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We studied the response of a ferromagnet–insulator–normal metal tunnel structure under an external oscil-
lating radio frequency �rf� magnetic field. The dc voltage across the junction is calculated and is found not to
decrease despite the high resistance of the junction; instead, it is of the order of 1–100 �V, much larger than
the experimentally observed value �100 nV� in the “strongly coupled” Ohmic ferromagnet–normal metal
bilayers. This is consistent with recent experimental results in tunnel structures, where the voltage is larger than
microvolts. The damping and loss of an external rf field in this structure are calculated.
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I. INTRODUCTION

There has been much recent interest in the spin dynamics
in hybrid nanostructures composed of ferromagnetic �FM�
and normal metal �NM� layers.1–5 Following earlier work on
the spin torque effect, the spin pumping effect6 has been
demonstrated for “strongly coupled” Ohmic metallic multi-
layers as an additional contribution to the ferromagnetic
resonance �FMR� linewidth in FM/NM multilayers �where
NM is Pt, Pd, Cu, etc.7� and, more recently, as a difference in
voltages of the order of 100 nV between two FM/NM inter-
faces of a NM1/FM/NM2 trilayer.8 Two types of metallic
structures are commonly studied. In addition to the strongly
coupled Ohmic multilayer systems, �weakly coupled� tunnel
structures have also been extensively studied. The physics of
these two types of systems can be very different.9 In particu-
lar, for the tunnel structures, the coupling of the longitudinal
magnetization and the charge lead to magnetization and
charge dipole layers at the interface. After the effect of the
electron-electron interaction is included, it is found that be-
cause of the large difference of the length scales associated
with the charge �screening length �1 Å� and the spin �spin
diffusion length �100 Å� fluctuations, there is a larger split-
ting of the chemical potentials than that predicted by the
conventional spin accumulation picture.10 Whereas the con-
ventional picture suggests that the splitting scales with the
current and will decrease with an increase in resistance, this
is no longer true in the more complete picture.

Recently, Moriyama et al.11 reported measurements of the
dc voltage attributed to the spin pumping effect in different
tunnel junctions and demonstrated that the voltage is larger
than microvolts, enhanced orders of magnitude compared to
that for metallic trilayers. In this paper, we generalize our
recent work on spin torque13 to the spin pumping situation
and found an enhanced voltage for the tunnel structures,
which is in agreement with the experimental results. We now
describe our results in detail.

The system we have in mind is a ferromagnet–normal
metal tunnel junction, where the two interfaces between the
ferromagnet-insulator-metal sandwich structure are assumed
to be at z= �d /2. We assume the z axis to be perpendicular
to the faces of the tunnel junction. The initial magnetization
is assumed to be in the x−y plane, with an orientation given
by p0

L=ex for the ferromagnet on the left hand side of the
sandwich structure.

Because the work functions of the metals on opposite
sides of the junction may not be equal, at zero external radio
frequency �rf� field there will be a charged dipole layer
formed at the interfaces. What we are calculating here are the
changes from the zero field situation. This surface inhomo-
geneity can lead to an additional contribution to the increase
in the FMR damping, as we explain below. The experimental
structures usually possess edge domains where the switching
starts. The magnetization is thus not completely uniform in
the x−y plane. To bring out the essential physics, we shall
not consider this complication in the present paper, but we
hope to come back to this in the future.

Under an external time varying rf field, we expect the
magnetization in the ferromagnet to be the sum of a uniform
magnetization, which is a solution of the inhomogeneous
Bloch �Landau-Gilbert� equation due to the external field,
and a spatially varying solution of the homogeneous equa-
tion so that the boundary condition can be satisfied. This
spatially varying part provides for the additional damping
and the voltage observed in the experiments. Our approach is
to obtain general solutions in each part of the junction �Eqs.
�9�, �10�, �13�, and �14��. The amplitudes of these solutions
are determined by the boundary conditions �Eq. �5��. From
these amplitudes, the voltage and the damping can be de-
rived. We first describe the general solution of the magneti-
zation in a ferromagnet.

II. STEADY-STATE MAGNETIZATION IN A
FERROMAGNET

Our starting point is the equation of motion of the charge
and the magnetization. For the charge, it is just the equation
of charge current conservation

� · Je = −
��n

�t
, �1�

where Je is the total current. The equation for the magneti-
zation M has been extensively discussed in the past.12 The
equation takes the form of the phenomenological classical
Landau–Lifshitz �Bloch� equation with longitudinal and
transverse damping and an additional source term
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�M

