
Emergent symmetry and dimensional reduction at a quantum critical point

J. Schmalian1 and C. D. Batista2

1Department of Physics and Astronomy, Iowa State University and Ames Laboratory, Ames, Iowa 50011, USA
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

�Received 19 October 2007; revised manuscript received 2 February 2008; published 6 March 2008�

We show that the spatial dimensionality of the quantum critical point associated with Bose–Einstein con-
densation at T=0 is reduced when the underlying lattice comprises a set of layers coupled by a frustrating
interaction. For this purpose, we use an heuristic mean field approach that is complemented and justified by a
more rigorous renormalization group analysis. Due to the presence of an emergent symmetry, i.e., a symmetry
of the ground state that is absent in the underlying Hamiltonian, a three-dimensional interacting Bose system
undergoes a chemical potential tuned quantum phase transition that is strictly two-dimensional. Our theoretical
predictions for the critical temperature as a function of the chemical potential correspond very well with recent
measurements in BaCuSi2O6.
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I. INTRODUCTION

The universal properties that appear in the proximity of a
critical point are determined by a few relevant properties.
The spatial dimensionality d is one of them.1 This is evident
from the fact that, in general, the critical exponents depend
on d. Correspondingly, for strongly anisotropic systems of
weakly coupled chains or planes, critical behavior character-
istic for d=1 or d=2, respectively, can be observed beyond a
certain distance from the critical point. The critical behavior
crosses over to three-dimensional only in the close vicinity
of the critical point of such anisotropic systems.

In contrast to this conventional dimensional crossover, the
spatial dimensionality can be effectively reduced under cer-
tain conditions as the system approaches the critical point.
This phenomenon of dimensional reduction is closely related
to the notion of “emergent sliding symmetries.”2 Those are
physical systems for which new symmetry transformations
appear at low energies �in some cases only at T=0�. In other
words, the low-energy spectrum of the system Hamiltonian
is invariant under these symmetries but the whole spectrum
is not.3 We call these transformations “emergent symmetries”
because they only appear at low energies. By “sliding
symmetry”4 we mean symmetry transformations that only
change a subset of the degrees of freedom which occupy a
region of dimension lower than d. For instance, if our system
is a 3D quantum magnet and it is invariant under a spin
rotation restricted to a given layer, such operation is a “slid-
ing symmetry.”

A simple example of an emergent sliding symmetry is
provided by classical spins on a body centered tetragonal
�bct� lattice with antiferromagnetic XY exchange interac-
tions. If the interlayer exchange interaction J� is smaller
than the intralayer one J�, the energy is minimized when the
spins are antiferromagnetically aligned on each layer. Since
the staggered magnetization of each layer can point in any
arbitrary direction, the ground-state manifold is highly de-
generate. In this case, an arbitrary spin rotation along the z
axis which acts only on the spins of a given layer is an
emergent sliding symmetry. It is a symmetry because it does
not change the ground-state energy. It is “emergent” because

it only exists at T=0: the energy does not remain invariant if
we apply the same transformation to an excited state. In par-
ticular, this symmetry is the manifestation of a simple physi-
cal property: the order parameters �staggered magnetization�
of different layers are decoupled at zero temperature. Conse-
quently, in spite of the 3D nature of the system, the antifer-
romagnetic ordering is 2D at T=0. This is a simple example
of dimensional reduction that results from two key ingredi-
ents: the classical nature of the degrees of freedom and the
frustrated nature of the interactions.

