2mI
�X̃r,kr

�z� − 2Ṽr,kr
�z� .

�5.13�

Finally, using energy conservation �Eq. �4.21�	, we find

Mr�kr,0� =
2mI

�2k�,out
��
��Vr,kr

��
�

+
1

2
� dzdz�
��z�Xr,kr

�z���z,z�,0;− �I��
�z��� .

�5.14�

We have thus brought Mr�kr ,0� into a form where all inte-
grands vanish for large z independent of kr. For further dis-
cussion, we also need the long-wavelength behavior of the
Feynman approximation for the third sound density oscilla-
tion �r,kr

�z�. In Ref. 36, it was shown that, for kr→0, �r,kr
�z�

factorizes as

�r,kr
�z� = −
 n�kr

2

2mB
r�kr�
�R�z� = −
 2n�kr

2

mB
r�kr�
d
�1

B�z�
dn

,

�5.15�

with the third sound dispersion 
r�kr�→c3kr for kr→0.
�R�z� is the shape of the long-wavelength density fluctua-
tion. We have normalized it, deviating slightly from the con-
ventions of Ref. 36, such that �dz�R�z�
�1�z�=1. A useful
property of the ripplon or third sound shape function �R�z�
can be derived from the rigorous expression for Ṽp-h

I ,

Vp-h
I �r0,r� =

�VH
I �r0�

��1
B�r�

�5.16�

and, hence,

� d3rVp-h
I �r0,r�

d�1
B�r�
dn

=
dVH

I �r0�
dn

, �5.17�

where we added the superscript B here to denote the back-
ground density. It is important to note again that Eq. �5.17� is
true only in an exact theory, because the particle-hole inter-
action Vp-h

I �r0 ,r� implies usually more diagrammatic ap-
proximations than VH

I �r0�. The macroscopic derivatives on
the right hand side of Eq. �5.17� is, therefore, more accurate
than the two-point quantity on the left hand side.

The low-momentum behavior of X̃r,kr
�z0�

=
�1
I �z0�Xr,kr

�z0� is now obtained from the normal-mode ex-
pansion �2.33�,
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X̃r,kr
�z� = − 2�

�


����z�

�� + �
r�kr� +
�2kr

2

2mI

�
����Ṽp-h
I ��r,kr

� =
 2n�kr
2

mB
r�kr�
�
�


����z�

�� + �
r�kr� +
�2kr

2

2mI

�
���
�1
I �

dVH
I

dn
�

→
 2n�kr
2

mB
r�kr�
� 
�1

I �z�
�
r�kr�

��1
I �

dVH
I

dn
� + �

��0


����z�
��

�
���
�1
I �

dVH
I

dn
�� =
 2n�kr

2

mB
r�kr�
� 
�1

I �z�
�
r�kr�

d�I

dn
+

d
�1
I �z�

dn
�
�5.18a�

→
 2nkr
2

mB�
r
3�kr�

d�I

dn

�1

I �z� as kr → 0, �5.18b�

where

��1
I �

dVH
I

dn
� =

d�I

dn
�5.19�

and

�
��0


����z�
��

�
���
�1
I �

dVH
I

dn
� =

d
�1
I �z�

dn
�5.20�

are derived by differentiating the Hartree equation �2.29�
with respect to background surface coverage n. The above
result �5.18b� demonstrates our assertions that Xr,kr

�z� is long
ranged, in fact, independent of z, for vanishing kr.

The first term of Mr�kr ,0� �cf. Eq. �5.14�	 is a matrix
element of the particle-hole potential Vp-h

I �r ,r��,

�
��Vr,kr
��
� = −

k�k�,out

2

 �kr

2

2mBn
r�kr�
Vr

�
��,

�5.21�

and, hence, we have for the full channel amplitude

Mr�kr,0� = −
 �kr
2

2mBn
r�kr�
mIk�

�2

��Vr
�
�� −

n

�
r�kr�
d�I

dn
Mr

�
��� �5.22�

with

Vr
�
�� = �
̄�n

dVH
I

dn
��̄� and Mr

�
�� = �
̄���z,z�,0;− �I���̄� .

�5.23�

Evidently, the second term in Eq. �5.22� dominates in the
long-wavelength limit kr→0. It is, therefore, the only term
that needs to be retained in the further calculations for thin
films.

The upper boundary Q of the momentum integration in
Eq. �5.10� is determined by energy conservation: Q is the
root of E−�
r�kr�−�2kr

2 /2mI, which, for low E, can be ap-

proximated by Q�E /�c3. Finally, we find for the inelastic
scattering probability of slow particles hitting the 4He film
perpendicularly

rinel → k��d�I

dn
�2

�Mr
�
���2�mI

�2�2

��
0

E/�c3 dkr

2�
kr

n�kr
2

2mBc3kr

1

��c3kr�2
2mI�E − �c3kr�
�2

= k�
4 n

12�

mI

mB
�d�I

dn
�2 �Mr

�
���2

��c3�4 �5.24a�

=
1

3�
E2�mI

�2�3� mB

n�2�� nd�I/dn

nd�B/dn
�2

�Mr
�
���2 � rinel

�0� E2,

�5.24b�

where we have used for the last line mBc3
2=nd�B /dn. For

very thick films, the n dependence of �I and �B is deter-
mined by the value of the substrate potential at the film sur-
face; assuming a power law �for example, a van der Waals
tail �z−3� for both, the proportionality factor rinel

�0� appears to
vanish with increasing film thickness as 1 /n. However, such
a conclusion is premature because we can, for thick films, no
longer neglect the first term in Eq. �5.22� and the second
term in Eq. �5.18a�. We will derive further below an interpo-
lating expression for rinel that covers the whole range from
thin films to the free surface limit and shows that rinel is
always proportional to E2 for E→0.

The result that the inelastic reflection coefficient is pro-
portional to E2 would not have been expected from superfi-
cial inspection of Eq. �5.10�: A matrix element that remains
finite as kr→0 would lead to a behavior rinel�E4, but the
divergence of the third sound contribution to the direct cor-
relation Xr,kr

�z� with vanishing parallel wave number kr leads
to rinel�E2. This divergence is known from the theory of
impurities in bulk 4He, where the coefficient of the 1 /k sin-
gularity of the direct correlation function is directly con-
nected with the volume coefficient, which is basically the
ratio of the specific volumes of the impurity and a back-
ground particle.23,37 In the present case, we can relate this
singularity to the coverage dependence of the impurity
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chemical potential, d�I /dn. The second term of Eq. �5.14�
describes the dynamic response of the film to the impinging
particle. Our result that the self-energy is essential to de-
scribe the correct physics is analogous to the statement made
in Ref. 3 that the self-energy is essential to obtain a non-
trivial effective mass. Such an effective mass is likewise a
direct consequence of the rearrangement of the background,
which is, in that case, manifested in hydrodynamic backflow.
In DWBA, the second term of Mr�kr ,0� as given by Eq.
�5.14� is neglected altogether, because �
�z� is replaced by


�z�. According to Eq. �5.10�, rinel in the DWBA is, there-
fore, proportional to E4 instead of E2. Unlike the DWBA of
the sticking coefficient s, which yields the same energy de-
pendence, albeit a different coefficient, the DWBA of rinel
leads to a qualitatively incorrect energy dependence.

A final word about the energy regime where Eq. �5.24a� is
valid:

�1� We have assumed in the derivation of the low-energy
properties that we are in the quantum reflection regime, i.e.,
the long-wavelength factorization �5.11� is valid. It is well
known that long-ranged substrate potentials can reduce this
regime to energies below 1 mK, and hence one should be
cautious in applying Eq. �5.24a� for higher energies.

