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I. INTRODUCTION

Among the papers devoted to quantum coherence and
quantum tunneling of magnetization of high-spin molecules
and magnetic ions,1–3 the works which deal with their behav-
ior in alternating magnetic fields are of interest because they
enable one to obtain important information about the spec-
trum and the relaxation times of magnetic molecules and
ions. Therefore, a stationary high-frequency susceptibility
connected with transitions between states of the fundamental
doublet of a high-spin molecule has been investigated in
Refs. 4–7. The measurements that have been carried out
show a nonlinear effect, which consists of a considerable
decrease in the imaginary part of the susceptibility with an
increase in the alternating field amplitude.4,5 The temperature
dependence of the imaginary part of the stationary suscepti-
bility has a nontrivial nature, which has been investigated in
Refs. 6 and 7. The high-spin molecule, which is subject to a
bifrequency ac magnetic field, and rare-earth ion behavior,
have been theoretically studied8 longer than the relaxation
times that characterize the transitions between three lower
levels of a molecule �a stationary process�. In our opinion,
some interesting papers should be noted, e.g., those devoted
to the fine spectroscopic research of the molecular clusters of
Fe8 and Mn12 that allow one to determine the spectrum par-
ticulars of the molecular magnets.9–12

The works mentioned above dealt with stationary pro-
cesses, i.e., the processes that occur at times much longer
than the typical relaxation times. It is also of interest to in-
vestigate the nonstationary processes of the interaction be-
tween magnetic molecules and ions and ac magnetic fields.
These processes proceed at times much shorter than the typi-
cal relaxation times. In their work, Vernier et al.13 observed
an echo of magnetic tunneling states in Kramers-ion doped
glasses, and they discussed the states of the fundamental
doublet that are formed as a result of the quantum tunneling
of magnetization. The influence of an ac magnetic field at the
frequency corresponding to the transition between the lower
states of the fundamental and the first excited doublets on the
tunneling rate of the magnetization of a high-spin molecule
has been theoretically studied.14 The nonstationary behavior
�at times much shorter than the relaxation times� of a mag-

netic molecule subject to a bifrequency ac magnetic field is
theoretically considered in Ref. 15: it has been shown that
the molecule can absorb or emit energy �stimulated pro-
cesses�.

Since Dicke’s original paper,16 the well-known phenom-
enon of superradiance still attracts a great deal of attention
even today. Superradiance is essentially a nonstationary ef-
fect when the system dipole radiation intensity is propor-
tional to N2, where N is the number of particles in the sys-
tem. Therefore, an interesting theoretical paper17 should be
noted, where it has been assumed that the magnetization
resonant tunneling �in the context of the Landau–Ziner
effect18–20� can cause the superradiance of high-spin molecu-
lar magnets �see also the discussion in Refs. 21–23�.

The bursts of microwave pulses have actually been de-
tected in a number of experimental investigations,24–26 where
it is the author’s opinion that the superradiance can be the
physical mechanism responsible for this phenomenon.
Therefore, the experiment discussed in Ref. 27 is of interest.

The theoretical research in Ref. 28 is also very interesting,
where the attention therein is focused on the role of a reso-
nator in enhancing the collective radiation when the micro-
wave radiation in the crystal of molecular magnets is consid-
ered. The importance of the resonator, as is mentioned in
Ref. 28, was emphasized in Ref. 23 and earlier in Ref. 29.

From our point of view, it is interesting to mention Ref.
30, which further considers the role of the dipole-dipole in-
teractions as the basic dephasing factor in the phenomenon
of superradiance in spin systems.

In this work, we consider nonstationary processes driven
by a strong ac magnetic field �the driving field� that occur in
an ensemble of high-spin molecules and develop in the fol-
lowing “scenario.”

Originally �in the absence of the driving field�, the energy
spectrum of the magnetic molecules is a consequence of the
splitting of doublets by a dc magnetic field that is perpen-
dicular to the easy anisotropy axis.1–3 The temperature is
assumed to be low enough so that only the fundamental dou-
blet levels are populated in the initial state �thermodynamic
equilibrium state�.