It is natural to ask if the phenomenon of dimensional re-
duction also exists in quantum systems. In most of the cases,
the emergent sliding symmetry is removed by zero point
fluctuations. For instance, if we consider now the quantum
version of the XY model on a bct lattice with J� �J�, the
ground state is no longer invariant under spin rotations along
the z axis of all the spins in a given layer. Therefore, this
operation is an emergent symmetry only in the classical
limit. Zero point fluctuations remove this symmetry by in-
ducing a finite coupling between the staggered magnetization
in different layers.5,6 This is a particular example of the phe-
nomenon known as “order from disorder.”7

However, zero point fluctuations not always restore the
dimensionality by removing the emergent sliding symme-
tries. Such symmetries can appear at special points of the
quantum phase diagram and lead to dimensional reduction.
The main characteristic of these special points is that the
ground state becomes “classical” in the sense that it is a
direct product of eigenstates of a local physical operator. For
instance, the fully polarized ferromagnet is such a “classical”
state for any spin S. A simple example of dimensional reduc-
tion in a quantum system is given in Ref. 8 for a Klein model
of S=1 /2 spins on the square lattice.9 In that case, the di-
mensional reduction from d=2 to d=1 occurs at a first order
quantum phase transition point. An immediate physical con-
sequence of this dimensional reduction is the emergence of
fractional excitations characteristic of one-dimensional sys-
tems.

We have shown recently that the phenomenon of dimen-
sional reduction can also occur at a quantum critical point
�second order quantum phase transition�.10 For this purpose,
we considered the quantum XY magnet of our previous ex-
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ample but in the presence of an external magnetic field H
along the z direction. The ground state is antiferromgnetic
for H=0 while the Zeeman term dominates at high fields
leading to a fully polarized ground state. The antiferromag-
netically ordered XY component decreases continuously as a
function of H and vanishes at the critical field Hc. The spin
system becomes fully polarized for H�Hc. The correspond-
ing quantum phase transition is denoted as Bose-Einstein
condensation �BEC� because the order is suppressed by sup-
pressing the amplitude of the order parameter or staggered
magnetization. In contrast, the thermodynamic phase transi-
tion is denoted as XY because the order is suppressed by
phase fluctuations. As we will see below, this difference is
crucial for the phenomenon of dimensional reduction. The
BEC-QCP of the system under consideration has a peculiar
property: the disordered state for H�Hc is “classical” be-
cause it is a direct product of eigenstates of Si

z �z component
of the spin operator on a given site i�. In other words, the
zero point phase fluctuations that restore the 3D ordering at
H=0 are no longer present for H�Hc simply because the XY
spin component has been suppressed completely. Since the
transition is continuous, the 3D coupling induced by these
phase fluctuations must vanish continuously when H ap-
proaches Hc from the ordered side. For this reason, dimen-
sional reduction occurs right at the critical point.

The specific motivation for the theory presented in this
paper is the unusual dependence of the transition temperature
as function of magnetic field in the frustrated magnet
BaCuSi2O6.11 We describe this system by a Heisenberg
Hamiltonian of S= 1

2 spins forming dimers on a body-
centered tetragonal lattice, closely approximating the case of
BaCuSi2O6.12,13 The dominant Heisenberg interaction
J�isi1 ·si2, is between spins on the same dimer i. Since there
are two low energy states in an applied magnetic field, the
singlet and the si1

z +si2
z =1 triplet, we can describe the low

energy sector either using hardcore bosons or, in terms of the
abovementioned XY model. In the case of the hardcore boson
description, the triplet state corresponds to an effective site i
occupied by a boson while the singlet state is mapped into
the empty site.14,15 The number of bosons �number of trip-
lets� equals the magnetization along the z axis. The chemical
potential �=g�B�H−Hc1� is determined by the applied mag-
netic field H and the critical field g�BHc1=J−2J� �where g is
the gyromagnetic factor, �B is the Bohr magneton, and J� is
the interdimer exchange interaction�. The hoppings t� =J� and
t�=J� �J� is the frustrated interlayer exchange interaction�
are determined by the interdimer exchange interactions be-
tween spins. Recently, it was shown by Rösch and Vojta16,17

that the inclusion of the two higher triplet modes generates a
very small coherent second neighbor hopping of low-energy
triplets between layers that vanishes as J→�. This interest-
ing effect restores the d=3 character of the spin problem due
to the fact that the paramagnetic ground state for H�Hc1 is
not purely classical. Although it can be described as a clas-
sical state �direct product of singlets on each dimer� to a very
good approximation, there are small zero-point phase fluc-
tuations that result from virtual process to the higher triplet
states �creation and annihilation of triplet pairs with zero net
magnetic moment�. It was also pointed out in Refs. 16 and
17 that the dimensional reduction is still exact at H=Hc2