�t
− �M � H − �M � �M � H� + � · ĴM = −

�M

	
, �2�

where � is the gyromagnetic ratio, and H is the effective
field describing the precession of the magnetic moments
given by H=He+Han+Hdip+Hex .Hex=J�2M is the effective
field due to direct exchange; the anisotropy term includes a
bulk and a surface anisotropy energy Han=Hab+Has, where
Hab=KM0, and Has=KsMs, with Ms=M0��z+d /2�. Here, we
have separated a bulk and a surface contribution that acts on
the surface magnetization Ms. For simplicity, we have as-
sumed this surface contribution to be localized at the inter-
face. The other terms can also contain a surface contribution
and can be treated in a similar manner as this ansiotropy
contribution. For simplicity of presentation, we illustrate our
results with just this term. He represents the external field

and Hdip denotes the dipole-dipole interaction. ĴM is a spin
current �tensor�. The currents are driven by density gradients
�diffusion� and external forces as follows:

Je = − 
 � V − eD � �n − DM � ��M · p0� ,

ĴM = − 
M � �Vp0� − DM� � �M − D� � ��np0� , �3�

where 
 and 
M are the effective conductivities for
the charge and magnetization. p0 is a unit vector along the
direction of the equilibrium magnetization: p0=M0 / �M0�,
with M0 the local equilibrium magnetization and �M
=M�1− ��M� /M0�� the change in magnetization. D, D�, DM,
and DM� are the effective diffusion constants. V=Ve+W, with
Ve the electric potential describing the external electric field
and W the local electric �screening� potential due to the other
electric charges determined self-consistently by

W�r� =� d3r�U�r − r���n�r�� , �4�

with U the Coulomb potential. The total number density of
charge carriers and x component of magnetization are given
by n=�sns, and Mx=�ssns, respectively. In the coordinate
system with one of the coordinate axis along the direction of
the magnetization, the spin current can be understood as the
difference of the spin up current and the spin down current.
The vector dependence is such that the equation is covariant.
The Landau–Liftshitz equation without the source term � ·JM
is believed to describe the physics of ordinary domain walls,
where the direction of the magnetization changes but its
magnitude remains fixed. Equation �3� is consistent with this
belief. For ordinary domain walls, JM =0. 	 is the longitudi-
nal relaxation time, which describes the relaxation of the
system toward its local equilibrium value of magnetization.
� measures the transverse �Gilbert� damping term.

We assume that the transverse magnetization �m� is small
and we linearized Eq. �2� with respect to it. The details are
described in Appendix A. We summarize the results next.

The solution of the linearized equation can be written as a
sum of two terms,

�M = �M0 + �mi,

a spatially uniform ��mi� solution of the bulk inhomoge-
neous equation with the source term M0�H1 and a spatially
varying solution ��M0� of the homogeneous equation. �M0
is a linear combination of “eigenfunctions” with coefficients
picked to satisfy the boundary conditions. By integrating the
linearized equation over a small region of space at the
boundary, we arrive at the condition that the difference be-
tween the tunneling and the ferromagnet pseudospin current
is equal to the surface anisotropy term:

JM
t − IM

L = �KsM0 � ��mi + �M0s� , �5�

where JM
t is the tunneling magnetization current and the

pseudospin current14 IM=JM−�JM0��z�M includes an ex-
tra term involving the exchange that affects only the trans-
verse magnetization current. We expect this extra term to be
also present for Ohmic junctions, but so far it has not been
included. In previous spin pumping studies6 on Ohmic junc-
tions, a term of a similar functional form gn��n /�t
�n=M / �M�� has been discussed. However, the coefficient
was interpreted as a spin mixing conductance. These previ-
ous calculations on spin pumping did not consider the cou-
pling to the charge degrees of freedom. Their equation de-
scribing the dynamic degrees of freedom also differs from
our Eq. �2�. We next describe the form of the magnetization.

The solution of the inhomogeneous equation is the same
as that described in ferromagnetic resonance in textbooks
and with e�=ez� iey and �m�

i =��m�e�, we find,

�m� = ��
0 H1,�,

where the susceptibility 1 /��
0 = (�−� i�1 / lsf

2 �+ ��i−��� /
DM� ��+��� / lsf

2 �+�H0) /�M0. Associated with this transverse
magnetization, there is a change of the longitudinal magne-
tization given by

�mx
i = M0 − �M0

2 − �m�
i2�1/2 � 0.5�m�

i2/M0.

This is the lowest order correction to the longitudinal mag-
netization. Higher order nonlinear corrections to the trans-
verse magnetization will produce changes in the longitudinal
component that is higher than third order.

The solution of the homogeneous linearized equation is
similar to that in our previous studies.13 The solution in-
volves a change in density of the charge and magnetization
�dipole layers� near the interface.

