
Mean-field study of the heavy-fermion metamagnetic transition

S. Viola Kusminskiy,1 K. S. D. Beach,2,3 A. H. Castro Neto,1 and D. K. Campbell1
1Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

2Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
3Deparment of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2D7

�Received 16 November 2007; published 18 March 2008�

We investigate the evolution of the heavy-fermion ground state under application of a strong external
magnetic field. We present a richer version of the usual hybridization mean-field theory that allows for
hybridization in both the singlet and triplet channels and incorporates a self-consistent Weiss field. We show
that for a magnetic field strength B*, a filling-dependent fraction of the zero-field hybridization gap, the spin up
quasiparticle band becomes fully polarized—an event marked by a sudden jump in the magnetic susceptibility.
The system exhibits a kind of quantum rigidity in which the susceptibility �and several other physical observ-
ables� is insensitive to further increases in field strength. This behavior ends abruptly with the collapse of the
hybridization order parameter in a first-order transition to the normal metallic state. We argue that the feature
at B* corresponds to the “metamagnetic transition” in YbRh2Si2. Our results are in good agreement with recent
experimental measurements.
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I. INTRODUCTION

The Kondo lattice model away from half filling describes
what is called a heavy metal—a Fermi liquid state distin-
guished by its high magnetic susceptibility and large Som-
merfeld coefficient. The properties of this state are a conse-
quence of the hybridization between the localized impurity
spins �f electrons� and the conduction electrons �c electrons�.
The f electrons are said to delocalize in the sense that the
Luttinger volume is now comprised of the sum of both spe-
cies, c and f .1 The shallow dispersion of the resulting quasi-
particles leads to a renormalization of the effective mass to
very large values.2 Materials that belong to this category are
usually rare-earth intermetallic compounds, in which 4f or
5f electrons act as magnetic impurities embedded in a me-
tallic host.3

It is known that a sufficiently strong magnetic field will
destroy the heavy-fermion state. Measurements in applied
field often reveal a so-called metamagnetic transition
�MMT�, characterized by an abrupt change in the magnetic
quantities. MMTs are ubiquitous among the different heavy-
fermion compounds, but due to the rich variety and compli-
cated structure of their phase diagrams, the true nature of the
MMT remains unknown. In particular, two competing sce-
narios are under consideration. The localization scenario pro-
poses that the itinerant f electrons suddenly localize at the
MMT, and the heavy-fermion state disappears at that point.
An alternative scenario is given by a continuous evolution of
the Fermi surface, in which the localization of the f electrons
is not tied to the MMT.

Experimental results indicate the existence of MMTs in
CeRu2Si2 and YbRh2Si2, which have been attributed to the
localization of the f electrons.4,5 Recent experiments on
CeRu2Si2, however, suggest that the localization scenario
might not be appropriate.6 This was already pointed out in
Ref. 7, in which static magnetization measurements ruled out
the possibility of a first-order phase transition, at odds with
the existent de Haas–van Alphen measurements.5 On the ba-

sis of Hall effect and magnetoresistance measurements, the
authors of Ref. 6 proposed that the MMT anomalies result
from a continuous evolution of the Fermi surface in which
the spin-split sheet corresponding to the heaviest electrons
shrinks to a point.

This paper elaborates on the continuous scenario. We ar-
gue that the underlying phenomenology is the systematic de-
scent of the spin up quasiparticle band with applied field.
The MMT corresponds to the point at which the entire spin
up band drops below the chemical potential, and only at
much higher fields do the f electrons localize. A common
argument in favor of the localization scenario is that a sharp
drop in �, the linear coefficient of the specific heat, is always
observed at the MMT. What renders this interpretation un-
convincing is that the value of � above the MMT is too
large,4,8 as is the residual magnetic susceptibility.4 A better
picture is that as the field is ramped up, the mass enhance-
ment factor of the spin up quasiparticles increases, while that
of the spin down decreases.9–11 At the MMT, the lower spin
up band is completely filled, and the heaviest quasiparticles
drop out of all thermodynamic quantities: the system goes
from having a spin up Fermi surface of very heavy particles
and a spin down surface of moderately heavy particles to
having only the latter.

We address the theoretical aspects of such a transition
from a mean-field point of view. Our approach goes well
beyond the conventional c-f hybridization scheme in that it
treats all the relevant competing interaction channels; it in-
cludes both singlet and triplet pairing and allows for sponta-
neous ferromagnetism. The particular compounds mentioned
above are amenable to this kind of analysis because they are
largely paramagnetic: they do not exhibit superconductivity,
and antiferromagnetic ordering is suppressed by very small
values of an applied external magnetic field. As to the overall
reliability of the mean-field approach, comparison with dy-
namical mean-field simulations confirms that quantum fluc-
tuations do not qualitatively change the behavior in the range
of field strengths that are of interest for the MMT.12
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The starting point for our analysis is the periodic Ander-
son model13 augmented by a Zeeman term. In the limit of
infinite on-site repulsion, a Schrieffer–Wolf transformation
maps the Hamiltonian to a model of conduction electrons
coupled to an array of localized magnetic impurities,

Ĥ = − t�
�ij�

�ci
†cj + cj

†ci� + �
i

�Jŝi · Ŝi − �BB · �gcŝi + gfŜi�� .