Under the influence of the driving field, which causes the
transitions between lower levels of the fundamental and the
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first excited doublets, the initial system of the energy levels
undergoes essential changes. In this situation, it turns out to
be productive to introduce the concept of quasienergy
states.31

As a result of this modification, the system begins to ra-
diate. The frequencies of the radiated field are a combination
of the frequencies corresponding to the initial energy struc-
ture and the Rabi frequencies corresponding to the driving
field. By using a resonator of a defined quality factor, one is
able to choose concrete modes in the radiated spectrum. In
our case, the frequency of such radiation is much smaller
than the frequency of the driving field. Note that such behav-
ior �spontaneous radiation� of a three-level system under the
influence of a strong coherent field was considered in detail
�see, for example, Refs. 32 and 33�.

Finally, and it is the main idea in our work, we show that
this radiation can be realized in the form of the superradi-
ance. The formation of a superradiance pulse in the consid-
ered case as in the traditional problem should be realized for
times much longer than the lifetime of the radiated photon,
but much shorter than the dephasing time.

Thus, this paper is a continuation of theoretical investiga-
tions started in Ref. 15, where, in the same problem formu-
lation, the stimulated radiation and the absorption of a low-
frequency field have been considered. To be specific, we
confine our investigation to magnetic molecules with an easy
anisotropy axis subject to a strong enough dc transverse
magnetic field. Moreover, it should be noted that, in fact,
three levels of a magnetic molecule �out of the four levels
that belong to the fundamental and the first excited doublets�
are involved in the process discussed below. The permissi-
bility of such simplifying assumptions that do not disturb
the essence of the phenomenon was examined in detail in
Ref. 15.

The paper is organized as follows: In Sec. II, the forma-
tion of the quasienergy spectrum of magnetic molecules con-
stituting a crystal under the influence of the driving field is
considered. Section III deals with the relaxation times that
approach the system of equations that describes the kinetics
of the process. We have also examined the initial conditions
in detail. The numerical solutions describing the superradi-
ance for various values of the number of molecules and the
dephasing time are given in Sec. IV. The conclusions are
summarized in Sec. V.

II. ENERGY SPECTRUM OF THE MAGNETIC
MOLECULES IN THE PRESENCE OF THE DRIVING
FIELD: INTERACTION OF MAGNETIC MOLECULES

WITH THE FIELD OF RADIATION

Let us consider a crystal of molecular magnets subject to
the dc magnetic field and the driving field. The dc field and
the driving field are perpendicular to the easy anisotropy axis
of the molecule. We also take into account the interaction of
the magnetic molecules to the magnetic field of the resulting
radiation. The magnetic field of the radiation is parallel to the
easy axis in our scheme. Such polarization of the radiation
field is connected with the selection rules that occur for the
transitions between the molecular levels. It will be explained
in detail below.

We assume that the dc magnetic field and the driving field
are strong enough that they determine the resulting quasien-
ergy structure. In that way we neglect the dipole-dipole in-
teractions between the molecules. In other words, we sup-
pose that the molecules do not directly interact with each
other. Note that the dipole-dipole interaction, in general, de-
termines the dephasing time �see Refs. 22 and 30�. This as-
pect will be considered in Secs. III and IV.

In this case, the molecule Hamiltonian reads

Ĥ = �
�=1

N

�Ĥ�;mol + Ĥ�
dr + Ĥ�;int

rad � + Ĥf . �1�

Here,

Ĥ�;mol = − DŜz
2 + Ĥtr + g�BH0Ŝ�;x, �2�

Ĥ�
dr = g�BHx�t�Ŝ�;x, �3�

Ĥ�;int
rad = g�BHz�t�Ŝ�;z, �4�

and index � enumerates the molecules �1���N�. Here, z is

the easy axis of anisotropy; Ŝx and Ŝz are the x and z projec-
tions of the spin operator, respectively. D, g, and �B are the
anisotropy energy constant, the Landé factor, and the Bohr
magneton, respectively. H0 is the dc magnetic field �we sup-
pose the direction of this field to coincide with the x axis�,
Hx�t� is the driving field that is parallel to the x axis, Hz�t� is
the magnetic field of the radiation that is parallel to the z

axis, and Ĥtr describes the transverse anisotropy. The total
spin of the molecule is equal to S.