�saturation field� because the state for H�Hc2 is purely clas-
sical. For realistic values of J=49.5�1� K a coherent hopping
smaller than 1 mK results for BaCuSi2O6. This implies that
the mechanism discussed in our paper is still dominant for all
experimentally accessible temperatures T�30 mK. More-
over, the U�1�-symmetry breaking terms induced by dipolar
interactions will produce a crossover to a QCP with discrete
symmetry at T�10 mK �Ref. 18� before the mechanism of
Ref. 16 sets in. Finally, the inevitable presence of finite non-
frustrated couplings in real systems will eventually restore
the d=3 behavior below some characteristic temperature T0
�30 mK.18

Despite the abovementioned effects, where lattice distor-
tions, dipolar couplings or excitations to high-energy triplets
cause a restoration of three-dimensional behavior at very low
temperatures, is it important to stress that the boson model
discussed in this paper is a nontrivial interacting many-body
system where the dimensional reduction at the T=0 quantum
critical point is exact. Materials that can be described in
terms of a chemical potential tuned Bose-Einstein condensa-
tion on a frustrating lattice are then candidates for the dimen-
sional reduction as caused by an emergent symmetry in the
problem. In this sense are the conclusions of our paper are
not limited to BaCuSi2O6 alone.

The main purpose of the present work is to derive the
critical properties of the field-induced BEC-QCP for the XY
magnet mentioned above. The key finding of our result is the
detailed phase diagram of Fig. 1, where we show the various
crossover regimes of a chemical potential tuned BEC on a
frustrated lattice. This work complements the results pre-
sented in Ref. 10 by including a renormalization group ap-
proach �Sec. IV� which provides a formal justification for the
heuristic mean-field approach presented in Ref. 10 and is
summarized in detail in Sec. III. The model for the XY mag-
net on a bct lattice is introduced in Sec. II. For practical
reasons, we use the language of hard core bosons which are
equivalent to S=1 /2 spins after a Matsubara-Matsuda
transformation.19 Our conclusions are presented in Sec. IV.

II. MODEL

We start from the Hamiltonian of interacting spinless
bosons on a body centered cubic lattice

µ��T
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FIG. 1. �Color online� Phase diagram obtained by the renormal-
ization group approach.
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HB = �
k

�Ek − ��ak
†ak + u�

i

nini. �1�

Here ni=ai
†ai is the local number operator of the bosons and

ak
† =

1
�N

�
i

ai
†eik·Ri, �2�

the corresponding creation operator in momentum space. The
tight binding dispersion for nearest neighbor boson hopping
on the bct lattice is

Ek = �k�
+ 2t��k�

cos kzc , �3�

k� = �kx ,ky� refers to the in plane momentum and

�k�
= t��2 + cos kxa + cos kya� �4�

is the in-plane dispersion. For convenience we included the
constant shift 2t� in the definition of �k�

to ensure that �k�

	0. The last term in Eq. �3� refers to the inter-plane cou-
pling, where the form factor

�k�
= cos

kxa

2
cos

kya

2
�5�

describes the k� dependence of this coupling in the bct lat-
tice. This k� dependence is a crucial aspect of our theory.