�2� It is straightforward to estimate the effect of the film
thickness d: Typically, the linear third sound dispersion holds
as long as the parallel wave number is less than the inverse
film thickness, kr�d−1. The same is true for the low kr be-
havior of the other ingredients Vr,kr

�z� and Xr,kr
�z�. Hence,

with increasing film thickness, and also with increasing inci-
dent energy E �but still low enough for condition �5.11� to be
satisfied	, there will be a crossover to a free surface behavior
of rinel. The free surface will be discussed in Sec. V C, and
the crossover will be discussed in Sec. V D.

�3� Our derivations have always assumed that the particle-
hole interactions Vp-h�r ,r�� and Vp-h

I �r0 ,r� are the variational
derivatives of the Hartree potentials VH�r� and VH

I �r0� with
respect to the 4He density. This is rigorously true only in an
exact theory. Hence, some of the identities may be quantita-
tively violated in any approximate calculation. Therefore, we
have formulated our results as far as possible in terms of
density derivatives.

C. Low-energy inelastic reflection in the limit of a free surface

Here, we derive the inelastic reflection probability rinel for
a free 4He surface and show how this limit is reached. There
are three basic differences between a film surface and a free
surface. First, the kinematic factors all change by changing
the linear third sound dispersion relation to the ripplon dis-
persion relation


r
2�kr� = �kr

3/mB��, �5.25�

where �� is the bulk density and � is the surface energy.
Second, the sound modes within the background film be-
come dense and it becomes energetically feasible to also ex-
cite sound waves that penetrate into the film, perpendicular
to the free surface. These excitations have a linear dispersion
law and, hence, are above the ripplon excitation, which
should, therefore, remain the dominant energy loss mecha-

nism for low energies; this is the basic assumption of this
section. Third, the impurity chemical potential �I becomes
independent of the 4He film thickness; we must, therefore,

expand the direct correlation X̃r,kr
in Eq. �5.14� to higher

order in the ripplon wave vector.
The shape of the long-wavelength density oscillation in an

infinite half-space follows directly from Eq. �5.15� and

d

dn
→ −

1

��

d

dz
as n → � . �5.26�

Only the momentum-dependent normalization factor de-
pends on the dispersion relation. Thus, we get the ripplon
wave function and the particle-hole interaction36

�r,kr
�z� =
 2�kr

mB��
r�kr�
d
�1

B�z�
dz

and

Vr,kr
�z� =

1

2

 2�kr

mB��
r�kr�
dVH

I �z�
dz

. �5.27�

We can also determine Xr,kr
�z� for small kr, from Eq. �5.18a�.

The first term does not contribute in the free surface limit,
hence

X̃r,kr
�z� =
 2�kr

mB��
�kr�
d
�1

I �z�
dz

. �5.28�

With these expressions for the long-wavelength limits of
Vr,kr

�z� and Xr,kr
�z�, the channel amplitude can be determined

from Eq. �5.14�. Since both Vr,kr
�z� and Xr,kr

�z� have now the
same kr dependence for kr→0 �cf Eqs. �5.27� and �5.28�	,
both contribute to the low-energy limit of rinel�E�:

Mr�kr,0� =
mIk�

�2 
 �kr

2mB��
r�kr�
Mr

�0���� �5.29�

with

Mr
�0���� =� dz
̄�z�

dVH�z�
dz

�̄�z�

+� dzdz�
̄�z�

�0��z�

�0��z�

��z,z�,0;− �I��̄�z�� .

�5.30�

This yields for rinel the low-energy limit

rinel =
k�

2�
� dkrkrk�,out

�kr

2mB��
r�kr�
�mI

�2�2

�Mr
�0�����2

=
2

9�
�mI

�2�3

�Mr
�0�����2� E


�
�2

. �5.31�

To get the DWBA for the free surface, we must replace
�̄�z� by 
̄�z� and keep only the first term of Mr

�0����. Partial
integration and using Eqs. �2.29� and �5.11� yield for
Mr

�0����
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Mr
�0���� =� dz

dVH�z�
dz

�
̄�z�	2

= −
�2

mI
� dz

d2
̄�z�
dz2

d
̄�z�
dz

= −
�2

2mI
�d
̄�z�

dz
�

z→�

2

= − 2
�2

mI
,

where we used the asymptotic behavior 
̄�z�→2z. That is,
the matrix element, and thus the inelastic reflection probabil-
ity, for low energy depends only on the surface energy, but is
independent of the structure of the surface

rinel =
8

9�

mI

�2� E

�

�2

�DWBA� . �5.32�

Such a simple result depending only on a static quantity,
namely, the surface energy �, has also been obtained for
small angle inelastic scattering for perpendicular incidence
on finite temperature films38,39 �see also the next section�.
The inclusion of dynamic effects in Eq. �5.31� introduces a
dependence of rinel�E→0� on the dynamic quantities of the
scattering process: the scattering wave function �̄ and the
self-energy ��z ,z� ,0 ;−�I�.

D. Low-energy limit of rinel for thick films

Although we have a quadratic energy dependence, rinel
�E2, for both scattering at thin films and at the free surface,
the proportionality factors are different. In order to obtain the
dependence of rinel�d� on the film thickness d up to d→�,
we take a closer look at the low-momentum limit of the
quantities entering Eq. �5.10�. The ripplon wave functions,
Eqs. �5.15� and �5.27�, are limits of the interpolating formula

�r,kr
�z� = − ��
2�kr tanh krd

mB��
r�kr�
d
�1

B�z�
dn

, �5.33�

with the interpolation for the surface wave dispersion40

�2
r
2�kr� = ��2c3

2

d
+

�2kr
2

2mB

2�

��
�kr tanh krd . �5.34�

Equation �5.15� is obtained by letting kr→0 with d fixed,
and Eq. �5.27� is obtained by first taking the limit d→� with
kr small but finite.

For the calculation of Mr�kr ,0�, we now have to retain
both terms in Eq. �5.18a�,

X̃r,kr
�z� →
2�kr tanh krd

mB��
r�kr�
�−

��

�
r�kr�
d�I

dn

�1

I �z�

+
d
�1

B�z�
dz

� . �5.35�

This yields the channel amplitude

Mr�kr,0� =
mIk�

�2 
 �kr tanh krd

2mB��
r�kr�
Mr

�0��d� �5.36�

with

Mr
�0��d� = Mr

�0���� −
��

2�
r�kr�
d�I

dn
�
̄���z,z�,0;− �I���̄� ,

�5.37�

which now is still kr dependent �see Eqs. �5.22� and �5.30�
for comparison	. With increasing film thickness d, the kr
range, where the second term in Eq. �5.37� dominates over
the first due to its divergence �kr

−1, shifts to smaller values,
because the coverage dependence of the chemical potential
�I decreases. The inelastic scattering probability for any
large but finite thickness d is

rinel�E,d� =
k�

2�
� dkrkrk�,out

�kr tanh krd

2mB��
r�kr�
�mI

�2�2

�Mr
�0��d��2.

�5.38�

The behavior of Mr
�0��d� leads to a corresponding behavior of

rinel�E ,d�: with increasing d, the E range, where the atom is
scattered by third sound as described in the previous section,
shifts to lower values; for energies above, the inelastic scat-
tering probability rinel�E ,d� is that of a free film, because the
ripplons of shorter wavelength are excited, which do not
“see” the finite depth of helium below the surface. In both
these energy ranges, rinel�E ,d��E2, but the proportionality
constants are different.

E. Small angle inelastic scattering

The discussion of inelastic small angle deflection from the
specular direction �i.e., quasielastic scattering� of an impurity
off a thin 4He film is similar to the above discussion of
inelastic scattering at low energies, because only long-
wavelength third sound modes are excited. We restrict our-
selves again, for simplicity, to perpendicular incidence, but
the qualitative features of the conclusions are the same for
any angle of incidence.