We expect the charge and magnetization dipole layers to
decay away from the interface, with length scales controlled
by the spin diffusion length and the screening length. Be-
cause of the vector nature of the magnetization, there are
three normal modes by which they can decay away from the
interface. Including the charge degree of freedom, there are
four normal modes that one can consider. For the ferromag-
netic metal on the left hand side, we thus consider the
following ansatz:

�nL = �
i=1

4

�ni0
L e�z+�d/2��/li, �M0

L = �
i=1

4

�Mi0
L e�z+�d/2��/li, �6�

where the superscript L denotes the left hand side.
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We substitute this into the homogeneous linearized form
of Eq. �2�, let the coefficients before the exponential scaling
functions vanish for steady-state solutions, and get for small
 the renormalized screening length

l1 = �0�1
1/2, �7�

the renormalized spin diffusion length

l2 = lsf�2
1/2,

and a combination of the exchange length and the spin
diffusion length

l3,4 = lsf/	��1 − � i��r�/�1 − � i���

+ ��i − ���lsf
2 /DM�

2�1 − � i���
1/2.

The �’s and � are measures of the asymmetry of the spin up
and spin down conductivities of the ferromagnet: �1= �1
− �D�DM /DDM� �� / �1− �
MD�DM /
DDM� �+ �i�0

2 /D�� .�2= �1
− ��2� / �1− ilsf

2 /DM� ��, �2= �1− �D�DM
M /
DDM� ��. �r=�
+ ��H0lsf

2 /�M0�. As we shall see below, l3 and l4 correspond
to length scales with which the “precession” dies away from
the interface. The additional term ��M �H0 modifies these
two lengths accordingly. The screening length and the spin
diffusion length are renormalized. From Eqs. �1� and �3�, we
find that the charge densities can be related to the magneti-
zation densities by

�n10
L = e��1

L − 1��M10
L /�B, �n20

L =
e�0

2DM
L

�Bl2
2DL�M20

L ,

�n30
L = �n40

L = 0. �8�

Because l2��0, it follows from the above equations that
�n20 /e��M20 /�B. As we see below, generally �M20 is much
less than �M10. By inserting the “eigensolutions” into Eq.
�6�, we finally obtain the following analytic expressions for
the dipole layers:

�nL = �n10
L e�z+�d/2��/l1 + �n20

L e�z+�d/2��/l2, �9�

�ML = p0
L�M10

L e�z+�d/2��/l1 + p0
L�M20

L e�z+�d/2��/l2

+ e+
L�M30

L e�z+�d/2��/l3 + e−
L�M40

L e�z+�d/2��/l4. �10�

The spatial dependence of the different contributions to the
charge and magnetization densities is illustrated in Fig. 1.
The charge is not coupled to the transverse magnetizations.
The two transverse magnetization modes correspond to the
left and right circularly polarized modes e�. �Mi0

L , with i
=1,2 ,3 ,4, are to be determined later. Terms of the order
��0 / lsf�2 or higher have been neglected since lsf

2 ��0
2. Also,

to simplify the algebra, we have assumed the ferromagnetic
thickness dF to be larger than the spin diffusion length so that
we do not need to worry about “reflection” effects from the
leads. As advertised, the charge dipole layer is the sum of
two terms, one decaying with a length scale of the screening
length; the other, the spin diffusion length. The vector mag-
netization dipole is now a sum of four terms. The first two
��M10

L , �M20
L � are along the direction of the original magne-

tization; the last two are perpendicular to the direction of the
original magnetization and describes the precession of the

magnetization around the original axis. Again, the first two
terms correspond to decay lengths of the order of the spin
diffusion length and the screening length, while the preces-
sion term only decays with a length scale that is a combina-
tion of the exchange length and the spin diffusion length.

With Eqs. �9� and �10�, the charge and magnetization cur-

rents Je and ĴM can be worked out as

Je
L = 
Eext, �11�

ĴM
L = 
MEextp0

L/e +
�1 − �2�DM�

l2
ezp0

L�M20
L e�z/l2

+
DM�

l3
eze+�M30

L e�z/l3 +
DM�

l4
eze−�M40

L e�z/l4, �12�

where �z=z+ d
2 and Eext=Eextez is the external electric field

inside the conductor. Note that the magnetization current is
not a function of the rapidly varying part of the charge and
magnetization densities �n10 and �M10. In principle, the
magnetization current can contain a term of the form
JM1 exp�z / l1�. In the generalized Landau–Gilbert equation
�Eq. �2��, terms of different functional dependences are each
equal to zero. The only terms that are proportional to
exp�z / l1� comes from � ·JM and is proportional to JM1 / l1.
This term and, hence, its contribution to the magnetization
current are equal to zero. To match the quantities at the
boundaries, we next consider the charge and magnetization
in a normal metal �N�.

III. NORMAL METAL

On the N side, the charge and magnetization are not
coupled. The charge is given by

�nR = �n0
R exp�− z/�� .

The magnetization satisfies the equation �tM= �Dn�z
2−1 /

	sf
N�M=0. From this we obtain

�MR = �M0
R exp�− �z − d/2�/lR� .