�1�

Here, ci
†= �ci↑

† ci↓
† � is the creation operator for the conduction

electrons and ŝi=
1
2ci

†�ci is the operator that measures their

local spin density. Ŝi is the impurity pseudospin at site i. It,

too, has an underlying fermion representation, Ŝi=
1
2 f i

†�f i,
but the infinite on-site repulsion suppresses all charge fluc-
tuations, i.e., f i

†f i=1. The spinor components of f refer to the
appropriate Kramers doublet: the degeneracy of the physical
f electrons is effectively reduced to 2 by strong spin-orbit
coupling and crystal field effects.14 For Ce and Yb, these are
the doublets of the 4f1 and 4f13 atomic configurations.

In Eq. �1�, Landé g factors have been introduced to allow
for differential coupling of the c and f electrons to the ap-
plied field B. �In what follows, we set the Bohr magneton
�B=1.� The factor gf, in particular, is highly nontrivial and
depends on the details of the f-electron environment. In gen-
eral, such moments are partially quenched,15 and simple es-
timates suggest that semirealistic values are in the range
1�gf �1.5 �see, e.g., Refs. 16 and 17�, while gc�2. In par-
ticular, Ce3+ �J=5 /2, L=3, S=1 /2� has gf =7 /6 and Yb3+

J=7 /2 �J=5 /2, L=3, S=1 /2� has gf =8 /7. The value of gf
may also have some field dependence,16 but this effect is
weak enough to ignore.

Some authors have worked in the limit gc=0 so that the
field couples only to the impurity spin and not at all to the
conduction electrons,18–23 but we do not believe that this is
the correct starting point. A more common assumption is to
set the two g factors equal.24–27 This choice, however, is a
somewhat artificial limit28 and, at the mean-field level, leads
to a nongeneric �gc=gf is a special tuning� magnetization
plateau of width equal to the zero-field Kondo energy.9,12

We do not attempt to model the anisotropy of g �it is, in
principle, a tensor29� by introducing explicit crystal field
terms into the Hamiltonian.30 We disregard the fact that
metamagnetism appears when the field is applied parallel to
an easy axis �the tetragonal c axis31�. Another simplification
in our model is that we do not consider the Ruderman–
Kittel–Kasuya–Yosida �RKKY� interaction and, therefore, it
is valid for paramagnetic ground states in which long range
magnetic correlations are absent. Neglecting the RKKY in-
teraction in our case is a priori justified since we are inter-
ested in the high external magnetic field regime.

In the next section, we present the mean-field construction
for this Hamiltonian and derive the self-consistent equations
that determine the mean-field parameters. We show that the
mean field must include separate hybridization parameters in
the spin up and spin down channels and a Weiss molecular
field in order for the model to capture all the observed quali-
tative features of the system. Results from solving for the
parameters are presented in Sec. III. In particular, we show

the evolution of the Kondo gap, mass enhancement factor,
magnetization, and susceptibility of the system for increasing
external magnetic field, and we sketch the phase diagram
predicted by the model. We discuss our results in Sec. IV and
provide a summary of our principal results in Sec. V. Some
details of the calculations are relegated to the appendixes.

II. MEAN-FIELD APPROACH

A hybridization mean-field treatment of the KLM Hamil-
tonian was presented in Ref. 9 based on a decomposition in
terms of the operators �̂�= 1

	2
f†��c. The index � ranges over

0, 1, 2, 3; in this notation, �0 is the 2�2 identity matrix and
�1 ,�2 ,�3 are the Pauli matrices. These operators are com-
plete �����†��=1� in the 1

2 �
1
2 =0 � 1 spin sectors and are

introduced so that the exchange interaction can be explicitly
broken up into singlet and triplet components,

1

4
c†�c · f†�f = −

3

4
�̂0†�̂0 +

1

4
�̂† · �̂ . �2�

Here, the three triplet components are represented using the
vector notation �̂�= ��̂0 , �̂�.

