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Recently, significant interest has emerged in fabricated systems that mimic the behavior of geometrically
frustrated materials. We present the full realization of such an artificial spin ice system on a two-dimensional
kagome lattice and we demonstrate rigid adherence to the local ice rule by directly counting individual
pseudospins. The resulting spin configurations show not only local ice rules and long-range disorder, but also
correlations consistent with spin ice Monte Carlo calculations. Our results suggest that dipolar corrections are
significant in this system, as in pyrochlore spin ice, and that they open a door to further studies of frustration
in general.
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Geometrical frustration is known to significantly modify
the properties of many materials. Pyrochlore spin ice and
hexagonal water ice are canonical systems1,2 that show the
effects of frustration in both heat capacity3,4 and dynamical
response,5,6 and frustration also influences the mechanical
response of water ice,7 with geologically significant implica-
tions. In both instances, microscopic ordering principles on
the lattice lead to a macroscopic degeneracy of configura-
tions. This degeneracy may also be modified or lifted by
lattice imperfections, as in the case of KOH-doped water,
where a first-order transition to an ordered ground state
emerges.8 Unfortunately, these effects are difficult to model
or predict, because existing experimental techniques cannot
directly observe the local ordering near lattice defects or oth-
erwise. To address this long outstanding problem, recent
interest9–14 has focused on fabricating systems that allow the
effects of frustration to be physically modeled and the result-
ing local configurations to be directly observed.

A prominent example of the approach is the recent work
of Wang et al., who demonstrated a lithographic pattern of
nanoscale islands of magnetic material that may behave as a
two-dimensional analog of pyrochlore spin ice, which is
dubbed “artificial spin ice.”9 However, the realization does
not obey its corresponding “2-in 2-out” ice rule, which
would lead to frustration. Instead, the system only exhibits a
statistical preference for the ice-rule-obeying configurations
among a disordered distribution that includes all possible
configurations, some expressly forbidden by the ice rule.
This is unanticipated for a model system where the corre-
sponding ice-rule temperature is expected to be on the order
of 105 K. Furthermore, a theory developed in Ref. 12 to
describe the system invokes only a short-range vertex inter-
action; an interesting and potentially significant component
of the pyrochlore spin ice model is the long-range dipolar
interaction, which might possibly lead to long-range order in
the material.15 We present here a realization of artificial spin
ice that both strictly obeys its local ice rule and also shows
the effects of long-range dipolar interactions.

As a starting point for our realization, we use the honey-
comb magnetic structure, also proposed by Tanaka et al.16 In
their study, it is demonstrated that the honeycomb magnetic
structure can be mapped onto a spin ice system on the
kagome lattice, as shown in Fig. 1. Interestingly, this same

lattice has also been studied theoretically using Metropolis
Monte Carlo simulations.17 The kagome lattice is a two-
dimensional structure composed of corner-sharing triangles.
It is an essential component of the pyrochlore spin ice
structure10,18–20 and has also been connected with jarosite
frustrated magnets.17,21 Compared to the 2-in–2-out ice rule
for the pyrochlore structure, the ice rule here changes to
2-in–1-out or 1-in–2-out for each vertex �see Fig. 1�c��. In
the structure, the magnetization along each connecting ele-
ment of the honeycomb lattice adopts a single domain, and
the domain walls are constrained within the vertices, where
micromagnetic energies allow only the ice-rule-obeying con-
figurations. Unfortunately, the study of Tanaka et al. was not
able to uncover the local magnetization within each element,
as we will show below. Additionally, the study does not in-
clude an energy-minimizing protocol, exploring the possibil-

FIG. 1. �Color online� �a� A sketch of the kagome spin ice lattice
showing 30 spins. The two sublattices on which interaction vertices
can occur are labeled � and �. �b� The honeycomb structure
formed by connecting the spins of the kagome lattice. Each bar
element represents a spin magnetic moment oriented along the bar
axis. The Greek symbols label spins for later use in correlation
calculations. �c� The spin configurations possible at a single vertex.
Spin configuration that obeys the ice rule produces a net magnetic
moment at each vertex, which we use to label the allowed spin
configurations. The two configurations that produce no net magnetic
moment �3-in and 3-out� are not energetically favorable.
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ity of ice-rule-violating vertices among random ensembles,
as Wang et al. have done. We present here an artificial spin
ice approach to the magnetic honeycomb structure that ad-
dresses both of these experimental deficiencies.

In Ref. 16, magnetic force microscopy �MFM� is used to
image the magnetic structure of the kagome lattice. MFM
works by detecting escaped flux from the material, and in
these structures, it can therefore only yield information about
the excess flux at a given interaction vertex. The kagome
lattice possesses three magnetic elements per Bravais lattice
point, with each element having a two-level degree of free-
dom. However, MFM can only capture two-level information
at the interaction vertices, which number two per Bravais
lattice point. For a lattice with n Bravais lattice sites, MFM
results may express up to 22n unique states, whereas the lat-
tice can exhibit on the order of 23n �both with small correc-
tions for the ice rule�.