The probability d�inel��� /d� for inelastic scattering into
a solid angle d� characterized by azimuthal and polar angles
�= �� ,�� is given by Eq. �4.35�, where for perpendicular
incidence, d�inel��� /d� does not depend on �. The contri-
bution from third sound is

d�r���
d�

=
1

4�2�
i

cos �kout
2

�1 + �
r��kr
�i��kr · k�,out/kout

2 �
kout

k�

�Mr�kr
�i�,0��2,

�5.39�

where Mr�kr
�i� ,0� is given by Eq. �5.14�. For perpendicular

incidence, there is only one solution kr
�0� of the equation

E − �
r�kr� −
1

sin2 �

�2kr
2

2mI
= 0, �5.40�

which follows from energy and momentum conservation. For
small angle scattering, we have �→0, kr

�0�→k� sin �, and
k�,out→k�. In this limit, Eq. �5.39� simplifies to
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d�r���
d�

→
k�

2

4�2 �Mr�k� sin �,0��2. �5.41�

We have already worked out the long-wavelength behavior
of the third sound matrix element Mr�kr ,0� in Sec. V B. For
finite incident wave number k�, the probability for quasielas-
tic scattering off third sound modes becomes

d�r���
d�

�
1

2� sin �

d�r���
d�

→
1

4�2

mI

mB

2mI

�2k� sin �
�d�I

dn
�2 n

��c3�3

��� dzdz�
k�
�z���z,z�,0;
��
�z���2

.

�5.42�

d�r��� /d� diverges as 1 /sin � �hence, d�r��� /d� is finite	;
for all other channels m above the third sound mode,
d�m��� /d� remains finite �or vanishes exactly if the channel
is closed, E��
m�0�	 and can, for small �, be neglected
compared to d�r��� /d�.

Similar to the low-energy limit of rinel for films, the
DWBA leads to a qualitatively different result for the third
sound contribution to the angular distribution for quasielastic
scattering: d�r /d� vanishes linearly with �, because in
DWBA only the first term of Mr�kr ,0� �Eq. �5.14�	 is re-
tained, which has an additional proportionality to kr relative
to the second term �see, for example, Eq. �5.22�	. In other
words, the DWBA for d�r /d� predicts a “hole” in the
specular direction, instead of a divergence.

We finally also take the limit of low incident energy, k�

→0. Then Eq. �5.11� holds and Eq. �5.22� can be inserted in
Eq. �5.42�,

lim
�→0

d����
d�

=
k�

3

8�

mI

mB

mI

�2�d�I

dn
Mr

�
���2 n

��c3�3 as k� → 0.

�5.43�

Comparison of this result with the low-energy limit of the
scattering probability rinel �5.23� shows that the latter van-
ishes faster with k�:

d��� = 0�
d�

� k�
3 and rinel � k�

4 . �5.44�

However, according to the definitions �4.31b� and �4.32�,
both quantities are related via

rinel =� d� cos �
d����

d�
. �5.45�

Equations �5.44� and �5.45� can only be fulfilled simulta-
neously if the width of the angular distribution d���� /d� is
of order k�, i.e., the inelastic scattering probability distribu-
tion of low-energy impurities at 4He films is sharply peaked
in the specular direction. A similar behavior was also found
in Ref. 38, where the DWBA was used at finite temperatures,
because the spurious hole in the specular direction found in
the DWBA is very small with increasing film thickness and

the general feature that the reflected atoms are strongly
peaked in specular direction41 is consistent with both our
calculation and that of Ref. 38.

VI. RESULTS

We consider thin films of liquid 4He adsorbed on a plane
attractive substrate which is translationally invariant in the
x-y plane, i.e., Usub�r�=Usub�z�. The systems under consider-
ation are characterized by a van der Waals substrate potential
whose long-range part Usub�z�→−C3 /z3 is, as we shall see,
crucial for low-energy scattering properties in the millikelvin
range. Our films are parametrized by the surface coverage n
�Eq. �4.1�	. The density profile �1�z� is, along with the
ground-state energy, structure functions, and Feynman
modes of the film, obtained through the optimization of the
ground state �2.1� as outlined in Sec. II A, and in much more
detail in our previous work.24,42 However, unlike in earlier
work, where the dependence of the features of the films on
the potential has been studied explicitly, we have chosen here
the nuclepore substrate discussed extensively in Ref. 42. The
ground-state correlations of the impurity atoms are, for very
thick films, fairly independent of the details of the substrate
potential; we will return to the question of the impurity-
substrate interaction momentarily.

The H-He potential has been the subject of several ab
initio calculations. Jochemsen et al.43 have discussed the
available potentials, measured the diffusion of H in He gas at
low temperature, and proposed a potential �R2� which has
become the de facto standard for atomic hydrogen research-
ers. However, Jochemsen et al. themselves preferred to use
the older potential of Das et al.,44 which is essentially the
same as R2. For the sake of simplicity, we have, however,
used the Lennard-Jones 6-12 potential by Toennies et al.;45

we have compared the results, in the bulk liquid, with those
obtained from the potential of Ref. 44 and found that the
binding energies differ by less than 5%.

A. Static structure

We have carried out a sequence of ground-state calcula-
tions for our model of a helium film adsorbed on a nuclepore
substrate,24 with a coverage up to n=0.39 Å−2, correspond-
ing to about six liquid layers or to a thickness of d=19 Å,
where d is defined as the first minimum of d�1�z� /dz coming
from the vacuum side. d is only meaningful for films where
the surface profile has reached its asymptotic form, while for
nuclepore-adsorbed films of three or less atomic layers, d
and n are not proportional.

For the 3He-substrate interaction, we have taken the same
potential as for the 4He background. For the H-substrate in-
teraction, a standard 3-9 potential was chosen

Usub
I �z� =

4

27

C3
3

D2

1

z9 −
C3

z3 �6.1�

that is characterized by the well depth D and the van der
Waals constant C3. The parameters were estimated, using
Ref. 46, to be C3=4400 K Å3 and D=500 K. The potential
was supplemented, as described in Ref. 24, by the interaction
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of the H atom with two solid layers of He, interacting via a
Lennard-Jones 6-12 potential with the parametrization of
Ref. 45. Figure 3 shows an interesting feature that was al-
ready �albeit much less dramatically� observed for 3He im-
purities: The effect of the bare substrate potential is, in the
coverage regime studied here, still largely compensated by
the many-body effects: Asymptotically, the hydrogen chemi-
cal potential should be determined by the asymptotic part of
the substrate potential, which is not the case here. Figure 1
shows another facet of the same observation: The substrate
potential seen by both the H and the 3He impurity are largely
dominated by the many-body induced potentials. Hence,
starting at a coverage of n=0.20 Å−2, the energy of the
ground state of the hydrogen impurity changes by only 0.4 K
in the range between coverages of n=0.20 Å−2 and the thick
film limit. We have also used, for comparison, Usub

I �z�=0 and
found, consistent with the above observations, that the impu-
rity ground-state properties are dominated, for n 0.20 Å−2,
by the features of the helium surface. We should stress that
this does not imply that the scattering properties are indepen-
dent of the impurity-substrate interaction; in fact, we will see
that the opposite is true, especially for low scattering ener-
gies.