In the absence of magnetic fields �H0=Hx=Hz=0� and by
neglecting the transverse anisotropy, the energy spectrum of
the molecule Em=−Dm2 �m=S ,S−1, . . . ,−S� represents S
+1 /2 degenerate doublets if S is a half-integer, and S degen-
erate doublets and one nondegenerate level if S is an integer.
The dc magnetic field H0 directed along the x axis and the
transverse anisotropy induce spin tunneling between two
states of any doublet and split the latter to the levels Em

�

�Em�
1
2�Em �here, m�0�.34,35 The quantity �Em is much

smaller than the spacing Em−1
− −Em

− �D�2m−1� between the
nearest doublets and essentially increases by decreasing the
number m. The eigenfunctions of the Hamiltonian �2� in the
absence of magnetic fields and transverse anisotropy can be
chosen from the following form:

�m
�s� =

�m + �−m

�2
, �m

�a� =
�m − �−m

�2
. �5�

Here, ��m are the eigenfunctions of the operator Ŝz �Ŝz��m

= �m��m�. As follows from the symmetry of the Hamil-
tonian �2�, the eigenfunctions corresponding to the lower
and upper levels of the split doublet are combinations of the

symmetric functions �̃m
�s� �5� and combinations of the anti-

symmetric functions �̃m
�a� �5�, respectively.

As we have mentioned in the Introduction, only two lower
doublets are of interest. For brevity, we designate �0=ES

−,

�1=ES
+, �2=ES−1

− , �3=ES−1
+ , 	0= �̃S

�s�, 	1= �̃S
�a�, 	2= �̃S−1

�s� , and
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	3= �̃S−1
�a� , and we introduce the natural frequencies of transi-

tions 
 jk= �� j −�k� /�. The states 	0 and 	1 form the funda-
mental doublet, and the states 	2 and 	3 form the first ex-
cited doublet.

Due to the symmetry of the wave functions of the Hamil-
tonian �2�, the magnetic field polarized along the x axis pro-
duces the transitions between states of the same symmetry:
	0↔	2 and 	1↔	3, whereas the magnetic field polarized
along the z axis produces the transitions between the sym-
metric and antisymmetric states: 	0↔	1 and 	2↔	3 �see
Refs. 36 and 37�. The driving field couples the lower levels
of the fundamental and the first excited doublets �the states
of the same symmetry�, which is why we consider the driv-
ing field to be polarized along the x axis, while for the tran-
sition discussed below, the magnetic field of the radiation has
to be polarized along the z axis. Note that the transition fre-
quencies under discussion are well segregated,9 because this
allows one to choose the transitions.

The driving field is considered as a classical one, i.e., as a
prescribed function of time as follows:

Hx�t� = Hx sin 
xt . �6�

The interaction of the molecule with this field is described by

the operator Ĥ�
dr.

The ac magnetic field polarized along the z axis corre-
sponds to the radiation field. This field will be regarded in a
single-mode approach. For the sake of convenience and clar-
ity, we will describe this field as a quantum object as follows:

Ĥz�r,t� = − H�z�r���
�z

2
�â�z

† + â�z� . �7�

Here, H�z�r� is a coordinate dependence of the magnetic field
of the mode, 
�z is the mode frequency, and â�z

† and â�z are
the creation and annihilation photon operators, respectively,
of the corresponding mode.