The longitudinal magnetization current at the interface
�z=d /2� is given by JM

R =−DN�M0x
R / lR.

FIG. 1. The spatial dependence of the different components of
magnetization �left� and the charge densities �right�. For the mag-
netization densities, the solid, dashed, and dotted lines are for �M1,
�M2, and �M3, respectively. For the charge densities, the solid and
dotted lines are for ��1 and ��2, respectively.
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IV. BOUNDARY CONDITIONS

For the longitudinal spin current, the quantity on the right
hand side of Eq. �5� is zero. Also the longitudinal pseudospin
current is equal to the longitudinal spin current. We obtain

JM
t = JM

L = JM
R .

We first determine the charge and magnetization on the right
in terms of those on the left. The longitudinal magnetization
current at the left interface is given by Eq. �12�. By equating
JM

R to JM
L , we get

�M0x
R = − �1 − �2�DM�

L�M20
L lR/�DNl2� . �13�

The magnetization on the right is proportional to �M20
L and is

not a function of �M10
L . As we shall see below, �M10

L

��M20
L ; hence, the longitudinal magnetization change on the

right is much less than that on the left at the boundary. The
charge neutrality condition �d/2

� �nLdz+�−�
−d/2�nLdz=0 yields

�n0
R = − �l1�n10

L + l2�n20
L �/� . �14�

These two equations express the quantities on the right in
terms of quantities on the left. We now determine the ampli-
tudes of the physical quantities on the left by matching the
boundary condition involving the tunneling current.

The longitudinal magnetization tunneling current is equal
to the difference of the spin up and spin down tunneling
currents. From standard calculations of the tunneling
current,15 we get

JM
t = �

s

s�Tss��
2��nLs�E + ��s

L� − �nRs�E + ��s
R�� .

Here, �nLs contains contributions from the electric potential
due to the charges at the interface9 and that from the accu-
mulation due to the bottleneck effect.10 The change of the
electron density of spin s can be related to the change of the
total charge and magnetization densities by �we use units so
that �B=1� �ns=0.5��n+s�Mx�. The longitudinal magnetiza-
tion density is the sum of contributions from the solutions of
the homogeneous and inhomogeneous equations: �Mx=�mx

i

+�Mx0. From Eq. �12�,

JM
L =

�1 − �2�DM�

l2
�M20

L .

The inhomgeneous term �mi is uniform. It contributes to the
tunneling current but does not contribute to the magnetiza-
tion current JM

L inside the ferromagnet. From JM
t =JM

L , we get

�1 − �2�DM�
L�M20/l2 = �

s

s�Tss�2��nLs − nRs� .

All variables of this equation can be written in terms of the
two independent variables �M10,20. Now �n0Ls=0.5��n10,L
+�n20,L+s��M10,L+�M20,L��. By using Eqs. �7� and �8�, we
get

�1 − �2�DM�
L�M20/l2 = �

s

s�Tss�2„�M10
L 	�L − 1 + s

+ �l1��L − 1�/��
 + s�mx
i
… . �15�

This equation implies that �M20 is of the order of ct�M10
L /cm,

where ct �cm� is the tunneling �metallic� conductance. ct is
much smaller than the metal conductance cm. Thus, �M20 is
much smaller than �M10.

For an open circuit, the total charge tunneling current is
zero. We get J=�s�Tss�2��nLs−nRs�=0. By substituting in the
expresssions for the charge densities and using the condition
that �M20��M10, we get

�
s

�Tss�2„�M10
L 	�L − 1 + s + �l1��L − 1�/��
 + s�mx

i
… = 0.

By solving this equation, we finally obtain

�M10
L = − f�mx

i , �16�

where f = ��s�Tss�2s� / ��s�Tss�2	�L−1+s+ �l1��L−1� /���
.
From Eq. �10� the corresponding charge is �n10

L

= ��L−1�f�mx
i . The charge and the magnetization densities

are proportional only to the ratio of the conductances. Hence,
they are not necessarily small for tunnel junctions. As we
emphasized before,9 this comes about because �� lsf.

V. ELECTROMOTIVE FORCE

In this section, we shall estimate the voltage across the
junction. Because the junction is not well characterized �the
metallic part is polycrystalline; the quality of the insulator
and the nature of the interface are not known�, we feel that it
is premature to perform a detailed calculation at this time.
Instead, we shall settle for an order of magnitude estimate.
The dc voltage is estimated as the change of the mean chemi-
cal potential across the interface, which is given by �V
=0.5�s����s�=0.5�s���ns /Ns�, where Ns is the density of
states. This drop can be written as ��ML��MR�

�V = 0.25�e�mx
i /�B�f†��L − 1�	�1/N+

L� + �2l1/��RNR��

+ �1/N−
L�
 + �1/N+

L� − �1/N−
L�‡ .