For t�, t��0 and t� � t� /2, Bose Einstein condensation
takes place at Q= �
 /a ,
 /a ,kz�. Since �k�

vanishes for k�

= �
 /a ,
 /a�, EQ is independent of kz. The minimum of the
dispersion is infinitely degenerate as the z component of the
wave vector can take any value when the x and y compo-
nents are equal to 
 /a. In case of the ideal Bose gas �u=0�
this implies for T=0 that different layers decouple com-
pletely. Only excitations at finite T with in-plane momentum
away from the condensation point can propagate in the z
direction. This behavior changes as soon as boson-boson in-
teractions �u�0� are included. States in the Bose condensate
scatter and create virtual excitations above the condensate
that are allowed to propagate in the z direction. These exci-
tations couple to condensate states in other layers.5 The con-
densed state of interacting bosons is then truly three-
dimensional, even at T=0. This order by disorder argument
for dimensional restoration due to interactions does not apply
in case of chemical potential tuned BEC. In this case, the
number of bosons at T=0 is strictly zero for ��0, i.e., be-
fore BEC sets in. The absence of particles makes their inter-
action mute and one can approach the QCP arbitrarily closely
without coherently coupling different layers.

From now on, we will measure the momentum relative to
the wave vector Q0= �
 /a ,
 /a ,0� :q=k−Q0, such that BEC
corresponds to a macroscopic occupation of a state with van-
ishing in-plane momentum q� =0. Since we will treat the in-
terlayer hopping t� pertubativly, it is convenient to rewrite
HB using real space variables for the direction perpendicular
to the planes:

HB = �
q�,i

��q�
− ��aq�i

† aq�i
+ u�

x�,i
nx�i

nx�i
+ t��

q�,ij
�q�

�ij�aq�i
† aq�j

+ H.c.� , �6�

The indices i , j denote the different layers, with �ij =1 for
nearest neighbor layers while �ij =0 otherwise. Due to the
shift of momentum, it holds that

�q�
= sin

qx

2
sin

qy

2
. �7�

We note that HB has a discrete Z2 symmetry5,16,17

qx → − qx,

ax�,i
† → �− 1�iax�,i

† . �8�

for all i. This is a local Z2 symmetry with respect to the layer
index. In momentum space the last equation corresponds to
qz→qz+
 /c. The in-plane dispersion and the local interac-
tion trivially obey this symmetry. However, the interlayer
hopping is only invariant with respect to this transformation
since �q�

is odd with respect to either qx or qy. This discrete
symmetry is therefore closely connected to the degeneracy of
the Bose condensate with respect to qz. If we were to include
an additional inter-layer hopping term between neighboring
planes with q�-independent hopping t1,

T1 = t1�
q�,ij

�ij�aq�i
† aq�j

+ H.c.� , �9�

we would break the Z2 symmetry. In addition we would lift
the degeneracy of the Bose condensate to either kz=
 /c or
kz=0, depending on the sign of t1. On the other hand, inclu-
sion of a term

T2 = t2�
q�,ij

�̃ij�aq�i
† aq�j

+ H.c.� , �10�

that promotes boson hopping between second neighbors
��̃i i+2= �̃i+2 i=1 and �̃ij =0 otherwise� would lift the degen-
eracy of the bose condensate, but without breaking the Z2
symmetry. We will see below that this leads to an important
distinction between coherent coupling between nearest- and
next-nearest-neighbor layers.

While the Bose condensed state for ��0 is three-
dimensional, the decoupling for ���0,T=0� has dramatic
consequences. We show that the BEC transition temperature
varies as

Tc � � ln� t�

�
�/ln ln

t�

�
. �11�

Tc��2/d holds instead for an isotropic Bose system in d
�2. Despite the fact that different layers are coupled at finite
T the BEC-transition temperature, Eq. �11�, depends on �
similar to the Berezinskii-Kosterlitz-Thouless �BKT� transi-
tion temperature of a two-dimensional system.20

The renormalization group �RG� calculation used to ob-
tain this result �a one-loop RG calculation in analogy to Refs.
20 and 21� shows that the finite temperature transition is a
classical 3D XY transition, not a BKT transition. We con-
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clude, therefore, that the T=0 QCP of chemical potential
tuned BEC with three-dimensional dispersion, Eq. �3�, is
strictly two-dimensional. The system then crosses over to be
three-dimensional for ��0 or T�0, where the density of
bosons becomes finite and boson-boson interactions drive the
crossover to d=3. The transition temperature of this three-
dimensional BEC is given by the two-dimensional result,
�11�. It is important to stress that the vanishing density for
���0,T=0� implies that these results are not limited to
weakly interacting bosons.23

