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Evolution of the magnetic response function in the triangular-lattice Hubbard model is studied, with inter-
action strength within a systematic inverse-degeneracy expansion scheme which incorporates self-energy and
vertex corrections and explicitly preserves the spin-rotation symmetry. It is shown that at half-filling, the
response function goes through a nearly dispersionless regime around the K point for intermediate coupling
strength, before undergoing an inversion at strong coupling, resulting in maximum response at K, consistent
with the expected 120° antiferromagnetic instability. Effects of finite hole and electron doping on the magnetic
response function are also examined.
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I. INTRODUCTION

There has been renewed interest in correlated electron
systems on triangular lattices, as evidenced by recent studies
of antiferromagnetism, superconductivity, and metal-
insulator transition in the organic systems
�-�BEDT-TTF�2X,1,2 the discovery of superconductivity in
NaxCoO2·yH2O,3 the observation of low-temperature insulat-
ing phases in some �3-adlayer structures such as potassium
on Si�111�,4 and quasi-two-dimensional 120° spin ordering
and spin-wave excitations in RbFe�MoO4�2 �Refs. 5 and 6�
and the multiferroic materials YMnO3 and HoMnO3.7–10

Transverse spin fluctuations in the 120°-ordered antiferro-
magnetic �AF� state of the triangular-lattice Hubbard model
at half-filling were recently investigated in the full range of
interaction strength U.11,12 While a stable AF state was ob-
tained in the strong-coupling limit, with identical spin-wave
dispersion as for the equivalent quantum Heisenberg antifer-
romagnet �QHAF�, with decreasing U the spin stiffness was
found to vanish at U / t�6. In addition, the magnon energy
�M at the M point in the Brillouin zone was found to vanish
at U / t�7, with the magnon amplitudes indicating instability
of the AF state with respect to out-of-plane fluctuations. The
loss of magnetic order due to divergent quantum fluctuations
yields a magnetic phase transition to a quantum spin-
disordered insulator, which is relevant to the spin-liquid
state and Mott transition in the organic systems
�-�BEDT-TTF�2X. The existence of stable 120° AF ordering
at large U but vanishing spin stiffness and �M at finite U
implies that the triangular-lattice Hubbard model exhibits,
besides the intrinsic geometrical frustration of the triangular
lattice, an additional U-controlled frustration due to compet-
ing extended-range spin couplings generated at finite U.

In view of this enhanced magnetic frustration in the
triangular-lattice Hubbard model at finite U, it is, therefore,
of interest to examine how the magnetic response function
evolves with increasing interaction strength in the correlated
paramagnetic �PM� state. Even at the bare level, the mag-
netic response function shows very rich behavior �Fig. 1�.
The comparable magnetic response at different symmetry
points in the Brillouin zone, corresponding to very different
magnetic orderings, represents the weak-coupling picture of
competing orders and magnetic frustration in the triangular-

lattice paramagnet. Furthermore, the bare response is not
maximum at the K point corresponding to 120° AF ordering.
In view of the expected instability toward the 120° AF or-
dering at strong coupling, it would be desirable to develop an
approach wherein the evolution of the magnetic response
with increasing interaction strength U is consistent with this
AF instability.

Given that the 120° AF state is stable in the strong-
coupling limit, it would be desirable to use a many-body
approach which continuously interpolates to the
spontaneously-broken-symmetry AF state and yields a
proper description of the Goldstone mode and spin waves by
preserving the spin-rotation symmetry. From this viewpoint,
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FIG. 1. �Color online� The bare magnetic response function at
different fillings, showing the relative suppression �enhancement� of
the K response �which corresponds to 120° AF ordering� with elec-
tron �hole� doping. Also shown are few constant-energy contours in
the triangular-lattice Brillouin zone.
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evaluating many-body corrections reliably in the
intermediate- and strong-coupling regimes remains a chal-
lenge. Schemes such as the dynamical mean-field theory and
fluctuation-exchange approximation, although providing
powerful tools for studying the correlated paramagnet, do not
continue into the broken-symmetry state without breaking
the essential spin-rotation symmetry of the Hamiltonian as
the Goldstone mode is not preserved, while the two-particle
self-consistent �TPSC� approximation does not renormalize
the momentum structure of the magnetic response function.