The longitudinal magnetization density is �mx
i

=0.5��m�
i �2 /M0v=0.5�2M0 /v, where v is the atomic vol-

ume and �=�mi /M0 is the precession angle. Hence,

�V = 0.125e�2M0/�v�B�f	��L − 1���1/N+
L� + �2l1/�NR�

+ �1/N−
L�� + �1/N+

L� − �1/N−
L�
 . �17�

As expected, this dc voltage is proportional to �2, as is ob-
served experimentally. Most importantly, it is proportional
only to a ratio of the conductances. Hence, its magnitude is
not small. The factor f , as given after Eq. �16�, depends on
the asymmetry between the majority spin and minority spin
conductances in the insulator. The larger the difference, the
larger the value of �f �. We next estimate the order of magni-
tude of �V.

We expect M0 /v�B to be of the order of unity and e /N
�N is the average density of states� to be of the order of
0.1 V. Depending on the asymmetry between the majority
and minority spin tunnel conductances in the insulator, the
value of f can range between 1 and 0.1. Similarly, depending
on the asymmetry between the majority and minority spin
conductances in the ferromagnet, �L−1 can range in value
between 1 and 0.1; �1 /N+�− �1 /N−� to be of the order of 1 /N
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to 0.1 /N. Hence, �V��10−2–10−4��2 V. For ��0.1, �V
�10−4–10−6 V, which is in agreement with the experimental
results, which is larger than microvolts. We next address the
issue of damping.

VI. DAMPING

The loss can come from three sources: �1� from the inter-
face inhomogeneity, �2� from the loss of the transverse mag-
netization current through the barrier, and �3� from the loss
of the longitudinal magnetization current. As we explain be-
low, these contributions have different dependences on the
external rf magnetic field. The contributions for the first two
sources to the damping coefficient are independent of the
field strength; that from the last source is proportional to the
input power. The contributions from the last two sources are
inversely proportional to the junction resistance and, thus,
are much smaller for tunnel junctions.

We first estimate the loss connected with the longitudinal
magnetization. This loss is equal to �sjs

2rs, where js and rs
are the current and junction resistance for spin s. This is of
the order of ��mx

i �2�T�2. Since �mx is proportional to the input
power, this loss is proportional to the power squared. Its
contribution to the damping coefficient is obtained by nor-
malizing the loss by the energy density and, hence, is pro-
portional to the power. Because this loss is proportional to
�T�2, its contribution is small for tunnel junctions. Similarly,
we expect the transverse magnetization current to incur a
loss of the order of ��m�

i �2�T�2. Since �m� is proportional to
the field, this loss is proportional to the power. Its contribu-
tion to the damping coefficient, again obtained by normaliz-
ing with respect to the energy density, is thus independent of
the power. This loss is also proportional to �T�2 and will be
small for tunnel junctions.

We next estimate the loss connected with the interface
inhomogeneity. This requires knowledge of �M30,40, which
we now determine. Again, we expect the transverse magne-
tization to be the sum of a term that is the solution of the
inhomogeneous equation ��mi� and terms that are solutions
of the homogeneous equation ��M3,4�. We calculate �M3,4 by
using the boundary condition given by Eq. �5�. From Eq.
�12�, the transverse magnetization current at the boundary is

ĴM
L = −

DM�

l3
e+�M30

L −
DM�

l4
e−�M40

L .

The pseudospin current in Eq. �5� is thus given by

ÎM
L = − �DM� + i�JM0���M30

L e+/l3� − �DM� − i�JM0�

��e−�M40
L /l4� .

Equation �5� also involves the tunneling transverse cur-
rent Jm

t . To evaluate this, we follow standard practice15 and
calculate the rate of change of the transverse magnetization
due to tunneling. The details are described in Appendix B.
We found that the tunneling current for the transverse mag-
netization can be written as JM+

t =M+
L�g1+ ig2�+M+

R�g3+ ig4�,
where16 g1,2,3,4 are proportional to �T�2. A similar equation for
JM− can be written down. Thus, the contribution from the

tunneling current is smaller than the other terms in Eq. �5�
and will be treated by perturbation theory. We finally obtain,
to lowest order, −IM

L =�KsM0� ��mi+�M0s�. By substituting
in the expression for Im, this equation becomes

���iDM� /l��KsM0� − 1 − �J/l�Ks���M�0
L = �m�

i .