The Hamiltonian of this field in Eq. �1� is as follows:

Ĥf = �
�z�â�z
† â�z +

1

2
� . �8�

The interaction of the molecules with the radiation field is

described by the operator Ĥ�;int
rad as follows:

Ĥ�;int
rad = − g�BH�z��
�z

2
Ŝ�;z�â�z

† �t� + â�z�t�	 . �9�

The interaction representation will be used below, where

the operator Ĥint
rad plays the role of the interaction operator.

Therefore, we have â�z
† �t�= â�z

† exp�i
�zt� and â�z�t�
= â�z exp�−i
�zt�. It is convenient to describe the molecule’s
states using the wave functions of Shrödinger’s evolution
equation as a basis as follows:

i�
����t�

�t
= �Ĥ�;mol + Ĥ�

dr�t�	���t� . �10�

These functions, which are obtained as the solution of Eq.
�10� in the resonance approaching 
=
20, have the follow-
ing form:

�1,� =
1
�2

	0,� exp�i�− R −

�0

�
�t�

+ i	2,� exp�i�− R −
�2

�
�t� , �11�

�2,� =
1
�2

	0,� exp�i�R −

�0

�
�t�

− i	2,� exp�i�R −
�2

�
�t� , �12�

�3,� = 	1,� exp�− i
�1

�
t� , �13�

where

R =
g�BHx

2�
�	2�Ŝx�	0� �14�

is the Rabi frequency.
Using the functions �11�–�13� as a basis for calculating

the matrix elements of molecule operators is a key to the
interaction representation. Note that the functions �1,� and
�2,� describe the quasienergy states of magnetic molecules
�see, for example, Ref. 31�. The initial structure of the mol-
ecule’s energy levels and the structure that appears under the
influence of the driving field are sketched in Fig. 1.

In the basis �11�–�13�, the starting Hamiltonian �1� takes
the following form:

FIG. 1. Formation of the quasienergy levels �dotted lines�. Two
lower doublets of a nonperturbed magnetic molecule are shown by
solid lines. A long vertical line with two arrowheads depicts the
transitions caused by the driving field, with the frequency close to

20. The vertical arrow with one arrowhead demonstrates the tran-
sitions considered in this study.
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Ĥ =
�0 + �2 + 2R�

3 �
�=1

N

�R�;12 + R�;13�

+
�0 + �2 − 2R�

3 �
�=1

N

�R�;23 − R�;12� −
2�1

3 �
�=1

N

�R�;23

+ R�;13� +
�0 − �2

2 �
�=1

N

�ei2RtR�;12�+� + e−i2RtR�;12�−��

+ �
�z�â�z
+ â�z +

1

2
� +

C�â�z
+ ei
�zt + â�ze

−i
�zt�
�2

� �
�=1

N

�ei�R−
10�tR�;13�+� + ei�−R+
10�tR�;13�−�

+ ei�−R−
10�tR�;23�+� + ei�R+
10�tR�;23�−�� . �15�

Here,

C = g�B�	1�Ŝz�	0���
�z

2
H�z �16�

is a parameter of the magnetic molecule’s interaction with
the radiation field �9� and H�z��
�z /c�3/2 is the amplitude of
the coordinate dependence of the magnetic field, which is
produced by a resonator in the molecule’s location. The op-

erators R̂� are

R̂�;12��� =
1

2��0 1 0

1 0 0

0 0 0
�

�

� i�0 − i 0

i 0 0

0 0 0
�

�

� , �17�

R̂�;12 =
1

2
�R̂�;12�+�;R̂�;12�−�	 =

1

2�1 0 0

0 − 1 0

0 0 0
�

�

, �18�

R̂�;13��� =
1

2��0 0 1

0 0 0

1 0 0
�

�

� i�0 0 − i

0 0 0

i 0 0
�

�

� , �19�

R̂�;13 =
1

2
�R̂�;13�+�;R̂�;13�−�	 =

1

2�1 0 0

0 0 0

0 0 − 1
�

�

, �20�

R̂�;23��� =
1

2��0 0 0

0 0 1

0 1 0
�

�

� i�0 0 0

0 0 − i

0 i 0
�

�

� , �21�

R̂�;23 =
1

2
�R̂�;23�+�;R̂�;23�−�	 =

1

2�0 0 0

0 1 0

0 0 − 1
�

�

. �22�

Here, the numeration of the columns of the matrices �top-
down� and the rows of the matrices �from left to right� cor-
responds to the sequence of the functions �1,�, �2,�, and �3,�.