In the usual way, the right-hand side of Eq. �2� can be
approximated by

�
�

1

4
− ��0����†���� − ����*�� − ������2� . �3�

In zero field, it is customary to assume that only the singlet
amplitude condenses ���̂0��0 and ��̂�=0�. This gives rise to
the conventional heavy-fermion state. At nonzero field, how-
ever, it is appropriate to consider the possibility of a nonzero
triplet hybridization. For convenience, we introduce a spin-
dependent hybridization energy,

V0 =
3J

4	2
��̂0�, V3 =

J

4	2
��̂3� ,

V+ = V0 − V3, V− = V0 + V3. �4�

These definitions are consistent with an applied magnetic
field B= �0,0 ,B� directed along the axis of spin quantization.
Then, Eq. �3�, the decomposition in the pairing channel, can
be expressed as

Jŝ · Ŝ→
pair

− V0*f†c − V0c†f +
8�V0�2

3J
+ V3*f†�3c + V3c†�3f

−
8�V3�2

J
. �5�

The triplet hybridization, which to our knowledge has never
been included in any mean-field treatment, plays an impor-
tant role in the vicinity of the metamagnetic transition. Ad-
mitting the possibility of V↑�V↓ makes our theory compat-
ible with the quasiparticle interpretation of the Gutzwiller
approach.32

We also decompose the Kondo interaction in the magnetic
channel. That is,
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ŝ · Ŝ→
mag

ŝ · m f + mc · Ŝ − mc · m f , �6�

where mc= �ŝ� and m f = �Ŝ�. This sets up a Weiss molecular
field, whereby every c electron feels the counterpolarizing
effect of its local f partner, and vice versa. Such a contribu-
tion is necessary to reproduce the observed diamagnetism of
the c electrons, which initially cant away from the applied
field.26,27

Summing the contributions of Eqs. �5� and �6� yields a
complete mean-field Hamiltonian,

ĤMF = − t�
�ij�

�ci
†cj + cj

†ci� − �
is

�Vscis
† f is + V

s
*f is

† cis�

− �
is

�
a=c,f

ais
† ais�a +

s

2
�gaB − māJ�� + NF0. �7�

The indices i, j run over the lattice sites, N is the total num-
ber of sites, and s= 	1 corresponds to spins up and down.
The bar indicates ā= f �c� if a=c �f�. The overall constant is
given by

F0 =
4

3J
�4V+V− − V+

2 − V−
2� − Jmcmf . �8�

Note that we have introduced chemical potentials �c and � f
in order to control the occupation of the c and f electrons; the
constraints �f i

†f i�=nf �1 and �ci
†ci�=nc are imposed on aver-

age. This mean-field decomposition is justified by a varia-
tional argument, detailed in Appendix A, which uniquely de-
termines the numerical prefactors appearing in Eq. �8�.

The mean-field Hamiltonian can then be written in Fou-
rier space as

HMF = �
ks

�cks
† fks

† �Mks
cks

fks
� + NF0, �9�

with coefficient matrix

Mks =�
k − �c −
s

2
gcBc − Vs

− Vs − � f −
s

2
gfBf

� . �10�

Here, 
k is the dispersion relation of the bare c electrons and
Bf =B−Jmc /gf, Bc=B−Jmf /gc are self-consistent Weiss
fields. Note that the effective field felt by an a electron �a
=c , f� differs considerably from the applied field when J is
large and ga is small.

The eigenvalues of Mks are Eks
n = Iks

n −� f −
s
2gfBf, where

n= 	1 is a quasiparticle band index and we have defined

Iks
n =

1

2
�
k − bs + n	�
k − bs�2 + 4Vs

2� , �11�

with bs=b+ �s /2��gcBc−gfBf� and b=�c−� f. b is the chemi-
cal energy for transmuting c electrons into f electrons; it
becomes increasingly important away from half filling.

In terms of the free energy F=F0− 1
N��kns ln�1+e−�Eks

n
�,

the mean-field values are determined by solving the follow-
ing system of equations:

−
�F
��c

= nc, −
1

gc

�F
�Bc

= mc, −
�F
�V−

= 0,

−
�F
�� f

= nf, −
1

gf

�F
�Bf

= mf, −
�F
�V+

= 0. �12�

It is understood that

nc↑ + nc↓ = nc, nf↑ + nf↓ = nf ,

nc↑ − nc↓ = 2mc, nf↑ − nf↓ = 2mf . �13�

Equation �12� can be translated to the continuum by de-
fining Ds���=�kn���− Iks

n �, a density of states �DOS� shifted
with respect to the true energy zero by � fs�� f +

s
2gfBf. Here,

we can now follow the method described in Ref. 9, extend-
ing it to take the spin dependence into account. The result is
as follows. If we assume that the bare conduction-electron
DOS has the form

�
k

��� − 
k� = �����W2 − 4�2� , �14�

where ��� describes the spectral line shape and the Heavi-
side function � demarcates the band edges at −W /2 and W /2,
then the renormalized c-electron DOS is