In this paper, we will use a systematic many-body expan-
sion scheme to investigate the momentum-dependent mag-
netic response function, and study its evolution with increas-
ing interaction strength. For this purpose, we will use a
systematic inverse-degeneracy �1 /N� expansion scheme
which explicitly preserves the spin-rotational symmetry by
including self-energy diagrams as well as the corresponding
vertex corrections. The importance of including vertex cor-
rections in preserving spin-rotation symmetry has been high-
lighted in the context of paramagnon corrections13 in He3 the
AF ground state,14 and the ferromagnetic ground state.15,16

Indeed, we will show that the dominant quantum correction
to the response function arises from the vertex corrections,
signifying suppression due to particle-particle correlations.
Therefore, from the paramagnetic side, vertex corrections
play a dominant role in suppressing magnetic frustration and
stabilizing the 120° AF ordering at half-filling.

The Hubbard model on a triangular lattice has been stud-
ied recently using a variety of tools. The zero-temperature
phase diagram has been studied using the slave boson �SB�
technique and the exact diagonalization.17,18 The mean-field
SB approach yields a rich phase diagram qualitatively resem-
bling the Hartree-Fock �HF� results.19,20 The nonmagnetic
insulating �NMI� state near the Mott transition has been stud-
ied using the path integral renormalization group �PIRG�
method,21 in which the HF results are systematically im-
proved to reach the true ground state by taking account of
quantum fluctuations. Results show a generic emergence of a
NMI state sandwiched by a Mott metal-insulator transition
and an AF transition. One-electron density of states has been
examined using the quantum Monte Carlo method,22 show-
ing a pseudogap development for intermediate U, accompa-
nied by two peaks in the spin structure factor, signaling the
formation of a spiral spin density wave. A weak-coupling
renormalization group analysis applied to the anisotropic tri-
angular lattice shows that frustration suppresses the AF in-
stability in favor of a superconducting instability.23 A mag-
netic field induced exotic spin-triplet superconductivity has
been proposed, having strong ferromagnetic fluctuations.24

A spin-liquid type NMI state sandwiched between a
weak-coupling PM state and a strong-coupling antiferromag-
netic insulator state has also been obtained for the
t-t�–Hubbard model on a square lattice and an anisotropic
triangular lattice using the PIRG method.25,26 The NMI state
has been recently suggested to be a new type of degenerate
quantum spin phase having gapless and dispersionless spin
excitations.26 At the same time, this result of an intervening
NMI state is in contradiction to the earlier finding of an
intermediate metallic AF state.27 In the context of
�-�BEDT-TTF�2Cu2�CN�3, spin-liquid phases near the Mott

transition in the Hubbard model have also been studied
within the U�1� gauge theory.28

The organization of the paper is as follows. The inverse-
degeneracy expansion scheme is briefly reviewed in Sec. II.
The order-1 /N diagrams for the irreducible propagator and
their expressions are given in Sec. III. Results at half-filling
and for finite electron and hole doping are discussed in Secs.
IV and V, and conclusions are presented in Sec. VI. Evalua-
tion of the fermion vertices by integrating out the fermion
energy-momentum degrees of freedom is illustrated in Ap-
pendix A. Emergence of the pseudogap in the one-electron
density of states due to order-1 /N self-energy corrections is
discussed in Appendix B.

II. INVERSE-DEGENERACY EXPANSION

We consider the generalized N-orbital Hubbard model:14

H = − t �
�ij	,�,�

�ai��
† aj�� + H.c.� +

1

N �
i,�,�

�U1ai↑�
† ai↑�ai↓�

† ai↓�

+ U2ai↑�
† ai↑�ai↓�

† ai↓�� , �1�

where �, � refer to the degenerate orbital indices and the
factor 1 /N is included to render the energy density finite in
the N→� limit. In the isotropic limit �U1=U2=U�, the two
interaction terms �density-density and exchange type with
respect to orbital indices� are together equal to U�−Si ·Si
+ni

2� in terms of the total spin Si
���i�
† �� /2��i� and

charge ni
���i�
† �1 /2��i� operators, and the Hamiltonian is,

therefore, explicitly spin-rotationally symmetric.
With z as the spin-quantization direction, it is convenient

to evaluate the time-ordered transverse spin-fluctuation
propagator:

	−+�q,�� = i� dtei��t−t���
�

�
j

eiq.�ri−rj�


��0�T�Si�
− �t�Sj�

+ �t����0	 �2�

involving the spin-lowering and spin-raising operators S�

=�†��� /2��, where � is the electron field operator. The
transverse propagators 	−+ and 	+− yield the x, y components
of the magnetic response, which are identical to the z re-
sponse due to spin isotropy in the PM ground state ��0	.
When evaluated in the spontaneously-broken-symmetry
state, the transverse spin-fluctuation propagator also de-
scribes collective spin-wave and particle-hole Stoner
excitations.11,12

In terms of the exact irreducible propagator �q ,��,
which incorporates all self-energy and vertex corrections, the
spin-fluctuation propagator can be generally expressed as

	−+�q,�� =
�q,��

1 − U�q,��
. �3�

The inverse-degeneracy expansion14
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 = �0� +  1

N��1� +  1

N�2

�2� + ¯ �4�

systematizes the diagrams for  in powers of the expansion
parameter 1 /N which, in analogy with 1 /S for quantum spin
systems, plays the role of �. This expansion explicitly pre-
serves spin-rotational symmetry and, therefore, the Gold-
stone mode in the broken-symmetry state, and has been used
recently to evaluate quantum corrections to spin-wave ener-
gies and spin stiffness in the antiferromagnetic14 and
ferromagnetic16 states of the Hubbard model.