III. MEAN FIELD THEORY

A. Phase boundary

Here we present a heuristic derivation of Eq. �11� based
on an approach introduced by Popov25 and further explored
by Fisher and Hohenberg:20 infrared divergencies are cutoff
for momenta q�q0	�� / t�, where � is the chemical poten-
tial. The main results of this approach were already given in
Ref. 10. We will show how an effective coupling along the z
axis appears when the interaction term of HB is taken into
account. For this purpose, we will approach the BEC-QCP
from the disordered phase. Since we are interested in the
case of hardcore bosons, we will consider an infinitely large
on-site repulsive interaction u→�.

While the interaction is local, scattering processes be-
tween bosons in different layers generate effective nonlocal
interactions at low energies of the type

Hint =
1

2 �
ijkl,
q��

vijkl�q1�,q2�,q3��aq4�i
† aq3�j

† aq2�k
aq1�l

, �12�

where q1� +q2� =q3� +q4�. To leading order in the boson den-
sity �, the Fourier transform v0�q���viiii�q�� of the intralayer
effective on-site interaction results from adding the ladder
diagrams shown in Fig. 2�a� �Ref. 26�

1

v0�q1� + q2��
= d2q�

4
2

1

�q�+q1�
+ �q2�−q�

, �13�

where

�q�
= t��2 − cos qxa − cos qya� �14�

due to the shift of the in-plane momentum. The integral in
Eq. 2 diverges logarithmically in two dimensions for
q1� ,q2�→0. The effective interaction will be logarithmically
small in the low density limit. An heuristic way of deriving a
consistent mean field theory is to introduce the cutoff q0
��� / t�:20,24,25

1

v0
=

1

2


q0


 d2q�

4
2

1

�q�

�

ln
t�

�

t�

. �15�

We proceed now to compute the interlayer interactions
vijkl that are generated by combining the intralayer renormal-
ized interaction v0 with the interlayer hopping term t�. For
this purpose, it is convenient to expand the propagator in
powers of the interlayer hopping:

Gij�q�� = g�q���ij + tij�q��g2�q�� + �
l

til�q��tlj�q��g3�q�� + ¯ ,

�16�

where tij�q��= t��q�
�i,j and

g�q�� =
1

− i�n +
t�

2
q�

2 − �

. �17�

is the intralayer propagator for long wavelengths �q��1�.
From now on, we measure in plane momenta in units of
2
 /a where a is the in-plane lattice constant �i.e., we set a
=1� and work in the long wavelength limit q��1. The lead-
ing order inter-layer effective interactions that are relevant
for inducing coherency along the z axis are viij j �v�i−j� for
�i− j � =1 �see Fig. 2�b�� and �i− j � =2 �see Fig. 2�c��. Analyz-
ing the corresponding ladder diagrams yields

v1�p� = − v0
2t�

2  d�d2q

�2
�3 �q�p−qg2�q�g2�p − q� ,

v2�p� = − v0
2t�

4  d�d2q

�2
�3 �q
2�p−q

2 g3�q�g3�p − q� .

Performing the momentum and frequency integration with
lower momentum cut off q0 and setting p→0 yields

v1 = −
v0

2t�
2

8
t�
3 ln




q0
,

v2 = −
9v0

2t�
4

128
t�
5 ln




q0
. �18�

The v0, v1, and v2 processes generate the minimal number
of terms that have to be included in the low-energy effective
Hamiltonian in order to provide a correct description of the
critical properties of our bosonic system in the low density
limit. The expression for the new interaction term in the
low-energy theory is

(a)

n,k1 n,k2

n+1,k1-k3n+1,k1+k3
(b) n+2,k1-k3n+2,k1+k3

n,k1 n,k2

(c)

n,k1

n,k2 n,k2-k3

n,k1+k3

FIG. 2. �Color online� �a� Ladder diagrams that provide the
dominant contribution to the intralayer scattering in the low density
regime �Ref. 26�. �b� and �c� leading order diagrams that contribute
to the coherent interlayer hoppings t