Ds
c��� = 
� −

Vs
2

�
+ bs��

l=1

4

��� − �ls� , �15�

where the edges of the quasiparticle dispersion bands are
now given by the expressions

�1s = −
1

4
	�W + 2bs�2 + �4Vs�2 −

1

4
�W + 2bs� ,

�2s = −
1

4
	�W − 2bs�2 + �4Vs�2 +

1

4
�W − 2bs� ,

�3s = +
1

4
	�W + 2bs�2 + �4Vs�2 −

1

4
�W + 2bs� ,

�4s = +
1

4
	�W − 2bs�2 + �4Vs�2 +

1

4
�W − 2bs� . �16�

The total quasiparticle DOS is given by

Ds = Ds
c��� + Ds

f��� with Ds
f��� =

Vs
2

�2Ds
c��� . �17�

The Kondo gap depends on spin and is given by �Ks
=�3s−�2s. It is straightforward to see that �Ks collapses to
zero when Vs=0 and, therefore, it can be thought of as an
alternative order parameter for the heavy-fermion state.

One finds that Eq. �12� is equivalent to �for each of
a=c , f�
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�
s
� d�f�� − � fs�Ds

a��� = na,

�
s

s� d�f�� − � fs�Ds
a��� = na↑ − na↓,

3J

4
� d�f�� − � fs�

Ds
c���
�

= 1 −
2V−s

Vs
, �18�

where f��� denotes the Fermi function. In the special case of
a flat c-electron spectrum =1 /W and zero temperature
f��−� fs�→��� fs−��, these integral equations have a closed
form9,33 and thus can be solved efficiently everywhere in the
J ,B ,nc parameter space.

For B�0, the important issue is where � f+ sits with re-
spect to the band edges. There are six possibilities:

�I�

�1− � � f− � �2−,

�1+ � � f+ � �2+.

�II�

�1− � � f− � �2−,

�2+ � � f+ � �3+.

�III�

�1− � � f− � �2−,

�3+ � � f+ � �4+.

�IV�

�2− � � f− � �3−,

�2+ � � f+ � �3+.

�V�

�2− � � f− � �3−,

�3+ � � f+ � �4+.

�VI�

�3− � � f− � �4−,

�3+ � � f+ � �4+.

In zero field, if the system is not spontaneously magnetic,
we have a situation where � f+=� f− sits either inside the
lower hybridized bands �0�nc�1� or inside the upper hy-
bridized bands �1�nc�2�. We will restrict our attention to
the case of less than half filling. �If the bare band structure is
symmetric, then the two cases are equivalent.� When the ex-
ternal magnetic field is turned on, � f− will descend and � f+
will ascend. For small fields �B��Ks�, the chemical poten-
tial of the spin up quasiparticles will still sit below the upper
edge of the lower band �� fs�w2s�. At larger fields, we have

to account for the possibility of � f+ moving into the hybrid-
ization gap or into the upper quasiparticle band �positions II
and III in Fig. 1�. All of these possibilities have to be solved
for, along with the Vs=0 case, with the true ground state
determined by energy considerations.

Some authors have ascribed the metamagnetic transition
to a regime II→ III crossover19,28,34 or even to a direct re-
gime I→ III transition.35 Our model predicts, however, that
the origins of metamagnetism lie in the smooth crossover
from regime I to II. What we find is that at some field B*,
� f+ moves smoothly into the gap so that � f+ is replaced by
�2+ in the upper limits of the integrals in Eq. �18�. Hence, the
only explicit magnetic field dependence in the system of
equations comes through � f−=mf −

1
2gfBf. � f− itself becomes

field independent �� f =const+ 1
2gfBf� and all the quantities

that depend on it become locked at the values obtained at B*.
In the special case of gc=gf, B=B* marks the sudden col-
lapse of the magnetic susceptibility to zero and the beginning
of a large magnetic plateau. For general gc�gf, we instead
see the susceptibility jump to a lower but nonzero value; the
magnetization changes slope and becomes perfectly linear
for B�B*.