N\� limit

In the N→� limit, only the “classical” term �0�
	0

survives, and the ladder series with interaction U2 yields the
random phase approximation �RPA�:

	RPA
−+ �q,�� =

	0�q,��
1 − U	0�q,��

, �5�

amounting to a classical description of noninteracting spin-
fluctuation modes. Here, the bare antiparallel-spin particle-
hole propagator:

�0��q,�� 
 	0�q,�� = �
k
 1

�k
↑+ − �k−q

↓− − � − i�

+
1

�k−q
↓+ − �k

↑− + � − i�
� , �6�

where �k
�=�k+ �U1n /2� are the HF band energies in the PM

state, and the superscript � ��� refers to particle �hole�
states above �below� the Fermi energy EF. The spin-
independent HF band-energy shift U1n /2, corresponding to
the N→� self-energy, can be trivially transformed away by
an energy shift, as assumed henceforth.

The bare particle-hole propagator 	0�q� yields the mag-
netic response to a static, spatially varying magnetic field,
the rich behavior of which is shown in Fig. 1 for different
Fermi energies, with corresponding fillings n=0.6, 0.8, 1.0,
and 1.1, respectively. Also shown are few constant-energy
contours in the triangular-lattice Brillouin zone. Contribu-
tions to 	0 from particle states near the nested hexagonal
contour ��k=2� with divergent density of states are respon-
sible for the cusps in the bare magnetic response function.
For half-filling, the most significant features are the compa-
rable response at the three symmetry points �, M, and K, and
peaks at the three points approximately midway between
them. The magnetic orderings corresponding to the three
symmetry points �, M, and K are �0,0,0�, �0,� ,��, and
�2� /3,2� /3,2� /3�, respectively, where the triplet corre-
sponds to the ordering wave vector in the three lattice direc-
tions. Similarly, for the three midpoints M /2, �M +K� /2, and
3K /4, the ordering wave vectors are �0,� /4,� /4�,
�� /6,7� /6,7� /6�, and �� ,� /4,� /4�, respectively.

The comparable magnetic response at these six symmetry
points, which correspond to very different magnetic order-
ings, represents the weak-coupling picture of competing or-
ders and magnetic frustration in the triangular-lattice para-

magnet. Note that the response at K, corresponding to 120°
ordering, is not maximum. In view of the expected instability
toward 120° AF ordering at strong coupling, it is of particu-
lar interest to examine the evolution of the magnetic re-
sponse with increasing interaction U.

III. 1 ÕN CORRECTIONS

The order-1 /N diagrams which yield quantum correction
�1� to the irreducible particle-hole propagator �q ,�� are
shown in Fig. 2. The fermion lines represent the HF Green’s
functions G0. Figures 2�b1� and 2�b2� incorporate self-energy
corrections due to transverse and longitudinal spin fluctua-
tions, involving ladders and bubbles with interactions U2 and
U1, respectively. In these diagrams, each particle-hole pair of
fermion lines in the ladder or bubble involves an orbital de-
gree of freedom. Hence, a term with n interaction lines in-
volves n−1 orbital summations, leaving a net factor of 1 /N.
Other self-energy diagrams with 1 /N corrections to the Har-
tree self-energy, as in the AF state, vanish identically as there
are no quantum corrections to particle densities n� in the PM
state. Figures 2�a�. 2�c1�, and 2�c2� involve vertex correc-
tions, with Figs. 2�c1� and 2�c2� representing coupling of
longitudinal and transverse spin fluctuations.

k′ − Q, ω′ − Ωk′, ω′

(a)
k′ − q, ω′ − ω k′ − Q− q, ω′ − Ω − ω

Q, ΩQ, Ω

(b1)

(b2)

(c1)

(c2)

FIG. 2. The first-order quantum corrections to the irreducible
particle-hole propagator �q ,��.