Thus, commutative relations for the operators related to
one molecule are obvious. The operators related to the dif-
ferent molecules commute. These operators �17�–�22� are
similar to the suitable operators for a two-level system.38

As follows from the expression for the Hamiltonian �15�,
the molecule’s interaction with the radiation field has a reso-
nance character. The frequency 
�z=
10−R corresponds to
the transition between the state �3,� �13� and the quasienergy
state �1,� �11�, and the frequency 
�z=
10+R corresponds
to the transition between the state �3,� �13� and the quasien-
ergy state �2,� �12� �see Fig. 1�.

As mentioned above, we will consider the single-mode
radiation regime. Furthermore, the frequency of this mode
will be assumed to be equal to one of the transition frequen-
cies in the system of the formed quasienergy levels, and this
can be achieved by using a resonator of good quality.

For distinctness, it is assumed that


�z = 
10 − R �23�

�the corresponding transition is shown by the vertical arrow
with one arrowhead in Fig. 1� and instead of expression �15�,
we have the following:

Ĥ =
�0 + �2 + 2R�

3 �
�=1

N

�R̂�;12 + R̂�;13�

+
�0 + �2 − 2R�

3 �
�=1

N

�R̂�;23 − R̂�;12� −
2�1

3 �
�=1

N

�R̂�;23

+ R̂�;13� +
�0 − �2

2 �
�=1

N

�ei2RtR̂�;12�+� + e−i2RtR̂�;12�−��

+ �
�z�â�z
+ â�z +

1

2
� +

C
�2

�
�=1

N

�â�z
+ R̂�;13�+� + â�zR̂�;13�−�� .

�24�

Note that the last term in Eq. �24� describes the molecule’s

interaction with the radiation field and corresponds to Ĥint
rad.

The others terms describe the molecules in the driving field
and the energy of the radiation field.

III. SUPERRADIANCE KINETICS

According to the chosen interaction representation, the
time evolution of a density matrix in the absence of relax-

ation is defined by the operator Ĥint
rad as follows:

i�
d�̂

dt
= �Ĥint

rad; �̂	 . �25�

The exact description of the time evolution requires tak-
ing into account different relaxation processes. For simplic-
ity, we will use the relaxation time approach and take into
consideration a defined lifetime of the radiated quantum �. If
the resonator has the quality factor Q�z, then this time can be
determined by the following expression:
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� �
Q�z


�z
. �26�

Furthermore, we will take into account the relaxation time of
the dipole moments of the molecules T2. Such relaxation is
caused generally by the dipole-dipole interactions between
the molecules. We emphasize that using the relaxation time
for considering the dephasing influence of the dipole-dipole
interaction is nothing but an approximation. Here, it is essen-
tial to point to Refs. 30 and 39, where the authors have used
computer calculations. However, we assume that using the
relaxation time approach allows one to qualitatively describe
the phenomenon under consideration.