The crossover to the “locked” regime II is determined by
the balance of the free energies evaluated at the two sets of
solutions, if existing. The free energy density for the heavy-
fermion state can be calculated from its expression in the
continuum,

F = F0 −
1

�
�

s
� d�Ds���ln�1 + e−���−�fs�� . �19�

Using F=���F� /�� and the self-consistent equations for Vs,
we can obtain the functional expression for F��c ,� f ,B�
within the different regimes. For example, in regime I,

FI = − Jmcmf − gfBf�mc + mf� − � f�nc + nf�

+
1

2W
�

s

�� fs
2 − �1s

2 � . �20�

From the definition of the free energy, F��c ,� f ,B�

FIG. 1. The six possible placements of the bands with respect to
the chemical potential. Cases �I� and �II� occur for 0�nc�1 and
cases �V� and �VI� for 1�nc�2. Case �IV� occurs for the nc=1
Kondo insulator. We find that the controversial case �III� never oc-
curs: it either has no solution or a solution that is energetically
unfavorable.
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=U�nc ,nf ,m�−Bm−�cnc−� fnf, we can also compute the
Gibbs free energy, G�nc ,nf ,B�=U−Bm. Here, we have writ-
ten the total magnetization m=gcmc+gfmf, and it is under-
stood that we are working at zero temperature. It is conve-
nient to introduce a quantity x, defined by nc=1−x, that
measures the deviation from half filling. Since nf =1 is fixed,
we can write G�x ,B�=F��c ,� f ,B�+�c�1−x�+� f. For re-
gime I, we find

GI = b�1 − x� − Bgf�mc + mf� + Jmc
2 +

1

2W
�

s

�� fs
2 − �1s

2 � .

�21�

The free energy for the locked regime II is obtained by sub-
stituting � f+→�2+ in Eqs. �20� and �21�.

In the limit V+=V− and B=Bc=Bf, which corresponds to
the simpler mean-field theory described in Ref. 9, this re-
duces to

G =
1

W

� f

2 +
1

4
B2 − �1

2� − B�mc + mf� + b�1 − x� . �22�

The heavy-fermion state will collapse when the free energy
G of the heavy-fermion �in phase I, II, or III� is greater than
either the free energy GPM of a normal paramagnetic metallic
state or the free energy GIF of a conventional itinerant ferro-
magnet. This transition occurs at a critical field Bc such that
either G=GPM or G=GIF, whichever is smaller. The expres-
sions for these energies are given in Appendix B, where we
also present the criterion for determining which end state
wins out.

III. RESULTS

The system of equations �Eq. �18�� was solved numeri-
cally by turning on adiabatically the external magnetic field
B, for different values of the Kondo coupling J and filling
factor x. A typical phase diagram obtained with our model is
shown in the bottom plot of Fig. 2 for a particular value of
the exchange coupling J and as a function of the filling factor
x. We see that there is always a magnetic field B*�Bc for
which the system enters the locked state, regime II. As we
discussed in the previous section, B* corresponds to the mag-
netic field for which � f+=�2. Between B* and Bc, � f+ is
inside the gap and, as we discussed earlier, the set �Eq. �18��
has a field-independent solution. Bc is the critical magnetic
field at which the heavy-fermion state is destroyed. From the
diagram, we also see that the heavy-fermion state always
collapses before regime III can be reached.

The top plot of Fig. 2 shows the behavior of B* as a
function of the filling factor x for different values of J. As the
coupling J decreases, the heavy metal phase is constrained to
smaller values of x. It is interesting to note that while the
field Bc is a monotonic decreasing function of x, B* has a
dome shape and it is maximum for x at approximately the
midpoint of the range for the regime I phase determined for
each J. The behavior of Bc, which is not shown in this plot,
is similar to the behavior depicted in the phase diagram for
J /W=0.7. It is important to remark that Bc is always at least

1 order of magnitude larger than B*. To the right of the dome
enclosing the regime I heavy metal, the system is already in
the locked phase at B=0, implying a spontaneous polariza-
tion. This can be related to the existence of strong ferromag-
netic correlations at low nc.

33,36 It is known that a ferromag-
netic state exists in the limit of a single conduction electron,
nc→0+ �x→1−�.37

By fixing both J and x, we can plot the total magnetiza-
tion of the system, as shown in Fig. 3 for J /W=0.7 and x
=0.4. The total magnetization is defined as m=gcmc+gfmf,
mc giving a diamagnetic contribution. We see that there is a
strong nonlinear increase of the magnetization up to B=B*.
At this value of the external field, there is an abrupt change
signaled by a kink, after which the magnetization is purely
linear with the field. At larger values of the field �not shown
in the figure�, another change would be expected at B=Bc

due to the collapse of the heavy-fermion state. The inset of
Fig. 3 shows the total susceptibility, which decreases in a
nonlinear fashion up to B* and then jumps down abruptly to
a constant. These plots are in remarkable qualitative agree-
ment with the magnetic behavior found recently for
YbRh2Si2, as can be seen by comparing with Ref. 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x

0

0.1

0.2
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0.8
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0.5

0.4
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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1
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B
c

normal metal

locked heavy metal

heavy metal

(b)

(a)