CORRELATION EFFECTS ON MAGNETIC FRUSTRATION… PHYSICAL REVIEW B 77, 094430 �2008�

094430-3



The quantum corrections represented by Figs. 2�a�–2�c�
incorporate different aspects of correlation effects. These in-
clude renormalized and dynamical effective interactions
�Fig. 2�a��, negative correction due to spectral-weight trans-
fer and energy renormalization arising from self-energy cor-
rections �Figs. 2�b1� and 2�b2��, and negative contribution
due to particle-particle correlations of the crossed diagrams
�Fig. 2�c2��. The strong particle-particle correlations found in
this study, which suppress the magnetic response through the
vertex corrections, are relevant for pairing correlations in the
context of the observed superconductivity in the BEDT com-
pounds.

The corresponding expressions are given below. For Fig.
2�a�, we obtain

�a��q,�� = i�
−�

� d�

2�
�
Q

��a��Q,��Ueff
↑↓�Q,�� , �7�

where the four-fermion vertex

��a��Q,�� = i� d��

2�
�
k�

G0�k�,���G0�k� − q,�� − ��G0�k�

− Q,�� − ��G0�k� − Q − q,�� − � − �� , �8�

and the effective antiparallel-spin interaction

Ueff
↑↓�Q,�� =

U3	0
2�Q,��

1 − U2	0
2�Q,��

�9�

involve the even-bubble series with interaction U1.
For Figs. 2�b1� and 2�b2� involving self-energy correc-

tions, we obtain

�b��q,�� = − i�
−�

� d�

2�
�
Q

��b��Q,��Ueff
�b��Q,�� , �10�

where the four-fermion vertex

��b��Q,�� = i�
−�

� d��

2�
�
k�

�G0�k�,����2G0�k� − Q,�� − ��


�G0�k� − q,�� − ��

+ G0�k� + q,�� + ��� �11�

and the effective interaction

Ueff
�b��Q,�� =

U2	0�Q,��
1 − U	0�Q,��

+
U2	0�Q,��

1 − U2	0
2�Q,��


 Ueff
−+�Q,��

+ Ueff
���Q,��

include the transverse contribution Ueff
−+�Q ,��, involving the

RPA ladder series �with interaction U2�, and the parallel-spin
contribution Ueff

���Q ,��, involving the RPA odd-bubble se-
ries �with interaction U1�.

Finally, for the vertex correction diagrams �Figs. 2�c1�
and 2�c2��, involving both the ladder series �with interaction
U2� and the bubble series �with interaction U1�, we obtain

�c1��q,�� = − i�
−�

� d�

2�
�
Q

���c�+�Q,����c�+�Q,��

+ ��c�−�Q,����c�−�Q,��� U

1 − U	0�Q,���

 U2	0�q − Q,� − ��

1 − U2	0
2�q − Q,� − ��

� , �12�

�c2��q,�� = + i�
−�

� d�

2�
�
Q

2��c�+�Q,����c�−�Q,��


 U

1 − U	0�Q,��� U

1 − U2	0
2�q − Q,� − ��� ,

�13�

where the three-fermion vertices

��c���Q,�� = i�
−�

� d��

2�
�
k�

G0�k� � q,�� � ��


G0�k�,���G0�k� � Q,�� � �� . �14�

It is straightforward to show, using transformations such
as �k� ,���→ �k�+q ,��+�� and k� ,Q→−k� ,−Q, that the
quantum corrections �a�,�b�,�c� are symmetric in the q ,�
space:

�− q,− �� = �q,�� = �− q,�� . �15�

IV. RESULTS AT HALF-FILLING

In this section, we present results at half-filling for the
order-1 /N contributions �a�,�b�,�c� in the static limit and dis-
cuss the evolution of the static magnetic response with in-
creasing interaction strength U. Evaluation of the fermion
energy-momentum integrals for the three- and four-fermion
vertices �Eqs. �8�, �11�, and �14��, corresponding to integrat-
ing out the fermion degrees of freedom, is illustrated in Ap-
pendix A. In our numerical calculations for �a�,�b�,�c�, we
have taken grid sizes dk�=dQ=0.1, d�=0.2, and �=0.1 on
an energy scale t=1.