�,1
* and t

�,2
* .
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Hint =
1

2 �
ij
q��

�
m=0

2

vm��i−j�,maq4�i
† aq3�i

† aq2�j
aq1�j

. �19�

The m=0 term corresponds to intralayer scattering vertex v0.
The other terms with m=1, 2 describe hopping of pairs of
bosons from the layer i to the layer j�m. Now we perform
the mean field decoupling �we suppress the in-plane coordi-
nate x� for simplicity�

nini 	 2�ni − �2,

ai
†ai

†ajaj 	 ai
†aj�ai

†aj� + ai
†aj�ai

†aj� − �ai
†aj�2,

where �= �nx�,i
�. With this mean field approximation we ob-

tain an effective single particle Hamiltonian with dispersion

Eq
* = Eq + 2v1�1 cos qz + 2v2�2 cos 2qz, �20�

with

� j = d2q�

4
2 �aq�,i
† aq�,i+j� , �21�

and effective chemical potential

�* = � − v0� . �22�

The mean values �aq�,i
† aq�,i+j� are given by

�aq�,i
† aq�,i+j� = 

−



 dqz

2


cos�jqz�

e��E
q
*−�*� − 1

.

It follows �aq�,i
† aq�,i+1�=0, a result that is a consequence of

the local Z2 symmetry of H. This means that �1 may only
become nonzero when the U�1� symmetry gets broken at the
BEC transition. In contrast, �ax�,i

† ax�,i+2� is invariant under the
discrete Z2 symmetry of H. Therefore this mean value is
finite as long as the concentration of bosons is finite. Al-
though the term 2t��q�

cos qz cancels at q� =0, it is crucial to
keep it in order to obtain a finite value for �2. Without
this term, we have: E

q
*=E

q+ 

2

q̂z

* , which would imply

�aq�,n
† aq�,n+2�=0.
The system undergoes a Bose-Einstein condensation

when the effective chemical potential, �*, becomes equal to
zero:

� = v0��Tc� . �23�

In order to calculate ��Tc�, we need to solve the integral �21�
for �2 at T=Tc. We will assume that �q�

�2v2�2 cos 2qz for
any q� 	q0, and evaluate the expectation value �aq�,n

† aq�,n+2�
in the limit �2=0. Below we verify that this assumption is
justified for small t� / t�. It follows that

�2 	
Tt�

2 ln
2T

t�q0
2

4
t�
3 , �24�

where the logarithmic term contains again the lower momen-
tum cutoff q0. Without this lower cutoff, the mean-field
theory could not be properly defined. This result is consistent

with the above assumption that 2v2�2 is small compared to
�q�

if q� 	q0, since �q0
	 t�� / ln � / t� while 2v2�2	�t� / t��6

�q0
. The last result was obtained using Eq. �18� for v2.
With �2�0 for finite T, the effective dispersion E

q
* of Eq.

�20� becomes three-dimensional. Coherent motion of bosons
within the planes and between planes is allowed. While ther-
mally excited bosons are needed for this coherent hopping to
emerge, its origin are quantum fluctuations that cause the
nonlocal interlayer interaction v2. The quantum critical point
at �T=0,�=0� is however purely two-dimensional. We have
a finite coherent inter-layer coupling at the BEC momentum
only for finite T or in the bose condensed state. This implies
that the bose condensate itself is three-dimensional and that
the universality class of the finite T transition is 3D-XY.
However, the amplitude of this coherent coupling is very
small and the system will be effectively two-dimensional un-
til it is very close to the transition. The width of the regime
with three-dimensional fluctuations shrinks to zero as Tc van-
ishes. This implies that the magnitude of Tc obtained from
Eq. �23� is practically the same as the magnitude of the
Kostelitz-Thouless temperature TKT. The thermodynamic
phase transition is, however, always of second order. Al-
though the effective coupling v2 induced by order from dis-
order is irrelevant for the quantum critical point �the phase
transition induced by changing the chemical potential at T
=0�, it is relevant for the classical phase transition at T=Tc.
Therefore, the dependence of Tc on � and � is given by the
d=2 expressions