Here, l+= l3, l−= l4, �M+=�M30, and �M−=�M40. As we go
away from the interface, the transverse magnetization density
dies off exponentially. The total magnetization is given by
�M�l�=�m�

i /X�, where X�= ���iDM� /�KsM0�− l�

− �J /Ks��. The correction term due to the tunneling magneti-
zation current is equal to −X−1Im

t /�KsM0.
The magnetic susceptibility �, given by �= ���M�

L l /dF�
+�m�� /H1,�, becomes �=�0�1+ �X−1 /dF��. The additional
damping comes from the imaginary part of �, which now
contains a term proportional to Re��0�Im X−1 /dF. This term
is proportional to the metallic “resistance” DM� , which in turn
comes from the spatially varying part of the magnetization
induced by the surface, as we have anticipated. This contri-
bution is not a function of the junction resistance and will be
of the same order of magnitude for multilayers as well as for
tunnel barriers.

In conclusion, we discussed in this paper the voltage and
the damping of a rf field in ferromagnetic tunnel junctions.
The voltage is controlled by changes of the longitudinal
magnetization, whereas the damping seems mainly associ-
ated with the transverse magnetization. Additional sources
that can induce transverse magnetization localized near the
interface can come from localized changes of the Hamil-
tonian such as the surface anisotropy. The calculation in this
paper can be trivially extended to junctions with ferromag-
nets on both sides. For junctions involving two ferromagnets
on opposite sides �F1-I-F2 or F1-F2�, the interface aniso-
tropy Ks will contain a term from the dipolar interaction
between F1 and F2. The loss will then be a function of the
orientation of the magnetizations of F1 and F2, which is
consistent with experimental results.
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APPENDIX A

In this appendix, we provide some details in the deriva-
tion for the magnetization in the ferromagnet. By substituting

the expression for ĴM into the modified Landau–Lifshitz
equation �2�, we obtain the following linearized relaxation
equation for M:

�2�M − � 1

lsf
2 +

i

DM�
�M + �p0 � ��2�M −

�

lsf
2 �M −

�s�Ms

lsf
2 

+ ���M � H0 + M0 � H1� +
��M�M0H0

DM�

= − � D�

DM�
p0��2�n −

�n

�0
2 , �A1�
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where only Hex=J�2M=J�2�M and Han=KM0 are kept in
the precession term �M�H, and use has been made of
Gauss’ law: �2V=�2W=−�e /�0��n. The bare spin diffusion
length lsf and the bare screening length �0 are given by lsf

2

=	DM� and �0
2=

�0D�

 respectively. Other dimensionless param-

eters are �=��M0�J /DM� and �= lsf
2 K /J.

The charge current conservation �1� yields, for the steady
state without linearization,

1

�0
2�n − ��2 −

i

D
�n − �DM

D
�2��M · p0� = 0, �A2�

which, together with Eq. �A1�, describes the distribution of
the charge and magnetization away from the tunnel junction
in terms of their values at the junction. �To simplify the
algebra, we have made the approximation that D=D��. The
values of the charge and magnetization densities at the junc-
tion can be determined by matching boundary conditions
across the barrier. We first solve these equations in the metal
part of the junction. These solutions determine the charge
and magnetization dipole layers.

The solution of Eq. �A1� can be written as a sum of two
terms,

�M = �M0 + �mi,

a spatially uniform ��mi� solution of the bulk inhomoge-
neous equation with the source term M0�H1 and a spatially
varying solution ��M0� of the homogeneous equation. The
inhomogeneous bulk equation is

− � 1

lsf
2 +

�i − ���
DM�

�m − �p0 �
�

lsf
2 �m + ���m � H0 + M0

� H1� = 0,

where ��=�M0H0. This is the conventional FMR equation,
which can be readily solved. Define e�=ez� iey, then ex
�e�= � ie�. We write the transverse magnetization as
�m�

i =��m�e� and obtain

�m� = ��
0 H1,�,

where 1 /��
0 = 	−� i�1 / lsf

2 �+ ��i−��� /DM� �+��� / lsf
2 �

+�H0
 /�M0. Associated with this transverse magnetization,
there is a change of the longitudinal magnetization given by

�mx
i = M0 − �M0

2 − �m�
i2�1/2 � 0.5�m�

i2/M0.

This is the lowest order correction to the longitudinal mag-
netization. Higher order nonlinear corrections to the trans-
verse magnetization will produce changes in the longitudinal
component that is higher than third order in H1. In the equa-
tion of motion �2�, no lower order correction are produced.

The equation for the spatially varying term becomes

�2�M0 − � 1

lsf
2 +

i

DM�
�M0 + �p0 � ��2�M0 −

�

lsf
2 �M0

−
�s��mi + �M0s�

lsf
2 � + ��M0 � H0 +

��M0�M0H0

DM�

= − � D�

DM�
p0��2�n −

�n

�0
2 .

The solution of this equation has been previously described13

and summarized in Sec. II.