In order to examine the relative contributions to the three
quantum corrections �a�,�b�,�c� from the different internal
bosonic modes �involving ladders and bubbles� and the
three- and four-fermion vertices ��c� and ��a�,�b�, we introduce
functions ��a�,�b�,�c���� defined by

�a�,�b�,�c� =
1

W
�

−�

�

d���a�,�b�,�c���� , �16�

where W is the fermion bandwidth. The functions ���� ef-
fectively yield combined density of states of the internal ex-
citations involving the vertex functions and the bosonic
modes. Typical plots for ���� /W are shown in Fig. 3. The
symmetric-� behavior provides a numerical check for the
calculations. It also shows that the intermediate- and high-�
contributions are quite significant and comparable to the
low-� contributions which show the usual sharp paramag-
non enhancement.
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The �-resolved contribution of �c� with only the leading,
second-order �U2� term in Eq. �13� is also shown in Fig. 4�a�
for comparison. Apart from the missing low-� paramagnon
enhancement as expected, it strongly resembles the � struc-
ture of the full �c2�, implying an essentially fermionic origin
for the intermediate- and high-energy structures. Also shown
�Fig. 4�b�� is a comparison of the q dependence of �c� with
the second-order result. Exactly the same q structure implies
that the fermionic terms ��c� are fully responsible for the
characteristic momentum dependence as well. Renormaliza-
tion of the internal paramagnon mode, within a self-
consistent approach, is therefore not expected to qualitatively
change this q structure.

Evolution of the different contributions �a�, �b�, and �c�

with increasing interaction strength U is shown in Fig. 5,
along with their relative comparison for U=4. An enhanced
negative contribution of �b� and �c� is seen to occur at the
same q points where 	0�q� peaks. It should also be noted that
although the self-energy contribution �Fig. 5�b�� has similar
momentum dependence, the largest contribution comes from
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FIG. 3. �Color online� The �-resolved contributions of �c2�,
�c1�, and �a�, showing enhanced contributions at low frequency
�paramagnon enhancement� as well as at intermediate and high
frequencies.
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the vertex correction �Fig. 5�c��. Furthermore, the relative
difference between the K and peak contributions is signifi-
cantly enhanced as compared to that in 	0. The two diagrams
shown in Fig. 2�c2� at second order in interaction, with a
single interaction line in both the ladder sum and the even
bubble sum, involve two crossed interaction lines with inter-
actions U1=U2=U, and, hence, are degenerate for the Hub-
bard model. Similarly, there is no distinction between the
ladder self-energy �Fig. 2�b1�� and the bubble self-energy
�Fig. 2�b2�� terms at second order. In order to make contact
with the single-orbital Hubbard model, this double counting
at the U2 level was, therefore, removed in the calculations of
Fig. 5.

We now incorporate, within an approximate resummation
scheme,13 higher order contributions in 1 /N to the irreduc-
ible propagator , which become important at intermediate
coupling when the first-order quantum correction �1��q�
�which is negative� becomes comparable to the bare response
function 	0�q�. We first note that the characteristic momen-
tum dependence of �1��q� can be expressed as 	0�q��	0�q�,
where � is weakly momentum dependent. In this form, the
two 	0�q� terms can be clearly identified with the pair of
particle-hole propagators at either ends of the quantum cor-
rection diagrams such as vertex corrections in Fig. 2�c2�
which yield the dominant contribution.

Now, we consider the class of higher order irreducible
diagrams with repeated 1 /N diagrammatic structures, sepa-
rated by additional q-dependent particle-hole terms. These
diagrams involve the maximum number of q-dependent
particle-hole terms, and, therefore, yield the dominant q de-
pendence. The second-order term, e.g., with three such
particle-hole propagators, will yield a contribution
�	0�	0�	0=�1��	0�−1�1�. Summing over this class of dia-
grams, we approximately obtain the irreducible propagator
as

�q� =
	0�q�

1 − �1��q�/	0�q�
. �17�

In order to investigate the U-evolution of the full static mag-
netic response, we have evaluated the irreducible propagator
within the above approximate resummation scheme which
allows interpolation into the intermediate-coupling regime.
We note here that the approximate Eq. �17� continues to
preserve the Goldstone mode in the broken-symmetry state.
As the Goldstone mode is exhausted by the lowest-order
term 	0 itself, the quantum correction �1� must identically
vanish for q ,�=0, yielding the same result as Eq. �4�.

Figure 6, which summarizes the main result of this paper,
shows the evolution of �q� with increasing U. The en-
hanced negative contribution of the quantum corrections �b�

and �c�—at the same q points where the bare response 	0�q�
peaks—results in an inversion of the curvature around K and
M with increasing U. The net response is maximum at K,
indicating stabilization of the 120°-ordered AF state in the
strong-coupling limit. This is consistent with the consensus
of a 120°-ordered AF ground state for the equivalent S
=1 /2, nearest-neighbor QHAF on a triangular lattice.29–33

In view of the locally maximum renormalized magnetic
response at the M point, which is comparable to that at K, it

is interesting to note that a �-flux spin-liquid state, which on
spinon condensation leads to ordering wave vector on the
Brillouin zone edge centers �M points�, has been proposed
for the J-J� QHAF on the triangular lattice.36