By taking into consideration this relaxation process and
using a semiclassical approximation, one can find a system
of equations for ensemble-averaged variables and
correlators40–43 as follows:

dn

dt
+

n

�
=

F

T0
, �27�

dF

dt
+

F

2�
+

F

2T2
=

2

T0
�S + S0 + 2Rn� , �28�

dS

dt
+

S

T2
=

2FR

T0
, �29�

dR

dt
= −

F

T0
. �30�

Here,

n = �â�z
† â�z� �31�

is the number of quanta of the radiation field,

F = i��
�=1

N

�R̂�,13�−�â�z − R̂�,13�+�â�z
† �� �32�

is a correlator that describes the effects of the correlation
between the magnetic dipole moments �corresponding to
�1,�↔�3,� transitions� and the radiation field,

S =��
�;��

N;N

R̂�,13�−�R̂��,13�+��
����

, �33�

is a correlator that describes the effects of the correlation
between the magnetic dipole moments �corresponding to
�1,�↔�3,� transitions� of the different molecules,

S0 =��
�

N

R̂�,13�−�R̂�,13�+�� = R +
1

2
�N1 + N3� , �34�

R = −��
�

N

R̂�,13� �35�

is the half-difference of the energy level populations of the
state �3,� and the quasienergy level of the state �1,�. In

Eq. �34�, N1 and N3 are the populations of the states �1 and
�3, respectively. Under our conditions N1+N3=const,

T0 =
��2

C
�36�

is a characteristic time corresponding to the parameter C.
The magnitudes in Eqs. �31�–�35� are averaged with the

density matrix, which yields Eq. �25�. Since the relaxation
time of populations is considered to be much longer than T2,
the relaxation term is neglected in Eq. �30�.

Note that Eqs. �27�–�30� are identical to the equations
describing the well-known model: The system of directly
noninteracting two-level atoms, with the atoms being in reso-
nance with a single mode of the radiation field �see, for ex-
ample, Refs. 40–43�. The specificity of our situation is that
the single radiation mode corresponds to the transitions be-
tween the energy state �3,� and the quasienergy state �1,�
rather than between the initial energy states.

To solve the system of Eqs. �27�–�30�, it is necessary to
define the initial conditions at the moment t=0: n�0�, F�0�,
S�0�, R�0�, N1, and N3. The initial point of time �t=0� is
thought to be the switching moment onto the driving field.
We suppose that up to this moment �t�0�, the molecules are
in thermodynamic equilibrium and are statistically indepen-
dent �keep in mind that the molecules do not interact with
each other directly� and that there are no quanta of radiation
field in the system and, therefore, no correlation between the
state of the molecules and the radiation field. It is evident
that at the moment t=0 �as for t�0�, there is no correlation
between the states of the molecules and between the state of
the molecules and the radiation field. That is,

n�0� = 0, �37�

F�0� = 0, �38�

S�0� = 0. �39�

As mentioned above, the temperature T is small enough
��
10 /kB�T��
20 /kB� so that for t�0, all the molecules
are in the states of the fundamental doublet 	0, 	1 only, and
these states are equally populated. Thus, the probability to
find the molecule in the state 	0 or 	1 is equal to 1/2, while
the probability to find the molecule in the states 	2 and 	3 is
equal to zero. A switch to the driving field at the moment t
=0 does not disturb the 	1 state. Therefore, according to Eq.
�13�, the probability of being a molecule in the �3,� state is
equal to 1/2. By using Eqs. �11� and �12�, it is easy to show
that for the moment t=0, the molecule will be in the �1,� and
�2,� states, respectively, with probabilities being equal to 1/4.
Therefore, for R�0�, we have the following from Eqs. �35�
and �20�:
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R�0� = − �R̂13�t=0 = − �1

2�
� �1 0 0

0 0 0

0 0 − 1
�

�

�
t=0

= −
N

2 ��1 0 0

0 0 0

0 0 − 1
��

t=0

=
N

8
. �40�

By using Eq. �34� and the fact that the total probability of
being a molecule in the states �1 and �3 is equal to 3/4, we
have the following:

1

2
�N1 + N3� = �1

2�
� �1 0 0

0 0 0

0 0 1
�

�

� =
N

2 ��1 0 0

0 0 0

0 0 1
�� =

3

8
N .

�41�

The combined Eqs. �27�–�30� contain the time scales �, T2,
and T0. However, the solution of this system is susceptible to
the initial conditions �37�–�41�; therefore, another time scale
comes up as follows:

�c =
T0

2

�N
. �42�

It is well known that if the time scales are tied together by
the following condition:

� � �c � T2 �43�

when the regime of superradiance is realized,40–43 in particu-
lar, in the extreme case �T2→��, the solution of the system
of Eqs. �27�–�30� with the initial conditions �37�–�41� will
give the following simple expressions for the population dif-
ference �2R� and intensity �I=n /��:

2R = −
N

4
tanh� t − t0

2�c
� , �44�

I =
n

�
=

N

16�c
sec2� t − t0

2�c
� . �45�

Here,

t0 � 2�c ln N . �46�

One can see from Eqs. �44� and �45� that these equations
describe a superradiance pulse with the duration �c�N−1 at
the delay time of a superradiance pulse t0, and the upper
bound of the intensity is proportional to N2 as follows:

Imax � �n

�
�

max
=

N2�

16T0
2 . �47�

Numerical solutions for different values of the time scales
are of interest. In particular, in contrast to Eq. �43�, we do not
suppose that �c�T2, but rather �c�T2. The numerical calcu-
lations are given in the next section.

IV. NUMERICAL CALCULATIONS AND ESTIMATIONS

First of all, we estimate the values of the dc magnetic
field, the amplitude of the driving field, and the quality factor

of the resonator that should allow us to realize the problem
under consideration.

To use the quasienergy approach, one has to take into
account that the time corresponding to the Rabi frequency of
the driving field is much shorter than the characteristic times
of all other processes considered in the system �as the relax-
ation time T2 and the characteristic time of the collective
radiation or the superradiance time �c�. Therefore, the Rabi
frequency is supposed to be of the order of 108 s−1, which,
according to Eq. �14�, fits the value of the driving field am-

plitude Hx�5 Oe �for Fe8, D=0.23 K, g=2, and Ĥtr=KŜy
2,

where K /D=0.4 �see Ref. 9�	: it corresponds to the intensity
of the order of 104 W /cm2.

To calculate the molecule’s spectrum, we use the experi-
mental results,44 where the transitions between the states of
fundamental doublet of Fe8 are observed. The form of the
Hamiltonian of the anisotropy, the constants of the aniso-
tropy, and the total spin S of the magnetic molecule deter-
mine the transition frequencies. Using the anisotropy con-
stants that satisfy the experimental data �namely, the
transition frequencies of the magnetic molecule� allows one
to find out the frequencies 
10�1010 s−1 and 
20�5
�1011 s−1 for H0=2�104 Oe.

So as to separate the frequency 
10−R from the fre-
quency 
10+R, the resonator has to have a width �


�R�108 s−1 �with the quality factor being Q�

10

�
 �102�.
This allows one to estimate the photon lifetime ��10−8 s
according to Eq. �26�.

Since the pulse duration �c is supposed to exceed � to
estimate the orders of N and �c, we have

� � �c �
T0

2

�N
. �48�

The value of the characteristic time T0 �36� can be found by
using Eq. �16�. Assuming that 
�z�1010 s−1, we have T0
�10 s.

Thus, as follows from Eqs. �42� and �46�, for N�0.5
�1017 �which corresponds to the volume V�10−4 cm3 for
Fe8 according to Ref. 44�, the superradiance regime is real-
ized with the pulse duration �c�10−7 s and the delay time of
the superradiance pulse t0�6�10−6 s. Note that this esti-
mation corresponds to idealizing T2→�. Further, it is impor-
tant to carry out the estimations to find the value T2 since the
observation of a superradiance requires the condition

� � �c � T2. �49�

By this, we mean a high-quality sample having an ellipsoidal
shape and a highly homogeneous magnetic field applied to
the sample.17 Therefore, the relaxation time T2 is determined
by the variation of the local dipole field22 and at a low tem-
perature �T2�low�T−1. It can be thought22 that for T
�0.1 K, T2�10−6 s �see also Ref. 28�.