Tc � t�

�

ln ln �−1 ,

� �
Tc

ln�t�/Tc�
. �25�

In addition we have the usual two-dimensional expres-
sions for the density as function of temperature or chemical
potential:

��T = 0,�� � � ln
�

t�

,

��T,� = 0� �
T

t�

ln ln t�/T . �26�

The appeal of this mean-field theory is its physical transpar-
ency and technical simplicity. The introduction of the chemi-
cal potential as lower cutoff is, however, rather ad hoc and it
is unclear whether it is justified for the problem at hand. In
order to avoid these ambiguities we developed a renormal-
ization group approach that confirms the results of this sec-
tion �see the next section�.

B. Bond ordering

We will discuss now the bond ordering that accompanies
the BEC. The Z2 symmetry �8� is spontaneously broken be-
low Tc because according to Eq. �21�
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�1 	
1

4
2 �a0,i
† ��a0,i+1� , �27�

becomes finite for a nonzero BEC order parameter �a0,i
† �.

Moreover, ��1� is maximized when the relative phase be-
tween �a0,i

† �=Ae�i and �a0,i+1�=Ae�i+1 is 0 or 
 meaning that
the interlayer coupling favors any of these two relative ori-
entations below Tc: Ei,i+1�cos2��i+1−�i�.5 In real space, this
means that the phase of a given site x� of the layer i, �x�,i

, is
parallel to the phase of two of its nearest neighbors on layer
i+1 and antiparallel to the phase of the other two. Conse-
quently, the four bonds connecting a given site with its near-
est neighbors on an adjacent layer, become inequivalent be-
low Tc, i.e., there is a finite bond order parameter.

In principle, the bond ordering could appear at a critical
temperature higher than Tc. In that case there would be two
thermodynamic phase transitions instead of one. We will
show now that there is only one phase transition, i.e., that the
bond order parameter becomes continuously nonzero only
below Tc. For this purpose, we introduce

�* = − 2t
�
* − �� . �28�

According to Eq. �20�, the transition to the Bose condensed
state occurs for ��=0. Therefore, �� measures the deviation
of the chemical potential from its critical value. By comput-
ing the integral �21� for j=1 we obtain

�1 =
T

t��2
�2
0

2 �1 − y�dy
�y�2 − y�

ln�1 − e−��2t
�
* y+���+��/t��� ,

�29�

where t
�
* =−v1�1 and we have used the heuristic cutoff q0.

We do not expect any transition for �� /��1 because the
temperature is much smaller than the excitation gap and the
number of bosons becomes exponentially small. Therefore,
we will assume �� /��1, corresponding to the quantum
critical regime with the temperature �or the chemical poten-
tial� approaching the BEC point from the disordered side. If
t
�
* /��1, we obtain

�1 =
T

t��2
�2
0

2 �1 − y�dy
�y�2 − y�

ln��2t
�
* y + ��� + ��/t�� ,

�30�

that reduces to

��

�
= 1 −

Tv1

4
�t�

�31�

after expanding the logarithm. Equation �31� violates the
original assumption �� /��1 meaning that there is no so-
lution of Eq. �29� for any finite ��. This implies that the
bond ordering appears only below Tc.