The change in the curvature of the response function with
increasing U implies that it goes through a regime of nearly
flat magnetic response around K, as seen in Fig. 6. This is in
agreement with the observed lack of dispersion in recent
PIRG calculations, where the NMI state has been suggested
to be a new type of degenerate quantum spin phase having
gapless and dispersionless �flat� spin excitations, indicating a
high momentum degeneracy and accounting for the quantum
melting of simple translational symmetry breakings includ-
ing the AF long-ranged order.26

This evolution of the magnetic response function high-
lights a complex feature of correlation effects on magnetic
frustration in the triangular-lattice Hubbard model. Initially,
increasing interaction strength results in enhanced competing
interactions and magnetic frustration, as indicated by the de-
creasing �negative� curvature of the magnetic response,
which even becomes flat in a broad momentum range around
K, with the degenerate response indicating high degree of
spin disorder. However, beyond a critical interaction
strength, the magnetic response develops an increasingly
positive curvature around K, indicating build up of 120° AF
spin correlations and suppression of magnetic frustration. In
the strong-coupling limit, long-range 120° AF order sets in,
as only the geometrical frustration of the triangular lattice
remains due to the surviving nearest-neighbor AF spin cou-
plings in the equivalent QHAF.

The overall suppression of the magnetic response with
increasing U is a manifestation of correlation effects, arising
mainly from the particle-particle correlations involved in the
vertex correction �Fig. 2�c2�� with crossed interaction lines
and, to a relatively smaller extent, also from the pseudogap
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FIG. 6. �Color online� Evolution of the magnetic response func-
tion �q� with U, showing the inversion of the curvature around K
and M with increasing U, with maximum response at K indicating
stabilization of the 120°-ordered AF state in the strong-coupling
limit.
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formation due to self-energy corrections �Figs. 2�b1� and
2�b2��. From the PM side, the leading instability toward the
120° AF state at strong coupling and at half-filling is, thus, a
consequence of these vertex and self-energy corrections.

The maximum magnetic response at K implies onset of
AF spin correlations with short-range 120° ordering. What is
the effect of these correlations on the self-energy correction
and the electronic density of states? Using characteristic
band dispersion identities for the triangular lattice, an ap-
proximate analytical estimate for the electron self-energy due
to spin-fluctuation scattering yields a two-band structure,
with similar dispersion as for the broken-symmetry state, and
band separation increasing with interaction strength, eventu-
ally leading to the insulating gap.34

As the renormalized magnetic response is maximum at K,
from Eq. �3� we can estimate the critical interaction strength
U*=1 /�K��1 /0.14�7 for the magnetic transition to the
120°-ordered AF state. In this estimation, we have assumed
that the renormalized internal bosonic excitations have the
simple form 	�Q ,��= 	0�Q,��

1−U�	0�Q,�� , as considered within the
TPSC approximation,35 with the renormalized interaction
U��4 corresponding to the maximum bare response 	0

�0.25. This estimate for U* is in good agreement with the
value obtained earlier ��6� from the broken-symmetry side
by considering the melting of magnetic order due to quantum
spin fluctuations in the 120°-ordered AF state.11

V. FINITE DOPING

In the preceding section, the renormalized magnetic re-
sponse at half-filling was shown to be maximum at K, in
accord with the consensus that 120° AF ordering is stabilized
in the strong-coupling limit. In this section, we will examine
the effects of finite hole and electron doping on the magnetic
response function, and, therefore, on the stability of the 120°
ordered AF state. Earlier studies have shown that the 120°-
ordered AF state is stabilized for hole doping and the spin
stiffness is enhanced, whereas it is destabilized for any
amount of electron doping.11 These studies were carried out
in the broken-symmetry state, with doped holes and electrons
introduced in the AF bands within a rigid-band approxima-
tion, and effects of finite doping on transverse spin fluctua-
tions were examined by including the intraband particle-hole
processes in the particle-hole propagator.

Figure 7 shows a comparison of the bare and renormal-
ized magnetic response for EF=−1.0 �hole doping� and U
=4. The bare magnetic response shows a pronounced peak at
K corresponding to 120° AF ordering, indicating drastic sup-
pression of frustration. We find that since quantum correc-
tions are significantly suppressed, this feature survives at the
renormalized level, indicating that the dominant magnetic
instability at K remains unchanged.

On the other hand, for electron doping, we find a subtle
inversion of the magnetic response near K on a small-
momentum scale, as shown in Fig. 8�a�, indicating destabili-
zation with respect to long-wavelength fluctuations about the

120° ordering, in agreement with earlier results.11 We em-
phasize that although the bare magnetic response also shows
a negative curvature around K, indicating relative instability
of the 120°-ordered state, the quantum correction introduces
a negative curvature on a much smaller momentum scale.
Figure 8�b� shows that this small-momentum feature arises
from the self-energy term in �b�, and is completely absent in
the vertex correction �c�.