We need to point out a subtlety in connection with the
ground-state calculations of both the background film and
the 3He impurity. Our low-energy results for rinel contain
ratios of the third sound velocity mBc3

2=nd�B /dn and the
coverage dependence of the impurity chemical potential,
nd�I /dn �cf. Eq. �5.24�	. Both of these terms go to zero as
the film grows. However, as pointed out previously, relations
like Eqs. �2.13� and �5.16� hold only in an exact theory. To
overcome this problem, we have slightly modified, as de-
scribed in Ref. 42, the triplet corrections to the particle-hole
interactions in the regime 0!k� !0.4 Å−1 such that the
speed of sound derived from the long-wavelength limit of the
excitations agrees with the hydrodynamic speed of sound,
nd�B /dn, derived by numerically differentiating the chemi-
cal potential. Likewise, we have modified the impurity
particle-hole interaction such that Eq. �5.19� is exactly satis-
fied. These modifications had no noticeable consequences on

the ground-state energetics and structure. The chemical po-
tentials were fitted by the analytic form for i� �B , I�

�i�n� = �i��� −
�s�̄

3

n3 +
c

n4 +
d

n5 +
e cos�kn − ��

n4 . �6.2�

The numerical values for the relevant parameters for 4He and
3He are given in Ref. 42.

In the calculation of the ground-state properties of the
hydrogen impurity, we have omitted for efficiency triplet cal-
culations, which comprise a major computational effort. A
posteriori justification is found in the smallness of the “cor-
relation hole” of the H atom, and in the small correction
from elementary diagrams which is less than 0.05 K. Figure
3 shows the chemical potential of a single H atom as a func-
tion of 4He coverage. We have fitted this chemical potential
in the regime 0.18 Å−2!n!0.39 Å−2 with the analytic form
�6.2�. The fit, also shown in Fig. 3, predicts an asymptotic
chemical potential of �I����−0.93 K, independent of the
range of data that were used for the fit. This asymptotic value
is in reasonable agreement with the experimental data be-
tween −0.89�0.07 K �Ref. 17� and −1.15�0.05 K.16 Most
of the other parameters depend, on the other hand, sensi-
tively on the range of data used; they are, therefore, not very
meaningful. Figure 3 also shows the value of the bare sub-
strate potential at the location of the hydrogen bound state;
evidently, this has little in common with the potential actu-
ally seen by the H atom.

The impurity ground states are shown, for a hydrogen and
for a 3He atom, in Fig. 1. The figures also shows the 4He
background density as a reference, the effective potential
VH

I �z�, and the substrate potential Usub�z�. The effective po-
tential VH

I �z� highlights, more than the binding energy or the
shape of the ground state, the difference between the helium
and the hydrogen impurities: While the hydrogen impurities
have to overcome a rather steep potential step to intrude into
the film, such a potential step is obviously absent in the case
of 3He.

It is interesting to know the H-He pair-distribution func-
tion for H physisorbed on 4He. This is relevant in calcula-
tions of the optical spectrum for physisorbed H; for example,
one can also use it to calculate the hyperfine frequency
shift.47,48 There are two ways to look at the pair-distribution
function which give, while related, different pieces of infor-
mation. The starting quantity is the general pair distribution
�2.32� which is, in our geometry, a function of three variables

gI�r0,r� � gI�z0,z, �r0
� − r��� . �6.3�

The z0 coordinate of the impurity should be taken at the
average location of the impurity ground state; in other words,
we define an average pair-distribution function, subject to the
condition that the impurity is located in its ground state at
r0,�=0, as


gI��z,r�� � � dz0�1
I �z0�gI�z0,z, �r��� . �6.4�

This average pair-distribution function describes the local
environment of the impurity. Information on the distribution
of 4He atoms in the vicinity of the impurity is contained in
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FIG. 3. The figure shows the chemical potential of a H impurity
as a function of 4He coverage �solid line�. Also shown is the fit of
the chemical potential by the functional form �6.2� generated from
the numerical data in the coverage regime 0.18 Å−2!n
!0.38 Å−2 �dashed line�.
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the averaged two-body density, which is the density of 4He
atoms


�IB��z,r�� � �1�z�
gI��z,r��

= �1�z� � dz0�1
I �z0�gI�z0,z, �r0

� − r��� . �6.5�

The latter quantity is perhaps a little more illustrative; we,
therefore, show 
�IB��z ,r�� for the hydrogen and the 3He im-
purity in Fig. 4.

B. Scattering: General discussion

We now turn to the main subject of this paper, namely, the
calculation of scattering processes. We focus on inelastic
processes; elastic scattering of 3He off 4He films has been
discussed extensively in Ref. 3. We show in Figs. 5 and 6 the
probabilities for the three types of scattering events off a film
of coverage n=0.36 Å−2, for a H and a 3He atom impinging
with wave vector k= �k� ,k��, respectively:

�1� The elastic scattering probability �R�k��2 is determined
by the coupling to virtual film excitations. After the interac-
tion with the film, the atom leaves the film in a specular
direction �−k� ,k��. Although a necessary condition for get-
ting �R�k��2�1 is that the imaginary part of the self-energy is
nonzero, it turns out that the value of the real part of the
self-energy has a substantial effect on �R�k��2 as well as on
the other two probabilities; it is never legitimate to ignore the
real part of the self-energy.

�2� The inelastic scattering probability rinel�k�, as defined
in Sec. IV A, is the probability that the atom excites a third

sound wave or other modes of the film, but still retains
enough energy to leave the film.

�3� The sticking coefficient s�k� is the probability that the
atom transfers a sufficient fraction of its kinetic energy plus
the binding energy of the Andreev state—or other bound
excited state in the case of 3He scattering—to one or more
film modes such that it becomes trapped at the 4He surface.

The most obvious difference between H and 3He is the
steps in the H results for �R�k��2, rinel�k�, and s�k� as a func-
tion of momentum and scattering angle, as compared to
smooth modulations in the 3He results. As we will see below,
the steps indicate the opening of a new decay channel. Con-
cerning the modulations seen in 3He scattering, we have
shown in Ref. 3 for Cs-absorbed films that these modulations
are shape resonances similar to those occurring for scattering
at potential wells. The well associated with the self-
consistent potential VH�r� grows with film thickness, accom-
modating an increasing number of states, leading to reso-
nances. See also discussion in Sec. VI C.

Figures 5 and 6 also show that the limit of quantum re-
flection �at low energies, the reflection coefficient goes to
unity� has, for the momenta shown, not yet been reached. For
H scattering, the 4He surface acts more like a wall, since it
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FIG. 4. The figure shows the correlation hole 
�IB��z ,r�� as de-
fined in Eq. �6.5� around an impurity in its ground state for a H
atom �upper figure� and a 3He atom �lower figure�. The underlying
model is always a 4He film with coverage n=0.39 Å−2.
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FIG. 5. The figure shows the elastic reflection probability
�R�k� ,k���2, the sticking probability s�k� ,k��, and the inelastic re-
flection probability rinel�k� ,k�� of a H atom impinging on a 4He film
of coverage n=0.360 Å−2 as a function of the wave vector k
= �k� ,k��.
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takes an energy of about 30 K of the H atom to penetrate into
the bulk of the 4He liquid �see Fig. 1�. We must point out,
however, that the manner in which the limit of quantum re-
flection is reached depends extremely sensitively on details
of the density profiles.49 Our results should, therefore, be
considered with much caution.

For a deeper discussion of the inelastic processes involved
in the present situation, we must take the excitation spectrum
of the background film into account. Since we have used the
Feynman approximation for the energies occurring in the en-
ergy denominator of the self-energy �3.13�, we show in Fig.
7 the dynamic structure function S�k� ,
�, for parallel mo-
mentum transfer, in Feynman approximation. The spectrum
is discrete below the evaporation energy ��B�+�2k�

2 /2m. The
figures also show ��B �−�k�

2 /2mI for both 3He and H. By
energy conservation, its intersections with the Feynman
modes give those modes that can be excited by an incident
impurity atom that has asymptotically zero energy. Evidently,
a low-energy H atom can excite only a surface excitation, but
3He can couple to three different Feynman modes in the
present example. Of course, the number of modes to which
an atom can couple increases with the film thickness; the
spectrum turns into a continuum in the infinite half-space
limit.