APPENDIX B: TRANSVERSE MAGNETIZATION
TUNNELING

In this section, we describe the calculation of the tunnel-
ing current for the transverse magnetization. As usual, we
start by looking at the time rate of change of the transverse
magnetization at the boundary. To illustrate, we look at JM+
= �dM+,L /dt�= i�Ht�t� ,M+,L� ��=1�. Here Ht is the tunneling
Hamiltonian �TsscR,s

+ cL,s+c.c.M+L=c+,L
+ c−L and the square

bracket represents the commutator. We obtain

�dM+,L/dt� = i�T++c+R
+ c−L − T−−

* c+L
+ c−R� . �B1�

By expanding O�t�=exp�−i�H+Ht�t�O exp�i�H+Ht�t� to the
lowest order, we get from a typical linear response calcula-
tion

�dM+/dt� = − ei�
−�

t

dt���dM+L�t�/dt,Ht�t���� ,

where F�t�=exp�−iHt�F exp�iHt� for any dynamical variable
F. This involves expectation values of the form
���T++c+R

+ c−L−T
−−
* c+L

+ c−R��t� , �TsscR,s
+ cL,s+c.c.��t���� and can

be written as �−�T−−�2�c+L
+ c−R�t� ,cR,−

+ cL,−�t���
+ �T++�2�c+R

+ c−L�t� ,cL,+
+ cR,+�t��� + ��T++c+R

+ c−L ,T
−−
* cL,−

+ cR,−�t���
− �T

−−
* c+L

+ c−R��t� ,T++cR,+
+ cL,+�t����.

By carrying out the commutator, we get for the tunneling
transverse magnetization current

JM+ �� dt� − �T−−�2��c+L
+ �t�cL,−�t����c−R�t�cR,−

+ �t���

− �cR,−
+ �t��c−R�t���cL,−�t��c+L

+ �t���

+ �T++�2��c+R
+ �t�cR,+�t����c−L�t�cL,+

+ �t��� − �cL,+
+ �t��c−L�t��

��cR,+�t��c+R
+ �t��� + T++T−−

* ��c+R
+ �t�cR,−�t���

��c−L�t�cL,−
+ �t��� − �cL,−

+ �t��c−L�t����cR,−�t��c+R
+ �t��

− T++
* T−−��c+L

+ cL,+�t����c−R�t�cR,+
+ �t��� − �cR,+

+ �t��c−R�t��

��cL,+�t�+�c+L�t��� . �B2�

We next evaluate the expectation values.
Now �csR�t�cR,s

+ �t���= �1−nR,s�exp�ieRs�t�− t��.
�cR,s

+ �t��csR�t��=nR,s exp�ieRs�t�− t��. In the present problem,
there is a finite transverse magnetization due to the external
transverse field: M+

i �t�=M+0
i exp�ict�. Now �cL,+�t�c−L�t���

= �c+L�t�cL,−�t��exp�ieL−�t− t���. The expectation value
�c+L�t�cL,−�t�� can be related to M�

i �t�. Similarly, we get
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�cL,−�t��c+L
+ �t�� = �cL,−�t�c+L

+ �t��exp�ieL−�t − t��� .

�cL,+
+ �t��c−L�t� � = �c+L

+ �t�cL,−�t��exp�ieL−�t� − t��

.
Carrying out the t� integration. We get

JM � �c+L
+ �t�cL,−�t��„− �T−−�2	��1 − nR,−�/�− ieL− + ieR− + ���

+ �nR,−/�ieR− − ieL− + ���
 + �T++�2	�nR,+/�− ieR+ + ieL−

+ ��� + �1 − nR,+�/�ieL− − ieR+ + ��
…

+ �c+R
+ �t�cR,−�t��T++T−−

* 	��1 − nL,−�/�ieL− + � − ieR−��

+ �nL,−/�ieL− + � − ieR−��
 + ��nL,+/�ieR+ + � − ieL+��

+ ��1 − nL,+�1/�ieR+ + � − ieL+��� . �B3�

Simplifying the algebra, we get for the real part of the
current Re�JM�� �c+L

+ �t�cL,−�t���−�T−−�2 / �−ieL−+ ieR−��
+ �T++�2 / �−ieR++ ieL−�+ �c+R

+ �t�cR,−�t��T++T
−−
* �1 / �ieL−− ieR−�

+1 / �ieR+− ieL+��. If the right hand side is a nonmetal, eR+
=eR−, we get Re�JM�� �c+L

+ �t�eL,−�t���−�T−−�2+ �T++�2� / �−ieR+

+ ieL−�+ �c+R
+ �t�cR,−�t��T++T

−−
* �1 / �ieL−− ieR�+1 / �ieR− ieL+��.

There is a change in the correlation because the up and down
electrons tunnel at different rates. Thus, the transverse mag-
netization current possesses an imaginary part and is
damped.