In our model, we note that in the absence of the driving
field, the molecules have to be distributed into equal parts in
the states of the fundamental doublet. The number of mol-
ecules in the first excited doublet is very small. The tempera-
tures ensuring such distribution �for 
10�1010 s−1� are of
the order of T�0.1 K.
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Therefore, the numerical computations will correspond to
the solution of the system of Eqs. �27�–�30� for the chosen
parameters �=10−8 s and T0=10 s and for different values
of N �N�1017� and T2.

By comparing with a realistic situation �T2
−1�0�, Fig. 2

shows the population difference 2R, the intensity I= n
� , and

the corresponding dependence of Imax on N2, which are cal-
culated according to Eqs. �42� and �44�–�46�, for the ideal-
ized situation T2→�.

Figure 3 shows the magnitudes 2R, I=n /�, and the corre-

sponding dependence of Imax on N2, which are numerically
calculated using the combined Eqs. �27�–�30�, for the ideal-
ized situation T2→�. The same magnitudes, which are nu-
merically calculated using the combined Eqs. �27�–�30�, for
the different values T2

−1�0 �the realistic situation� are shown
in Figs. 4 and 5.
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FIG. 2. Time dependences of �a� the population difference 2R,
�b� the intensity I, and �c� corresponding dependence of Imax on N2

for T2→�. The calculations were carried out using formulas �42�
and �44�–�46� for three values of N �N=2.5�1016⇒�c=4
�10−7 s, t0�1.5�10−5 s; N=5�1016⇒�c=2�10−7 s, t0�7.4
�10−6 s; and N=1017⇒�c=10−7 s, t0�3.8�10−6 s�.
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FIG. 3. Time dependences of �a� the population difference 2R,
�b� the intensity I, and �c� the corresponding dependence of Imax on
N2 for T2→�. Numerical solution.
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It is clear from the obtained results that for the chosen
region of the parameters and for the idealized case T2→�,
the calculations using the formulas �42� and �44�–�46� �see
Fig. 2� and the numerical solution of the combined Eqs.
�27�–�30� �see Fig. 3� give almost identical results. The char-
acteristic superradiance dependence Imax�N2 takes place
here �Figs. 2�c� and 3�c�	. On the other hand, for the same
region of the parameters but at T2

−1�0, the decrease in T2

causes the increase in the superradiance pulse width and the
increase in the delay time of the superradiance pulse t0 �Figs.
4�b� and 5�b�	. The decrease in T2 leads to the fact that the
radiation ceases to have a character of the superradiance, i.e.,
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FIG. 4. Time dependences of �a� the population difference 2R,
�b� the intensity I, and �c� the corresponding dependence of Imax on
N2 for T2=10−6 s. Numerical solution. For �c�, the straight line is
drawn through the origin of the coordinates and the point corre-
sponding to the value N=1017.
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FIG. 5. Time dependences of �a� the population difference 2R,
�b� the intensity I, and �c� the corresponding dependence of Imax on
N2 for T2=5�10−7 s. Numerical solution. For �c�, the straight line
is drawn through the origin of the coordinates and the point corre-
sponding to the value N=1017.
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Imax is not proportional to N2 although it has a pulse nature.
We note that, as follows from the results shown in Figs. 4
and 5, the delay time of the superradiance pulse exceeds the
relaxation time T2 and the superradiance pulse width is a few
times less than T2 only. Note that, as is mentioned earlier,41

the condition T2� t0 is not necessary to observe superradi-
ance.

V. CONCLUSIONS

We have theoretically shown that a crystal of molecular
magnets subject to a dc magnetic field under the influence of
a strong ac magnetic field can become the source of an elec-

tromagnetic superradiance. The superradiance at times
shorter than the relaxation times appears as the effect of the
radiation process correlation of single molecules, the spec-
trum of which is essentially modified by a strong ac mag-
netic field. The estimations pointing to the possibility of re-
alistically observing the effect have been carried out.
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