Figure 8 shows �R�E��2, rinel�E�, and s�E� of H and 3He for
perpendicular incidence up to energies of 8 K. For energies

of several Kelvin, all three probabilities �R�2, rinel, and s are
of the same order of magnitude. The vertical lines indicate
the threshold energies for decay channels ��=0,m�, i.e., en-
ergies E0,m, above which sticking by decay into the Andreev
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FIG. 6. Same as Fig. 5 for 3He.
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below the continuum �shown as hatched area� are discrete modes;
S�k� ,
� has been broadened by a Gaussian of width 0.25 K to dis-
play their strength in gray scale. The two heavy lines are ��B�
−

�2k�
2

2mI
for 3He �upper line� and H �lower line�. Their intersections

with the film dispersion yield the modes excited by 3He or H scat-
tering at zero energy by decay into the respective Andreev ground
state. The lower panel is a magnification for low momentum and
energy.
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ground state 
0�z0� and excitation of a film mode m is pos-
sible, E0,m=E+�I−�
m�0� �see also Fig. 7�. The spectrum is
continuous for �
m�0� larger than �B�7.2 K. For H, the
passing of the incident energy E through one of the discrete
energies E0,m has a major effect on �R�2, rinel, and s, leading
to steps in all three quantities. As expected, s increases when
such a new decay channel opens.

Of course, the phase space for multiexcitations increases
with increasing energy, while the form of the self-energy
�4.10� as well as the current �4.28� implies that decay into
more than two elementary excitations is excluded. Therefore,
corrections from multiexcitation processes are expected at
high scattering energies.

C. Low-energy sticking of 3He

The regime of validity of universal quantum reflection,
1− �R�2�k� as �k�→0, is determined, among others, by the

proximity of low-lying resonances or shallow bound states of
the impinging particle, which sees the long-ranged tail of the
substrate potential, −C3 /z3, and the effectively attractive or
repulsive interaction with the film. Universal quantum reflec-
tion has been examined experimentally6 as well as
theoretically,3,34,49 where it has been found that 1− �R�2 is,
indeed, enhanced by the substrate potential and that the be-
havior �k� is shifted to lower energies, leading to an in-
creased coefficient of the expansion of s in k�,

s1 � lim
k�→0

s�k��
k�

. �6.6�

We will discuss in this and in the following section our re-
sults for the sticking probability.

Figure 9 shows s1�n� for 3He scattered off 4He films ad-
sorbed on a nuclepore substrate, for the whole series of cov-
erages n for which we have carried out calculations for 3He.
s1�n� for 3He exhibits, as a function of surface coverage, a
sequence of pronounced peaks. These peaks are the signa-
tures of the appearance of additional bound states of 3He in
the film as its thickness increases. In Ref. 1, the following
scenario was found as a function of surface coverage: The
ground state of the 3He impurity is, of course, always the
Andreev state; this state is not renormalized by self-energy
corrections ����
� �cf. Eq. �3.12�	. As the film thickness
increases, more bound states appear because 3He impurities
can be solvated in bulk 4He with a solvation energy of ap-
proximately 2.7 K.50 In the simple static approximation
�2.29�, the first excited state appears to be such a solvated
state. If we include self-energy corrections and solve the full
equation of motion �4.8� self-consistently for bound state
wave functions �
�z� with energies �
�−�I, then the first
excited state becomes the second surface state observed in
experiments,51 whereas the third and all higher states de-
scribe 3He atoms solvated in the 4He background film. The
density of these bound states increases with increasing n un-
til they form a continuum of modes for the motion of 3He
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FIG. 8. The figures show the elastic �solid line� and inelastic
�dashed line� reflection probabilities �R�E��2 and rinel�E� as well as
the sticking probabilities s�E�=1− �R�E��2−rinel for perpendicular
incidence of H �upper figure� and 3He �lower figure� on a 4He film
adsorbed on nuclepore �coverage n=0.360 Å−2�. The threshold en-
ergies for channels associated with sticking are indicated by vertical
lines; these lines become a continuum at E=�I−�. The vertical
lines within the continuum show the numerical discretization of the
Feynman modes. Note that the limiting behavior �R�E��2→1 for
E→0 is only reached at very low E and is not visible on the energy
scale here.
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FIG. 9. The low-energy sticking coefficient of 3He �open
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, is plotted as a function of the
coverage n of a 4He film adsorbed on nuclepore.
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solvated in bulk 4He. Whenever a new bound state appears,
the low-energy phase shift ��E→0� of the elastic scattering
amplitude R= �R �e2i��E� jumps, in accordance with
Levinson’s theorem,52 by �. This is shown in Fig. 10. These
bound states are better approximations than the impurity
states �����r�, and lie more densely because the 3He impurity
acquires an effective mass. Furthermore, all of these bound
states are decay channels for sticking. However, since we
have used the static approximation for the intermediate
states, the sticking channels have somewhat different ener-
gies than those predicted by the self-consistent bound states
of Eq. �4.8�. In an exact theory, these energies would be the
same.

We have also analyzed which processes contribute most
to the low-energy sticking coefficient. While the relative con-
tributions vary with coverage n, we found that, for all n,
excitations of third sound modes is the main process leading
to sticking, with the 3He atom scattered either into the first or
second Andreev state. From the thin films investigated here,
we cannot yet draw conclusions for thicker films and the free
4He surface, where sticking could also come from penetra-
tion into the 4He bulk. Since even the six layer films exam-
ined here are evidently far from the bulk limit, an extrapola-
tion to the infinite half-space is uncertain.

D. Low-energy sticking of H

The physics of H scattering is very different from that of
3He scattering. Since hydrogen has a positive chemical po-
tential �the HNC-Euler–Lagrange theory yields 31.6 K for H
in bulk 4He �Ref. 19 and 53�	, the number of bound states
does not increase with film thickness. Instead, for H, the 4He
surface acts almost like a hard wall �cf. Fig. 1�. Since H is
only very weakly bound to the 4He surface, the third sound
modes created in a sticking process of a low-energy H atom
have a wave number of only about k0=0.13 Å−1 �see Fig. 7�.

H is left with only a single channel for sticking to the 4He
surface, and has a much smaller sticking coefficent as com-
pared to 3He. This is evident in Fig. 9, which shows s1 as a
function of film coverage n for all nuclepore films for which
we have carried out calculations for H. Furthermore, s1 does
not have the strong n dependence that we observed for 3He,
since no additional bound states are accommodated in the
film as it grows.

Surface modes for the thickest film, n=0.36 Å−2, with a
wave number of k0 and higher have already reached the free
surface limit. It is, therefore, permitted to emulate thicker
films as follows: We shift the substrate potential plus the
H-He potential due to the solid first two 4He layers toward
the negative z direction and fill the resulting gap with homo-
geneous inert 4He at equilibrium bulk density, ��

=0.0218 Å−3. This procedure does not reproduce the layer
structure close to the substrate correctly, but this does not
compromise our results because these layer structures are
immaterial for the binding properties of the H atom.