FIG. 2. �Top� The crossover field B* at which � f+ moves into
the hybridization gap is plotted in units of the zero-field gap as a
function of the filling parameter x for various values of the Kondo
coupling. We have chosen gc=2, gf =8 /7. �Bottom� J /W=0.7. B* is
the MMT and Bc is the critical field of the first-order transition back
to the normal state. The dashed line marks the point at which � f+

would have entered the upper quasiparticle band if it had not been
pre-empted by the destruction of the heavy state.
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The mass enhancement of the quasiparticles can be com-
puted via the expression �M* /M�=�Iks

n /�
ks evaluated at the
Fermi surface, where M* is the effective mass of the quasi-
particles, while M is the mass given by the noninteracting
bands. The result, again for J /W=0.7 and x=0.4, is shown in
Fig. 4. As predicted, the effective mass of the spin up �down�
band increases �decreases� with increasing field. For B�B*,
however, the spin up band becomes infinitely massive, while
the spin down effective mass becomes roughly a constant.
The inset of Fig. 4 shows the splitting of the Kondo gap due
to the magnetic field.

The locked state can only be avoided if the heavy-fermion
state collapses before the locked state is reached. This can be
engineered for a small range of the parameters J and x, if we

assume gf �1. This assumption, however, is not justified by
our simple estimates of gf. Also, the very constrained range
of parameters for which this behavior is obtained within our
model would imply a high degree of fine tuning.

IV. DISCUSSION

Our model seems to capture qualitatively the physics be-
hind the MMT of YbRh2Si2, indicating that the MMT is due
to the crossover in which the spin up band ceases to partici-
pate in the heavy-fermion state. Meanwhile, the spin down
band contributes with a moderately large effective mass. The
corresponding magnetic susceptibility is a moderately large
constant value, as observed in YbRh2Si2.4 The collapse of
the heavy-fermion phase is reserved for much higher fields,
at least 1 order of magnitude larger than the MMT field. This
is in agreement with observations for CeRu2Si2, which locate
the MMT at approximately 10 T, while the complete sup-
pression of the heavy-fermion state is not realized before
fields on the order of 100 T.8 We emphasize that the mag-
netic field strength required to polarize the quasiparticles of
the renormalized heavy-fermion bands is not on the order of
the bandwidth, as is the case in the noninteracting �J=0�
system. This is so due to the formation of hole pockets at the
top of the lower band, with characteristic energies of the
order of the Kondo temperature, which are inherent to the
hybridization process.38

There is a qualitative difference between the MMT tran-
sition of YbRh2Si2 and the one of CeRu2Si2. While for the
Yb compound the magnetization presents a rather smooth
kink and the magnetic susceptibility jumps down, for the Ce
compound, there is a pronounced peak in the susceptibility at
the MMT. According to our model, there is no such peak at
B*, although a peak would be observed in the susceptibility
at Bc. However this would imply that the heavy-fermion state
is destroyed, and the remnant heavy-fermion behavior would
then be unexplained. This apparent contradiction was previ-
ously pointed out in Ref. 6. A very similar behavior to that of
CeRu2Si2 is observed for another heavy-fermion compound,
UPt3.39 Moreover, a spin-split surface was observed in UPt3,
with one of the components surviving with high mass after
the MMT.40 The peak in the susceptibility in these com-
pounds is usually attributed to enhanced antiferromagnetic
fluctuations4,6,8,39 and, therefore, it would be reasonable to
expect that RKKY interactions, which are neglected in our
model, play an important role at the MMT of these materials.

In order to compare quantitatively with the experimental
data, we need to fix the free parameters: the Kondo coupling
J, the filling factor x, and the bandwidth W. This is not trivial
since these are noninteracting parameters and, therefore,
their true value is unknown. This is also true for the gyro-
magnetic factors gc and gf, which we will take as in the
previous section, gf =8 /7, gc=2. We begin by fixing B*, by
imposing that it coincides with the MMT. Therefore, we
identify B*�10 T, as a reasonable order of magnitude sug-
gested by the available experimental data.4,5 Choosing a
value for the noninteracting bandwith W restricts the range of
x and J. For W�1 eV�104 K�104 T, we find that B* /W
�10−3. To fix the values of J and x, we are guided the phase
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diagrams depicted in Fig. 2. For attaining such small values
of B* /W, we see that x has to be either small or close in
value to J /W. Since the fraction of conduction electrons con-
trols the magnetization, bigger x will result in higher values
of magnetization. Choosing x=0.69 for J /W=0.7 gives a to-
tal magnetization of m�0.5�B per impurity at the MMT,
which is of the same order of magnitude as the one observed
for YbRh2Si2. However, the residual susceptibility after the
MMT is 2 orders of magnitude less than the experimentally
observed, and the Kondo gap is approximately 100 K, which
is four times bigger than the Kondo temperature for the
material.41

However, for x=0.4 and J /W=0.7, we get a Kondo gap of
�10 K, a magnetization of m�0.2�B per impurity at the
MMT, and a susceptibility of �0.01�B /T per impurity,
which are all of the order of magnitude of the experimental
data. The drawback assumes a noninteracting bandwidth of
W�10−2 eV, which seems unphysical. Nonetheless, this
kind of scale problem seems to be ubiquitous among the
various Kondo lattice models, see, for example, Refs. 24 and
30.