VI. CONCLUSIONS

In conclusion, we have investigated correlation effects on
magnetic frustration in the paramagnetic state of the
triangular-lattice Hubbard model. We addressed the question
of how the static magnetic response function evolves with
increasing interaction strength. This question is important be-
cause, whereas the response function at half-filling must
peak at the K point �2� /3,2� /�3� corresponding to the 120°
AF ordering expected at strong coupling, it instead exhibits a
local minimum at K in the weak-coupling limit. For this
purpose, a systematic inverse-degeneracy expansion scheme
was employed, which preserves the continuous spin-rotation
symmetry and can, therefore, be seamlessly interpolated into
the spontaneously-broken-symmetry state at strong coupling,
where it will explicitly preserve the Goldstone mode and,
hence, allow for study of quantum corrections to spin-wave
excitations. First-order quantum corrections, incorporating
correlation effects in the form of self-energy and vertex cor-
rections, were numerically evaluated at half-filling as well as
at finite electron and hole doping.

At half-filling, our study showed that the nascent 120° AF
ordering in the triangular lattice is quantum stabilized. It is
only when quantum corrections are incorporated that the
magnetic response function at strong coupling peaks at the K
point, consistent with the expected onset of 120° AF corre-
lations and eventual instability. In contrast, for the unfrus-
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FIG. 7. �Color online� The renormalized magnetic response
function �q� for U=4.0 and hole doping �EF=−1.0� along with the
bare response function 	0�q�, showing that the maximum response
remains at K, corresponding to 120° AF ordering.
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trated square lattice, the 180° AF ordering is signalled at the
bare level itself, as the bare magnetic response function
peaks at the corresponding momentum �� ,��. Indeed, the
divergent magnetic response at �� ,�� in the case of nesting

yields antiferromagnetism as a weak-coupling phenomenon.
In renormalizing the magnetic response as above, the

dominant quantum correction came from vertex corrections
involving crossed interaction lines representing particle-
particle correlations. On the other hand, the qualitatively
similar but relatively smaller negative self energy contribu-
tion reflects suppression of magnetic response due to open-
ing of the pseudo gap. The relative magnitudes highlight the
importance of including vertex corrections within the spin-
rotationally symmetric approach. The overall suppression of
the magnetic response due to the negative contribution of
quantum corrections shifts the magnetic transition to higher
interaction strength, as expected of quantum fluctuations. We
also showed that the fermion terms are responsible for the
characteristic momentum behavior of the quantum correc-
tions. Renormalization of the internal paramagnon mode
within a self-consistent approach will, therefore, not qualita-
tively change this momentum behavior.

Our study also provided insight into the evolution of com-
peting interactions and magnetic frustration. We showed that
magnetic frustration in the triangular lattice peaks at interme-
diate coupling. This is seen in the evolution of the magnetic
response function near K, which evolves from a concave
behavior at weak coupling, through a nearly flat, degenerate
response at intermediate coupling, and to a convex behavior
at strong coupling. The nearly flat, degenerate response in
momentum space near K implies short-range AF spin corre-
lations, suggesting spin-liquid behavior. While only geomet-
ric frustration is present at strong coupling due to the
nearest-neighbor spin interaction in the equivalent QHAF,
the additional extended-range spin interactions generated at
intermediate coupling are responsible for the enhanced frus-
tration. A similar picture of enhanced frustration at interme-
diate coupling was seen earlier from the AF side; with de-
creasing interaction strength, both the spin stiffness and the
magnon energy �M at the M point were found to vanish at
intermediate coupling, indicating instability of the 120° AF
state due to competing interactions.

Electron and hole doping effects were also investigated
with respect to the 120° AF instability. For finite electron
doping, the response function exhibited a deeper concave
behavior around K at weak coupling, and evolved into a
nearly degenerate response over a broad momentum range,
indicating substantially enhanced frustration. Furthermore, a
small-momentum feature in the form of a dip was obtained
in the magnetic response function near K, corresponding to
instability of the 120° ordering with respect to long-
wavelength fluctuations. On the other hand, hole doping was
shown to suppress competing interaction and frustration ef-
fects, resulting in enhancement of the 120° AF ordering.
These results at half-filling and at finite doping are in agree-
ment with earlier results obtained in the AF state.