To demonstrate this deficiency, we use the data and model
presented in Fig. 2 of Ref. 16. This figure contains MFM
data in Fig. 2�a� and a model of the magnetic moment ori-
entations in Fig. 2�b�, and both are reproduced here as Figs.
2�a� and 2�b�, respectively. To explicitly demonstrate the un-
derdefined nature of moment configurations constructed
from MFM on interacting vertices, one can construct another
model of magnetic orientations by selecting from a given
moment map any head-to-tail chain of elements and then
reversing the entire chain. Two possible examples are shown
here in Figs. 2�c� and 2�d�, and we estimate that there are on
the order of 212 other such configurations, only one of which
reflects the actual unknown configuration of the system. This
uncertainty also makes second- and third-nearest-neighbor
correlations impossible to deduce. What is needed to adapt

the honeycomb network into a full-fledged physical model of
kagome spin ice is an imaging technique that directly and
unambiguously records the internal magnetic flux of the wire
elements. This can be achieved by the Lorentz-mode trans-
mission electron microscopy, as we demonstrate below.

Our realization of the kagome structure is fabricated from
Permalloy �Ni80Fe20� using conventional electron-beam li-
thography, followed by metal deposition and lift-off. Figure
3�a� shows a transmission electron microscope �TEM� image
of our structure. The lines of the honeycomb are 500 nm
long, 110 nm wide, and 23 nm thick. At this scale, micro-
magnetic simulations22 indicate that the connecting elements
are magnetized along their axis and act as macroscopic Ising
spins with energy differences among the different configura-
tions that support the ice-rule assumption.23 With strong
analogies to real spin ice, these simulations show that 85% of
this nearest neighbor energy difference comes from a dipolar
field, with the remaining 15% coming from exchange energy
due to the domain walls at the vertices. The total number of
elements in our realization is 12 864, large enough for en-
semble results that are comparable with Monte Carlo
simulations.17

To determine the directions of the single-domain ele-
ments, we employ a TEM operating in Lorentz imaging
mode, which is traditionally used to detect domain structures
of magnetic materials.24,25 To simulate the contrast of single-
domain needle-shaped elements, we use a standard contrast
transfer function.26 Figure 3�c� shows that the images of the
spin elements have overfocus Lorentz contrast featuring a
dark edge and a bright edge, depending on the magnetization
direction. Simply, this can be explained by Lorentz-force de-
flection when the electron beam passes through a magnetic
element. Figure 3�b� shows a Lorentz-mode image corre-
sponding to Fig. 3�a�, and we can see that the elements have
varied contrast because of their varied magnetization direc-
tions. Using a right-hand rule, we uniquely specify a direc-
tion for each element, as shown by the colored arrows. We
verify the magnetic origin of the contrast both by through-

FIG. 2. �Color online� �a� MFM data presented by Tanaka et al.
�Ref. 16�. �b� A spin configuration proposed therein to describe the
data. ��c� and �d�� Valid alternative configurations obtained by re-
versing chains of elements, shown in different colors. In the general
case, these chains include closed loops which can be reversed
clockwise or counterclockwise.

FIG. 3. �Color online� �a� An in-focus TEM image of our fab-
ricated kagome structure �scale bar: 1 �m�. Inset: A design image
of the entire lattice �scale bar: 10 �m; the individual elements can-
not be seen at this scale�. �b� A TEM image of the same kagome
structure with Lorentz contrast. �c� A Lorentz TEM simulation us-
ing a contrast transfer function reveals the single-domain magnetic
moment direction based on the dark-bright edge contrast; using this,
six spins in �b� are labeled with their directions. The two circles in
�b� indicate clockwise and counterclockwise closed loops.
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focus imaging and by in situ field reversal.
To coerce the structure toward its magnetic ground state,

we demagnetize the sample using a decreasing and rotating
magnetic field prior to imaging, following the procedure of
Wang et al.27 The demagnetizing process introduces varied
vertex configurations into the lattice. Figure 4�a� shows a
spin map of part of the kagome lattice after the demagneti-
zation process, where we utilize a color wheel to represent
different spin directions. Consequently, neighboring ele-
ments with close colors have a head-to-tail low-energy con-
figuration, while those with opposing colors have a head-to-
head or tail-to-tail high-energy configuration. A first glance
reveals that the spins are quite disordered in long range,
which is a signature found in most frustrated systems.