Due to the much stronger attraction of H to the nuclepore
substrate than to an infinite half-space of 4He, the H atom
has, besides the Andreev ground state, for sufficiently thin
films, a very weak second bound state with a binding energy
in the millikelvin regime. This state is produced by the sub-
strate attraction, whereas the Andreev state is produced by
the interaction with the 4He background. With increasing n,
H is pushed away from the shallow well produced by the van
der Waals tail −C3 /z3 of the substrate, and the weakly bound
state turns into a low-energy resonance. This is in contrast to
3He, where the situation is reversed: There, resonances be-
come bound bulklike modes with increasing n. However, in
both cases, a resonance leads to an enhancement of the stick-
ing coefficient s1 by 1 or more orders of magnitude �see Fig.
11�. In addition, Fig. 11 shows the result for the sticking
coefficient if retardation, which weakens the long-range tail
of the substrate potential, is taken into account, by multiply-
ing the substrate potential by �1+ z

�
�−1, with �=200 Å.34 Re-

tardation strongly influences low-energy results such as s1,
but does not lead to qualitative changes.
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FIG. 10. The phase shift � for 3He scattering at films of cover-
ages n=0.040, . . . ,0.250 Å−2 is shown as a function of incident
energy E. � rises monotonically from lowest to highest n. The �
jumps at n=0.070 Å−2 and at n=0.170 Å−2 show the appearance of
additional bound states and coincide with the peaks of the sticking
coefficient s1 at the same n �see Fig. 9�. See text for a detailed
discussion.
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FIG. 11. s1 is shown for H as a function of n, calculated directly
for thin films up to n=0.37 Å−2 �filled squares, see also Fig. 9�,
while higher n are emulated as described in the text �full line�. Also
shown �circles and dashed line� is s1 for H if retardation is taken
into account.
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An effect which is similar to the resonant sticking en-
hancement is known for inelastic scattering of light atoms
from solid surfaces, where it is called selective adsorption
resonances �SAR�. In particular, since resonant sticking here
does not involve a reciprocal lattice vector due to transla-
tional symmetry parallel to the film, it corresponds to specu-
lar phonon-assisted SAR at low incident energy.54,55

Figure 12 shows the sticking coefficient s�E� of H at the
n=0.36 Å−2 film, which is about 17 Å thick, and for several
thicker, emulated films up to n=11.4 Å−2 �approximately
520 Å thick�. The phase shift ��E�, given by the argument of
the elastic reflection coefficient R= �R�e2i�, is shown in the
lower part of the figure. Decreasing the film thickness from
1.24 to 0.80 Å−2 �from d�57 Å to d�37 Å�, the phase
shift ��E→0� increases by �. As mentioned above, this
jump of ��E→0� is caused by the creation of weakly bound
states when the effect of the nuclepore substrate on H is
strong enough to accommodate a second bound state, in ad-
dition to the Andreev state.

In order to study the dependence of the scattering proper-
ties on the substrate, we have also looked at magnesium. In
the upper panel of Fig. 13, we show the sticking coefficient

for H on magnesium-adsorbed 4He films. The van der Waals
constants C3 for H interacting with an infinite Mg half-space
was determined to be about 8000 K Å3 in Ref. 56. However,
for those substrates studied in Ref. 56 where independent
calculations are available �see the review Ref. 46�, we found
a discrepancy of a factor of 2. For the ground-state calcula-
tion, we have chosen C3=4400 K Å3 and then carried out
scattering calculations for van der Waals constants C3 be-
tween 4000 and 8000 K Å3.

Similar to H sticking on thick nuclepore-adsorbed films
discussed above, there are clear signatures of resonances in
the n dependence of s1. In contrast to the nuclepore case, the
resonance corresponds to the appearance of a third surface
state of H. The dependence of the peak position on C3 is easy
to understand: with decreasing substrate strength C3, the
resonance peak moves to lower coverage n which allows the
H atoms to come closer to the substate, thus compensating
for the decrease of C3.

s1 exhibits oscillations apart from the resonance peak.
This is best seen for the weakest C3=4000 K Å3, where no
resonance is found in the n range shown in Fig. 13. The
lower panel of Fig. 13 shows the n dependence of �d�I /dn�2
in comparison with s1. In particular, the dip of s1 for n
=0.26 Å−2 is clearly correlated with a minimum of
�d�I /dn�2. Unlike for rinel which is proportional to �d�I /dn�2
�see Eq. �5.24b� and the discussion in the following section	,
this behavior is not immediately obvious from Eq. �5.7� for
s1, because it comes from the n dependence of the elastic
channel wave function �̄.

E. Low-energy inelastic scattering

We have derived in Sec. V B a low-energy expansion for
the inelastic reflection coefficient; specifically, it was shown
that the dynamic response of the background film yielded
rinel=rinel

0 E2, where the coefficient rinel
0 is given by Eq.

�5.24b�. This coefficient depends on the ratio of two num-

0.001

0.01

0.1

s

n=0.36 Å−2

n=0.58 Å−2

n=0.80 Å−2

n=1.24 Å−2

n=1.68 Å−2

n=2.56 Å−2

n=11.4 Å−2

−π

−π/2

0

π/2

0.001 0.01 0.1 1 10 100 1000

δ

E [mK]

FIG. 12. The sticking coefficient s�E� of H impinging perpen-
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films �see text�. The lower part of the figure shows the phase shift
��E�. When the weakly bound state of H becomes a resonance at
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bers, nd�I�n� /dn and nd�B�n� /dn, which both become small
in the thick film limit.

A reliable microscopic calculation of this ratio from the
particle-hole interaction Ṽp-h�r ,r�� and Ṽp-h

I �r0 ,r� calculation
of rinel

0 is difficult because the necessary integrations �for
example, by Eq. �5.17� and a corresponding calculation for
the background36	 imply the cancellation of large numbers.
For example, the typical order of magnitude of the particle-
hole interaction appearing in Eq. �5.17�, is mBcs

2�25 K,
where cs is the bulk speed of sound. Both nd�I�n� /dn and
nd�I�n� /dn are, on the other hand, oscillating functions with
values between 0.5 and 0.05 K in the coverage regimes 0.25
and 0.39 Å−2 and tend toward zero in the infinite half-space
limit.42 We have, therefore, calculated these quantities di-
rectly from our numerical chemical potentials.

In Fig. 14, we show the limit rinel
�0� =limE→0�rinel /E2� as a

function of n for 3He and H scattering at 4He films of cov-
erage n. For H, the oscillations over several orders of mag-
nitude are due to the numerator as well as denominator of the
factor �

nd�I/dn

nd�B/dn �2 in Eq. �5.24b�: d�I /dn and d�B /dn oscillate
out of phase, and the ratio is enhanced. For 3He, however,
the strongly oscillatory n dependence is also partly caused by
Mr

�
��, which also fluctuates as a function of coverage: Mr
�
��

depends on the zero-energy wave function of the elastic
channel, �̄�z0�, which for 3He is sensitive to the size of the
film due to the resonances occurring when successively more
scattering states turn into bound states, i.e., fall below the
zero-energy threshold. We have discussed these resonances
in the previous section about the sticking coefficient. Being
such a sensitive probe of the film thickness, �̄�z0� is also a
sensitive probe of very small differences in the numerical
convergence of the independent ground-state calculation of
the films of different n. Therefore, some of the fluctuations of
Mr

�
�� could also be caused by such numerical inconsisten-
cies among films of different but close n.

In the upper panel of Fig. 15, rinel
�0� for H on Mg-adsorbed

4He films is shown for different choices of C3 �see explana-

tion above�. The behavior is similar to the n dependence of
the sticking coefficient s1, which is dominated by resonances
due to the appearance of bound states. The oscillations of
�d�I /dn�2 shown in the lower panel are responsible for the
oscillations of rinel

�0� ; this is best seen for C3=4000 K Å3,
where no resonance is found in the n range shown and where
rinel

�0� is almost proportional to �nd�I /dn�2: for Mg, unlike for
nuclepore, the denominator �mBc3

2�2= �nd�B /dn�2 does not
lead to an additional oscillatory behavior of rinel

�0� , because c3
is significantly larger for Mg and the relative variations of c3
as the film grows are small. Hence, in the present case of
Mg, and in the lower range of C3, rinel

�0� is a direct and very
sensitive probe of the coverage dependence of the impurity
chemical potential.