A self-consistent analysis for both the irreducible particle-
hole propagator and the self-energy, incorporating the 120°
AF spin correlations in the renormalized internal bosonic
modes �Q ,��, will highlight the effects of these correlations
on dynamical features such as the spin-fluctuation energy
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scale, the spectral function I	−+�q ,�� of magnetic excita-
tions, the integrated weight of which yields the local spin
correlations �S−S+	 and local moments in the paramagnetic
state, as well as the spin-fluctuation self-energy and
pseudogap formation in the electronic density of states. Ex-
tension of the present work to finite frequencies will, there-
fore, be of interest in order to study these important dynami-
cal aspects.

APPENDIX A: EVALUATION OF THE THREE-FERMION
VERTEX

We illustrate here the evaluation of the fermion terms by
integrating out the fermion energy-momentum degrees of
freedom for the three-fermion vertex. Including all possible
retarded and/or advanced cases, we obtain

��c�+�Q,�� = i�
−�

� d��

2�
�
k�

G0�k� + q,�� + ��G0�k�,���G0�k� + Q,�� + ��

= i�
−�

� d��

2�
�
k�

1

�� + � − �k�+q
�

� i�

1

�� − �k�
�

� i�

1

�� + � − �k�+Q
�

� i�

= i2�
k�

1

�k�+q
− − �k�

+ − � + i�

1

�k�+q
− − �k�+Q

+ + � − � + i�
+ i2�

k�

1

�k�
− − �k�+q

+ + � + i�

1

�k�
− − �k�+Q

+ + � + i�

+ i2�
k�

1

�k�+Q
− − �k�+q

+ − � + � + i�

1

�k�+Q
− − �k�

+ − � + i�
− i2�

k�

1

�k�+q
+ − �k�

− − � − i�

1

�k�+q
+ − �k�+Q

− + � − � − i�

− i2�
k�

1

�k�
+ − �k�+q

− + � − i�

1

�k�
+ − �k�+Q

− + � − i�
− i2�

k�

1

�k�+Q
+ − �k�+q

− − � + � − i�

1

�k�+Q
+ − �k�

− − � − i�
. �A1�

The k� summations were performed numerically over the
triangular-lattice Brillouin zone with a grid size dk�=0.1.

APPENDIX B: O(1 ÕN) SELF-ENERGY CORRECTION

In Sec. IV, it was mentioned that the negative contribution
of �b� arises from the redistribution of spectral weight due to
self-energy corrections. We illustrate here this feature in the
renormalized density of states resulting from the first-order
�1 /N� self-energy correction:

�k��� = U2�
Q
� d�

2�
� 	0�Q,��

1 − U	0�Q,��

+
	0�Q,��

1 − U2	0
2�Q,���G0�k − Q,� − �� �B1�

due to exchange of transverse and longitudinal spin fluctua-
tions, corresponding to ladder and bubble diagrams, respec-
tively. The two �retarded and advanced� contributions to the
self energy,

�k
R��� = U2�

Q
�

0

� d�

�
Im�	total�Q,���R

1

� − � − �k−Q
+ + i�

�B2�

and

�k
A��� = U2�

Q
�

−�

0 d�

�
Im�	total�Q,���A

1

� + ��� − �k−Q
− − i�

,

�B3�

correspond to the intermediate fermion state k−Q lying in-
side ��� or outside ��� the Fermi surface, and the total spin-
fluctuation term �	total�Q ,��� includes both the ladder and
bubble contributions. The retarded self-energy �k

R��� yields
negative imaginary part only for ��EF, whereas the ad-
vanced self-energy �k

A��� yields positive imaginary part only
for ��EF.

0

0.05

0.1

0.15

0.2

0.25

0.3

-10 -8 -6 -4 -2 0 2 4 6 8 10

N
(ω

)

ω

U = 3
4
6

FIG. 9. �Color online� Evolution of the renormalized density of
states evaluated from Eq. �B5�, showing the opening of the
pseudogap with increasing interaction strength U.
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The total self-energy �k���=�k
R���+�k

A��� yields the
renormalized Green’s function:

Gk��� =
1

� − �k − �k���
�B4�

and the one-particle density of states:

N��� =
1

�
�
k

Im �k���
�� − �k − Re �k����2 + �Im �k����2 .

�B5�

If the intermediate fermion states k−Q predominantly lie
outside �inside� the Fermi surface for k inside �outside�, as is
characteristic of the unfrustrated square lattice for Q near the
AF ordering wave vector �� ,��, then the negative �positive�
contribution of �k

R�A���� pulls down �pushes up� the hole
�electron� states in energy, resulting in the opening of an
energy gap in the one-particle density of states. Figure 9
shows the emergence of a pseudogap in the renormalized
one-particle density of states with increasing interaction
strength U.
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