V. SUMMARY

We have studied the Kondo lattice model away from half
filling in an external magnetic field within a mean-field ap-
proach. Our mean-field Hamiltonian is a generalization to
high magnetic fields of the one presented in Ref. 9. This
generalization is twofold: we allow for hybridization both in
the singlet and triplet channels, plus we consider the self-
consistent Weiss fields in the magnetic channel. We also
work in the general case in which the c and f electrons
couple differently to the magnetic field, introducing two dif-
ferent gyromagnetic factors gc and gf. This results in a spin-
split very massive quasiparticle Fermi surface, which
evolves with the magnetic field.

We showed that the self-consistent solution of this model
exhibits a crossover followed by a first-order transition. At a
moderate field of the order of the Kondo gap at zero field,
which we called B*, the spin up band enters the gap and its
Fermi surface shrinks to a point, consequently disappearing
from the problem. The spin down band, however, remains
hybridized and mass enhanced. This behavior is signaled by
a kink in the magnetization, which changes from a nonlinear
dependence for fields smaller than B* to a purely linear one
after the crossover. The magnetic susceptibility shows an
abrupt jump at B* and afterward it is a constant. At a higher
field Bc, approximately 1 order of magnitude greater than B*,
the heavy-fermion state collapses completely. The intermedi-
ate region between B* and Bc we have dubbed the locked
phase since the solution of the model is �explicitly� indepen-
dent of the external field. Our results were obtained in the
limit of zero temperature. As ususal, it is expected that a
finite temperature will have a smearing effect on the signa-
tures of the MMT, and the kink in the magnetization will
eventually disappear.4 The relevant energy scale is the differ-
ence between the Fermi energy and the top of the lower
hybridized band.

These results are in excellent qualitative agreement with
the MMT shown by the heavy-fermion compound YbRh2Si2,

which had been previously attributed to the localization of
the f electrons.4 Quantitative agreement can also be achieved
but at the expense of assuming unphysically small values for
the noninteracting bandwidth W. Nonetheless, this does not
imply any internal inconsistency in our model since W is
always the biggest energy scale of the model.

The existence of the locked phase is guaranteed when we
use simple estimates of the gyromagnetic factors, based on
crystal field splitting arguments. If we choose gf �1, there is
a very small range of the parameters x and J for which Bc

�B*. In this case, the heavy-fermion state is destroyed be-
fore the locked state is attained and, hence, there is no re-
sidual heavy-fermion behavior after the transition. gc, in turn,
controls the diamagnetic contribution to the total magnetiza-
tion. We find that regime III, in which the upper band starts
being filled by the spin up quasiparticles, never occurs be-
cause the heavy-fermion state always collapses before reach-
ing this regime.
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APPENDIX A: MEAN-FIELD DECOMPOSITION

The mean-field Hamiltonian is diagonalized by the uni-
tary transformation

U = 
Uc+ Uc−

Uf+ Uf− � =�
− I+

	�I+�2 + V2

− I−

	�I−�2 + V2

V
	�I+�2 + V2

V
	�I−�2 + V2

� .

We have suppressed the wave vector and spin-projection de-
pendence, which arises since Uks

an is an explicit function of Iks
n

�Eq. �11��. The quasiparticles of the mean-field Hamiltonian
are an admixture of the two fermion species, �ks

n

=�a=c,faksUks

an*, and describe the dynamics of the noninter-
acting system,

Ĥ0 = �
kns

Eks
n �ks

n†�ks
n

= �
k

�ck
†�
k − �c − sBc/2�ck − fk

†�� f + sBf/2�fk

− Vs�cks
† fks + fk

†ck�� .

The complete Hamiltonian can be expressed as the sum Ĥ

= Ĥ0+ Ĥ1, where

Ĥ1 = �
k
Vs�cks

† fks + fks
† cks� −

1

2
�B − Bc�ck

†�3ck −
1

2
�B

− Bf�fk
†�3fk +

J

4 �
q,k�

�ck+q
† �ck� · �fk�

† �fk�+q�� . �A1�

If we take expectation values of the Hamiltonian in the

ground state of Ĥ0, we arrive at a variational energy U
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= �Ĥ�=�knsEks
n fks

n + �Ĥ1�. Here, fks
n =��−Eks

n � is the zero-
temperature Fermi function.