In Sec. V D, we have derived an approximate inelastic
scattering probability rinel�E ,d� for thick films �Eq. �5.38�	,
making use of the phenomenological dispersion relation
�5.34�. For the numerical evaluation of rinel�E ,d�, we have
resorted to using asymptotic properties and hydrodynamic
derivatives. For the n dependence of chemical potentials
�I�n� and �B�n�, we took the asymptotic forms �B,I�d�
=�B,I���−C3

�B,I� /d3, with d=n /��, valid for thick films only.
We have taken for the calculation of the channel amplitude
�5.37� the self-energy � and the Hartree potential VH from
the n=0.36 Å−2 film. This way we obtain an approximate
probability which, however, retains the qualitative features of
the E and d dependence of rinel. In Fig. 16, rinel�E ,d� is
plotted for H scattering off thick films. Both sets of results
show very clearly the fact that there are two separate regimes
of quadratic behavior rinel�E ,d�=�E2 with different coeffi-
cients �; in the crossover regime, the energy dependence
turns out to be quartic, rinel�E ,d��E4.

F. Inelastic cross sections

In this section, we present results for differential cross
sections, i.e., the inelastic flux as a function of outgoing di-
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FIG. 14. The low-energy inelastic scattering probability divided
by E2, rinel

�0� =limE→0rinel /E2, is shown for 3He �open squares� and H
�filled squares� impinging perpendicularly on 4He films of thickness
n adsorbed on nuclepore.
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pinging perpendicularly on 4He films of thickness n adsorbed on
magnesium, for different choices of the H-Mg van der Waals coef-
ficient C3. The lower panel shows �d�I /dn�2.
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rection �,
d�inel���

d� �Eq. �4.35�	, and as a function of outgoing

perpendicular momentum k�,out,
d�inel�k�,out�

dk�,out
, i.e., the projec-

tion of Eq. �4.37� onto the z axis.
We start the discussion with the angular dependence of

the inelastic flux in the limit of low incident energy, as de-
rived in Sec. V E, where it was shown that the high prob-
ability for quasielastic reflection �direct inelastic scattering in
almost specular direction� is a consequence of the coupling
to the long-wavelength third sound modes of the 4He film
and closely connected to the E2 proportionality of the total
inelastic scattering probability. We show in Fig. 17 the angle
dependent inelastic scattering cross section divided by k3,
k−3d���� /d�, for H and 3He �using a logarithmic scale for
the latter� impinging perpendicularly on the film with wave

number k. Clearly,
d���=0�

d� becomes proportional to k3. The
width of the scattering cone about the specular direction is
proportional to k, as it is dictated by the behavior rinel�k4

for k→0. Hence, in the limit of low energies, the inelastic
flux becomes increasingly focused in the specular direction,
i.e., normal to the film in the present case, where we have
restricted ourselves to normal incidence. The focusing in the
specular direction would be the same for particles impinging
at an arbitrary angle.

For finite incident energies, the cross section
d����

d� is
shown in Fig. 18 up to incident energies of 8 K, again for
perpendicular incidence. We observe that at energies on the
order of Kelvin, the quasielastic scattering processes just dis-
cussed are negligible compared to deflection into finite
angles �. There is a striking difference between the results

for H and 3He, as the
d����

d� for the latter has clearly a much
richer structure, with oscillations as function of the angle �
which become more numerous with increasing energy. The
nature of these oscillations can be better understood by
studying the cross section d� /dk�,out, defined by Eq. �4.37�.
Hence, we study the probability to scatter inelastically from
an incoming state of wave number k�,in into an outgoing
state of wave number k�,out. In Fig. 19, d� /dk�,out is plotted

as a function of k�,in and k�,out for perpendicular incidence.
Again, oscillations of the scattering probability are visible
for 3He. They can be attributed to interferences between the
incoming and outgoing states in the transition matrix element
Mm�km ,0�. Roughly speaking, these oscillations can be
thought of as interference patterns stemming from the Fou-
rier transform of the direct interaction �Xm,km

�z0� for wave
number k�,in−k�,out, hence the approximately diagonal ori-
entation of the oscillations. These oscillations will be dis-
torted, because the channel wave functions are not simple
plane waves and, furthermore, �Xm,km

�z0� changes with km,
which is given by parallel momentum conservation. The
wave number k�0.2 Å−1 of these oscillations implies that
the region of interaction between 3He and third sound �the
other film modes contribute negligibly to Fig. 19� is of the
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FIG. 16. The low-energy inelastic scattering probability
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k=0.0001, . . . ,0.01 Å−1 corresponds to an energy range E=2.4
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order of 2�
0.2 �30 Å, i.e., of the order of the film thickness.

Turning now to the corresponding map for H scattering, we
note that, due to the strong repulsion between H and the film,
the ripplon interaction region is much smaller, leading to the
much broader structure seen in the upper panel of Fig. 19.
The increase of the cross section for k�,in larger than about
0.43 Å−1 in Fig. 19, corresponding to E�5 K in Fig. 18, is
caused by the opening of an inelastic scattering channel �ex-
citation of the film mode with perpendicular quantum num-
ber m=3; the opening of the m=2 channel at k�,in
�0.25 Å−1 is barely visible in Fig. 19�.

The cross section
d����

d� in Fig. 18 reveals another interest-
ing effect: for inelastic scattering into the direction almost
parallel to the surface, �→� /2, the scattering probability
increases before it vanishes at �=� /2. This is the same ef-
fect as the suppression of quantum reflection caused by the
long range of the van der Waals attraction of the substrate.
Above we have seen that, in the elastic channel, this attrac-
tion leads to an increase of s at small incident energies. For
direct inelastic scattering, it leads to an increase of scattering
into large angles �→� /2 at any incident energies, because at
these angles the inelastic channel wave functions, asymptoti-
cally proportional to eik�,outzeik�,outr�, have a small perpendicu-
lar momentum k�,out, just like the elastic channel wave func-
tion ��z0� for low incident perpendicular momentum k�. In
other words, the resonance causes a high density of states in
the film, leading, in the case of the elastic channel wave
function, to a high probability for the impurity to generate a
film mode, and, in the case of the inelastic channel wave
functions, to a high probability to decay into that channel.

This explanation for the peak of
d���,k�

d� near �=� /2 is readily
checked by comparing various film thicknesses, where films
thicker than n=0.36 Å−2 are emulated as explained in Sec.

VI D. In Fig. 20,
d���,k�

d� for H is shown for increasing film
thickness. Reaching about n=0.80 Å−2 �corresponding to a
thickness d�37 Å�, the probability for inelastic scattering to
� /2 increases dramatically, just as did s. For even thicker

films,
d���,k�

d� vanishes monotonously toward �=� /2.
This resonant scattering into the direction parallel to the

film appears to be similar to threshold resonances for atom
scattering at solid surfaces.54,55 However, the underlying
physics is quite different: in the latter case, threshold reso-
nances occur also for elastic scattering due to translational
symmetry breaking parallel to the surface which opens elas-
tic channels, each associated with reprocal lattice vectors.
Here, the effect happens at low energy in the inelastic scat-
tering channel only if a weakly bound adsorption state is
present.
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scattering probability
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3He �lower panel� impinging with energies E perpendicularly on a
4He film of coverage n=0.360 Å−2.
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VII. SUMMARY AND CONCLUSIONS

We have in this paper developed a theory of atom scatter-
ing off inhomogeneous Bose liquids, specifically 4He, build-
ing upon ground-state methods with proven reliability and
without uncontrollable modeling assumptions. Our formula-
tion is a manifestly microscopic many-body theory, i.e., it
starts from dynamic many-body wave function. The part of
the formalism needed for dealing with elastic processes has
been presented in Ref. 3. We have here introduced the con-
cept of particle currents which are second order in the corre-
lation fluctuations, or transport currents, which are necessary
for the extension of the techniques of Ref. 3 to inelastic
processes. We anticipate that this concept will turn out to be
a useful one for many other future microscopic studies of the
dynamics of many-particle systems.