For detailed statistical studies of the spin distributions, we
count the elements using a numerical method, labeling spins
pointing to one of the two Ising directions as si=1 and the
opposite directions as si=−1. The net magnetization is then
defined as m= �si� for each of the three sublattices of spins.
The demagnetization process typically achieves �m� in the
range of 0.03–0.14. The distribution of vertex types is plotted
in Fig. 4�b� and varies among the six ice-rule vertex types
from 9.8% to 24.8%.28 We find that all vertices fall into the
six low-energy configurations, and that there are no 3-in or
3-out high-energy states. Therefore, every vertex satisfies the
ice rule. This is a direct confirmation of rigid adherence to
the ice rule where each vertex is determined by explicitly
counting its local spins. To the best of our knowledge, this
has never been done before in any frustrated system �real or
artificial�.

As expected for ice-rule-governed interactions, our
kagome lattice can reach a state with a large degree of dis-
order and a small net magnetization. Thus, we have an ideal
system for calculating the intrinsic correlations defined by

lattice geometry and magnetic interactions. Based on the fact
that we observe many vertex types and the specific configu-
ration varies from run to run, the correlation calculated
would be expected to be close to its intrinsic value according
to statistical theory. The correlation between spins i and j is
defined as cij =1 when s�i ·s� j is positive; otherwise, cij =−1.
Different types of correlations may be calculated based on
their relative position, as shown in Fig. 1�b�. The correlation
coefficient is calculated as the average value for each type of
such pairs, e.g., C��= �cij� � �ij����. This is mathematically
equivalent to the correlations calculated in Ref. 17.

The correlation coefficients are summarized in Table I and
are compared with Monte Carlo simulation results based on a
kagome spin ice model using only nearest-neighbor
interactions.17 We note substantial consistency between our
results and the model simulation. Specifically, C��=1 /3 in-
dicates that all vertices obey the ice rule. Each of the other
pairwise correlations shows ferromagnetic �positive� or anti-
ferromagnetic �negative� values, agreeing in sign and relative
magnitude with Monte Carlo simulations. However, we note
that our measured higher-order correlations have reproduc-
ibly larger absolute values than predicted by Monte Carlo
with only nearest-neighbor interactions. As is shown in Table
I, the relative dipole energies, calculated using simple mag-
netostatics for each configuration, agree in sign with the cor-
relation values. This strongly suggests that dipolar interac-
tions play a significant role in the ordering of our model spin
ice, as is the case for real spin ice. These long-range interac-
tions generally increase the ordering in spin ice, decreasing
the degeneracy of the ground state manifold.15,29

We again emphasize that the ice rule is strictly obeyed for
the kagome ice system we study, with no instances of non-
ice-rule vertices, in contrast to results reported for a square
lattice.9 One possible reason for this is the relatively strong
interaction between nearest neighbors in our connected lat-
tice, including both exchange and dipolar energies and thus
making the 3-in or 3-out configuration highly unfavorable.
Another reason that no 3-in or 3-out configurations are found
might be explained as follows: in the annealing process,
changing from a 3-in or 3-out high-energy state to a 2-in–1-
out or 1-in–2-out only requires one spin to flip and, thus,
proceeds readily, allowing the system to approach an energy
minimum. On the other hand, in the square lattice, the analo-
gous process would generally require chain or loop flipping
with a low probability. In this sense, the kagome lattice we

TABLE I. Correlation coefficients calculated from a demagne-
tized sample. The results are shown as mean and standard deviation
taken from three demagnetization runs. The model values are from
Ref. 17. �Edipole gives the energy difference between aligned and
unaligned spin pairs, normalized to the nearest neighbor value.

Data Model �Edipole

C�� 0.333 0.333 1.0

C�� −0.158�0.008 −0.118 −0.137

C�� 0.165�0.013 0.101 0.089

C�	 −0.130�0.015 −0.072 −0.070

C�
 0.057�0.007 0.007 0.082

FIG. 4. �Color online� �a� A region of the spin map from a
demagnetized kagome lattice sample. The spin directions are disor-
dered in long range, with a small net magnetization, yet locally
there are some ordered chains and loops. �b� The vertex-type distri-
butions. Three demagnetization data sets are shown with differently
shaded bars. The bar labels are from Fig. 1�c�. The percentage of
each type of vertex ranges from 9.8% to 24% and varies from run to
run.
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use in the present study is likely “more ergodic” than the
square lattice, which explores a demonstrably limited range
of parameter space.12

These results demonstrate that the magnetic honeycomb
structure is an ideal artificial spin ice system for studying the
effects of frustration. Its simplicity and ease of fabrication
make it a robust platform for studying the possible influence
of lattice imperfections in geometrically frustrated physical
systems. Additionally, it achieves this without need for math-
ematical approximations or lengthy computations30 and with-
out the trial-and-error typically associated with materials dis-
covery. As demonstrated by the relatively good agreement
between our correlations and the results of Monte Carlo

simulations, the demagnetization process we employ might
also serve in a more general sense as an efficient proxy for
other computer models that search for optimal solutions in
configuration space. With appropriate modifications, the arti-
ficial spin ice approach may open a door to solving other
optimization problems as well.
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