In order to compute the expectation value �Ĥ1�, we must
substitute cks=�n=	Uks

cn�ks
n and fks=�n=	Uks

fn�ks
n into the

various terms in Eq. �A1�. For example, the four-body term
�ck+q

† �ck� · �fk�
† �fk�+q� becomes

Uk+q,s
cn† Ukr

cmUk�r�
fm�†Uk�+q,s�

fn� �sr · �r�s��k+q,s
n† �kr

m �k�r�
m�† �k�+q,s�

n� .

Expectation values of the quasiparticle operators obey
Wick’s theorem,

��k+q,s
n† �kr

m �k�r�
m�† �k�+q,s�

n� � = fk+q,s
n �1 − fkr

m ��ss�
nn��rr�

mm��kk�

+ fks
n fk�s�

n� �sr
nm�s�r�

n�m��q0

Hence, using the identity �sr ·�r�s�=2�ss��rr�−�sr�s�r�, we
find that the last term in Eq. �A1� is

1

4�
sr

�2 − �sr��
k

Uks
cn†Uks

fnfk,s
n �

k�

Uk�r
cm Uk�r

fm†�1 − fk�r
m �

+ �
kns

s

2
Uks

cn†Uks
cnfks

n �
k�s�n�

s�

2
Uk�s�

fn�†Uk�s�
fn� fk�s�

n� .

This result can be written compactly as

−
1

4�
sr

�2 − �sr��cks
† fks��fk�r

† ck�r� +
1

4
�ck

†�3ck��fk
†�3fk� ,

since the term �knUks
cnUks

fn† can be shown to vanish identi-
cally,

−
1

W
�

s
� d�

Vs

�
= �

s

Vs

W
log
�3s�1s

�4s�2s
� � 0.

Finally, the expectation value of Eq. �A1� is

�Ĥ1� = �
k
�

s

Vs�cks
† fks + fks

† cks� −
1

2
�B − Bc��ck

†�3ck�

−
1

2
�B − Bf��fk

†�3fk� −
J

4 �
srk�

�2 − �sr��cks
† fks��fk�r

† ck�r�

+
J

4
�ck

†�3ck��fk�
†

�3fk��� .

We know that ultimately the hybridization and Weiss
fields are going to behave as Jmc=Q�B−Bf�, Jmf =Q�B
−Bc�, and J�cks

† fks�=J�fks
† cks�= PVs+ P̄V−s, where mc

= 1
2 �ck

†�3ck� and mf =
1
2 �fk

†�3fk� and P, P̄, and Q are unknown
factors of proportionality. The extremal values are P=−4 /3,

P̄=8 /3, and Q=1, which lead to

�Ĥ1� =
8�V0�2

3J
−

8�V3�2

J
−

�B − BC��B − BF�
J

.

APPENDIX B: FREE ENERGY

1. Conventional paramagnetic metal

From Eq. �1�, if we put the pairing channel to zero and
assume Bc=Bf =B, we get

GPM = −
W

4
�1 − x2� −

gc
2B2

4W
−

gf�B�
2

+ Jmcmf .

The corresponding magnetization is given by

mc =
gcB

2W
and mf =

1

2
sgn�B� .

2. Conventional itinerant ferromagnet

Again, we put the pairing channel to zero in Eq. �1� but
this time we keep the Weiss fields defined by gcBc=gcB
−Jmf and gfBf =gfB−Jmc. The free energy takes the form

GIF = −
W

4
�1 − x2� −

gc
2Bc

2

4W
−

gf�Bf�
2

− Jmcmf ,

where the magnetization is given by mc=
gcBc

2W and mf

= 1
2 sgn�Bf�. Hence,

GIF = −
W

4
�1 − x2� −

gc
2B2

4W
−

1

2

gf −

gcJ

2W
�B sgn�Bf� −

J2

16W
.

Clearly, the energy is a minimum when sgn�Bf�
=sgn�B�sgn�1−

gcJ

2gfW
� and, therefore,

GIF = −
W

4
�1 − x2� −

gc
2B2

4W
−

1

2
gf�B��1 −

gcJ

2gfW
� −

J2

16W
.

The magnetization is then given by

mc = −
1

B

�G
�gc

= sgn�B�gc�B�
2W

−
J

4W
�� ,

mf = −
1

B

�G
�gf

=
1

2
� sgn�B� ,

where �=sgn�1−
gcJ

2gfW
�. Notice that when �=1, there is a line

�B�=J /2gc at which mc changes sign. There is no diamag-
netic region when �=−1.

The condition for the transition to be to an itinerant fer-
romagnet instead to a paramagnet is given by the condition
GIF�GPM, which is satisfied for

�B� �
J

4�gc − 1�
�� = 1� ,

�B� �
J2

4�4gfW − J�gc + 1��
�� = − 1� .
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