For the imaginary part, we get

Im�JM�/� � �c+L
+ �t�cL,−�t���

− �T−−�2��− eL− + eR−� − �T++�2��− eL− + eR+��

+ �c+R
+ �t�cR,−�t��T++T−−

* ���eL− − eR−� + + ��eL+ − eR+�� .

1 M. Ziese and M. J. Thornton, Spin Electronics �Springer, Berlin,
2001�.

2 L. Berger, Phys. Rev. B 54, 9353 �1996�.
3 J. C. Slonczewski, Phys. Rev. B 39, 6995 �1989�; J. Magn.

Magn. Mater. 159, L1 �1996�; J. Magn. Magn. Mater. 195,
L261 �1999�.

4 J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C.
Ralph, Phys. Rev. Lett. 84, 3149 �2000�; F. J. Albert, J. A.
Katine, R. A. Buhrman, and D. C. Ralph, Appl. Phys. Lett. 77,
3809 �2000�; S. J. C. H. Theeuwen, J. Caro, K. P. Wellock, S.
Radelaar, C. H. Marrows, B. J. Hickey and V. I. Kozub, ibid.
75, 3677 �1999�; E. B. Myers, D. C. Ralph, J. A. Katine, R. N.
Louie, and R. A. Buhrman, Science 285, 867 �1999�.

5 M. Tsoi, A. G. M. Jansen, J. Bass, W. C. Chiang, M. Seck, V.
Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 �1998�; M. Tsoi,
A. G. M. Jansen, J. Bass, W.-C. Chiang, V. Tsoi, and P. Wyder,
Nature �London� 406, 46 �2000�.

6 Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett.
88, 117601 �2002�; M. V. Costache, M. Sladkov, S. M. Watts, C.
H. van der Wal, and B. J. van Wees, ibid. 97, 216603 �2006�; X.
Wang, G. E. W. Bauer, B. J. v. Wees, A. Brataas, and Y. Tserk-
ovnyak, ibid. 97, 216602 �2006�; A. Brataas, Y. Tserkovnyak,
G. E. W. Bauer, and B. I. Halperin, Phys. Rev. B 66, 060404�R�
�2002�; Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I.
Halperin, Rev. Mod. Phys. 77, 1375 �2005�.

7 S. Mizukami, Y. Ando, and T. Miyazaki, J. Magn. Magn. Mater.
226-230, 1640 �2001�; B. Heinrich, Y. Tserkovnyak, G. Wolters-
dorf, A. Brataas, R. Urban, and G. E. W. Bauer, Phys. Rev. Lett.

90, 187601 �2003�; B. Heinrich and B. Woltersdorf, J. Super-
cond. Novel Magn. 20, 83 �2007�; K. Xia, P. J. Kelly, G. E. W.
Bauer, A. Brataas, and I. Turek, Phys. Rev. B 65, 220401�R�
�2002�; S. Takahashi and S. Maekawa, ibid. 67, 052409 �2003�.

8 M. V. Costache, M. Sladkov, S. M. Watts, C. H. van der Wal, and
B. J. van Wees, Phys. Rev. Lett. 97, 216603 �2006�.

9 S. T. Chui and J. R. Cullen, Phys. Rev. Lett. 74, 2118 �1995�; S.
T. Chui and L. Hu, Appl. Phys. Lett. 80, 273 �2002�; S. T. Chui,
U.S. Patent No. 5,757,056 �26 May 2008�.

10 M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 �1985�;
P. C. van Son, H. van Kempen, and P. Wyder, ibid. 58, 2271
�1987�.

11 T. Moriyama, R. Cao, X. Fan, B. K. Nikolic, G. Xuan, J.
Kolodzey, and John Q. Xiao, Phys. Rev. Lett., 100, 067602
�2008�.

12 S. Englesberg and W. F. Brinkman, Phys. Rev. Lett. 21, 1187
�1968�; D. Langreth and J. W. Wilkins, Phys. Rev. B B6, 3189
�1971�.

13 Z. F. Lin and S. T. Chui, Phys. Lett. A 332, 115 �2004�.
14 See Ya. B. Bazaliy, B. A. Jones, and Shou-Cheng Zhang, Phys.

Rev. B 57, R3213 �1998� for a description in the context of the
Hubbard model.

15 G. D. Mahan, Many Particle Physics, 3rd ed. �Kluwer Academic,
New York, 2000�, p. 561.

16 g1=��−�T−−�2��−eL−+eR−�− �T++�2��−eL−+eR+�, g2=��−�T−−�2

+ �T++�2� / �−ieR++ ieL−�, g3=�T++T
−−
* ����eL−−eR−�+��eL+

−eR+��, and g4=�T++T
−−
* 	�1 / �ieL−− ieR��+ �1 / �ieR− ieL+��
.

LARGE VOLTAGE FROM SPIN PUMPING IN MAGNETIC… PHYSICAL REVIEW B 77, 094432 �2008�

094432-7