Although our theory is based on a many-body wave func-
tion, we have ultimately arrived at a formulation in familiar
terms like effective interactions and complex self-energies
�“optical potentials”�. This is expected: microscopic many-
body theory simply provides a means for calculating such
quantities from an underlying microscopic Hamiltonian and
relates them to other observables. In our case, the theory
provided information on the interaction between the helium
film and its excitations and the impinging hydrogen and 3He
atoms.

We have then applied the theory to describe static and
dynamic properties of hydrogen and 3He atoms interacting
with adsorbed helium films. The ground-state calculations
have followed the pattern defined in Ref. 1; we expect that
the present results have an accuracy of the same high quality.
Our results for hydrogen supersede those of Ref. 27, which
had been obtained with a much simpler, and hence less ac-
curate, version of the same theory.

Hydrogen atoms interacting with 4He films are a rela-
tively tame problem because the impurity hardly perturbs the

surface and is, unlike 3He, strongly repelled by the interior of
the film. As a consequence, the elastic and inelastic reflection
coefficients are mostly featureless quantities, unlike the re-
flection coefficients of 3He atoms where the coupling to reso-
nances inside the film, and to higher-lying Andreev states,
could be observed.

The sticking probability s, which vanishes linearly with
the perpendicular momentum of the scattering atom, depends
sensitively on the van der Waals tail of the substrate poten-
tial. Typically, s becomes large whenever, as a function of
the thickness of the underlying film, a bound state turns into
a shallow resonance or vice versa. We found two essentially
different types of resonances, near which s becomes large: �i�
in addition to the Andreev state of H of binding energy 1 K
at the free 4He surface, for thin films the attraction of the
substrate can also introduce a broad, weakly bound excited
state far above the film with a binding energy of the order of
millikelvin. Upon increasing the film thickness, this excited
state turns into a resonance �at approximately n=0.8 Å−2 for
our generic substrate with C3=4400 K Å3, and neglecting
retardation�, and s can become very large. To our knowledge,
these weakly bound states have not been experimentally ob-
served, whereas the enhancement of s due to low-energy
resonances has been measured.6 Scattering of atomic hydro-
gen or other atoms may, thus, be a sensitive method for de-
termining the van der Waals attraction by measuring the
resonance peak�s� of s, at sufficiently low energies, as a func-
tion of the thickness of an adsorbed 4He film, which acts as
a buffer. �ii� Due to its negative chemical potential of −2.7 K
in bulk 4He, 3He has, in addition to the Andreev ground state
on the film surface, an increasing number of bound states in
the film with increasing film thickness. The creation of these
bulklike states from scattering resonances can also be seen as
pronounced peaks in s.

Furthermore, the low-energy resonance induced by the
substrate potential, which enhances sticking at low incident
energy, also enhances, for arbitrary incident energy, direct
inelastic scattering into directions almost parallel to the film:
e.g., d� /d� for H scattering exhibits a peak near �=� /2,
which is most pronounced exactly at the critical film cover-
age, where the low-energy resonance turns into a weakly
bound state.

Since the low-energy limits of the sticking and inelastic
scattering probabilities are of particular interest, we have de-
rived analytic expressions for the direct inelastic scattering
probability rinel at low energies E and found rinel�E2. The
surprisingly small exponent results from the long range of
the interaction between long-wavelength third sound modes
and the scattering atom: this allows the excitation of third
sound modes when the atom is still far away from the film,
where the probability density is not suppressed by universal
quantum reflection. The same mechanism leads to the focus-
ing of the inelastically scattered beam in the specular direc-
tion �quasielastic scattering� in the limit of low incident en-
ergies.

Finally, for higher scattering energies, the probability
d� /dk�,out to inelastically scatter from the elastic channel
with momentum �kin into a channel with outgoing perpen-
dicular momentum �k�,out was found to have an oscillatory
structure, which we tentatively related to an effective range
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FIG. 20.
d����

d� is shown, for H impinging perpendicularly on 4He
films with energy E=1.08 K, for various film coverages. Near �
→� /2, the probability is enhanced by the low-energy resonance or
weakly bound state of H, analogous to the enhancement of the
sticking probability s, with a resonance for n=0.8 Å−2, correspond-
ing to the resonance at this n in the sticking coefficient, see Fig. 11.
The inset shows the full � range.
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of interaction between atom and surface excitations, which is
small for H due to the repulsion from the film and of the
order of the film thickness for 3He.

Our work is complementary to studies of universal quan-
tum reflection of H atoms off 4He surfaces:22,32 Whereas this
phenomenon is described within the theoretical framework,
many-body effects have little or no influence on more elusive
problems like retardation of the substrate potential. In the
end, of course, many of the quantitative aspects of “quantum
sticking” depend on the interaction of the impinging atom
with the 4He surface, and the calculation of this interaction is
the task of many-body physics.

Our microscopic approach contains, of course, approxi-
mations concerning both technical approximations and the
physical model. Concerning the physical model, the restric-
tion to zero temperature is the most obvious one, and one of
the next tasks would be to generalize our theory, along the
lines of the work of Ref. 57, to finite temperature. Techni-
cally, we must again distinguish between two levels of ap-
proximations that have been made and that warrant further
investigation. One is the calculation of the diagrammatic in-
gredients of the theory. In particular, for the derivation of
some of the long-wavelength limits, we have needed the fact
that the particle-hole interactions are the variational deriva-
tive of the Hartree potentials with respect to the density. This
allowed us to establish connections between microscopic in-
teractions and macroscopic quantities like the hydrodynamic
speed of sound, or the coverage dependence of the impurity
chemical potential. However, there is no finite order approxi-
mation that satisfies these properties exactly; hence, espe-
cially our low-energy results that relied on these identities
bear some uncertainty. The second approximation of the
physical model is that we have considered only three-phonon
processes. Evidently, it is very difficult to go beyond this
approximation, and we can only estimate the regime of va-
lidity of our calculations by analogy with simpler systems
where better approximations are feasible.58 From that, we

would conclude that our predictions are accurate below the
roton energy, semiquantitative around the roton energy.
However, multiphonon excitations may become very impor-
tant when the energy is sufficient to excite two or more ro-
tons.

Future research is anticipated to go into several directions:
The same techniques that have been applied here can be
applied for the presently more active field of atom scattering
from helium clusters.59,60 The near future will see not only
experiments investigating pickup processes,61 but also differ-
ential cross sections. Furthermore, we note that the formal-
ism can be applied without modification also to Bose sys-
tems other than helium, such as scattering at Bose-Einstein
condensates of atomic gases, where three-phonon processes
are essential to understand the decay of the condensate.

The study of adsorbed films can now turn to a more de-
tailed description of a large number of hydrogen atoms and
molecules as well as 3He atoms physisorbed to helium films.
The adatoms form a two-dimensional gas film on the three-
dimensional liquid 4He, but they will, at very low coverage,
dimerize. As long as the 4He is assumed to provide just a
static confining potential, and no dynamics, we have a two-
dimensional �2D� �or pseudo-2D� Bose or Fermi gas. While
such an assumption can simplify a theoretical treatment enor-
mously, we have shown in this work that it is also very
limited and leaves out much interesting and important phys-
ics. At sufficiently high coverages, the second Andreev state
of the 3He atoms can be macroscopically populated, giving
rise to interesting thermodynamic and magnetic properties33

as well as to a new type of Landau’s Fermi liquid theory.62
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