Even though a discrete Z2 symmetry is broken when Bose
condensation occurs, the transition is still in the
XY-universality class as the Ising variable does not introduce
an anisotropy. If ae and ao stand for the boson fields of the
even and odd layers, the effective theory close to the finite-T
transition is

S = SXY�ae
†,ae� + SXY�ao

†,ao� + Sc, �32�

where SXY�ae,o
† ,ae,o� are XY models for the even and odd

layers. Sufficiently close to the transition, thermal fluctua-
tions lead to a coherent coupling among the even and among
the odd layers, while in the disordered state no coherent cou-
pling between the two subsystems of even and odd layers
exist. As discussed above, the coupling term between the
systems is of the form v1�ae

†ae
†aoao+H.c.� and the expecta-

tion value of the Ising variable is �� �ae
†ao�+H.c. While the

Ising variable couples to the relative phase of the even and
odd layers, it does not couple to the long wave length phase
fluctuations of the individual phases in the even or odd lay-
ers. Thus, the transition remains in the XY-universality class.
For example, at finite T the Z2-order parameter then vanishes
as �� �Tc−T�2� where � is the critical exponent of the clas-
sical 3D-XY model.

IV. RENORMALIZATION GROUP APPROACH

The mean-field approach presented in the previous section
was supplemented by the introduction of a lower cutoff of
otherwise infrared divergent terms in the perturbation theory.
These divergencies result from the fact that the two-
dimensional dilute Bose system is a quantum system at the
upper critical dimension. The natural approach to control
these divergencies is a renormalization group analysis.

In our renormalization group analysis of the model Eq. �1�
we start from the action

Sbare = �
ij


q

aq,i
† Gij

−1�q�aq,j

+
u

2�
i


q1,2,3

aq1,i
† aq2,i

† aq3,iaq1+q2−q3,i, �33�

where

G0ij
−1�q� = g−1�q��ij − t�qxqy�i,j , �34�

with g�q� of Eq. �17�. Here q= �q� ,�n� refers to the planar
momentum q� = �qx ,qy� and the bosonic Matsubara frequency
�n=2n
T. We use the notation


q

¯ = T
�q����

d2q�

�2
�2�
n

¯ . �35�

The upper cutoff � is determined by a length scale larger
than the interatomic spacing but much smaller than the cor-
relation length. Thus �	1 with our choice that the in-plane
lattice constant a=1. The upper momentum cutoff � yields
an upper energy cutoff of order t�.

Although the interlayer hopping t� is a marginal pertur-
bation, it is responsible for the emergence of new, nonlocal
interactions, where excited states of one layer propagate into
another layer and couple to its low-energy states as was al-
ready demonstrated in the mean-field theory of the previous
section. We need to include such nonlocal couplings into the
effective action of the renormalization group analysis. Such
nonlocal interactions might cause, in turn, coherent motion
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of bosons even for q� =0. Thus, we need to further supple-
ment the action and allow for a coherent motion of bosons.
This leads to the effective action

S = �
ij


q

aq,i
† Gij

−1�q�aq,j

+
1

2�
ijkl


q1q2q3

�

vijklaq1,i
† aq2,j

† aq3,kaq1+q2−q3,l, �36�

where

Gij
−1�q� = g−1�q��ij − tij�q�� , �37�

with interlayer hopping

tij�q�� = �ij�t1 + t�qxqy� + �̃ijt2.

Thus, we include terms such as T1,2 in Eqs. �9� and �10�. In
particular, the hopping t2 between next-nearest neighbors is
included as it is the leading interlayer boson hopping that
does not violate the abovementioned Z2 symmetry. The hop-
ping t1 between neighboring layers is included to explicitly
demonstrate that it will not contribute to coherent interlayer
motion. At the beginning of the renormalization group flow
S=Sbare and it holds that

t1�l = 0� = t2�l = 0� = 0 �38�

and

vijkl�l = 0� = u�ij�ik�il. �39�

Before we derive one loop RG equations we discuss the
various distinct physical regimes indicated in Fig. 3. The
renormalization group approach is controlled by the flow
variable l=ln�� /��l��. As usual in the regime of small but
finite temperature, T is a relevant perturbation of the T=0
QCP and a crossover to classical critical behavior occurs for
l� l0 when the renormalized temperature becomes compa-
rable with the upper energy cutoff t�:

T�l0� = t� . �40�

Excitations in the system with momentum larger than �e−l0

behave just like T=0 quantum excitations, while those with
momentum below �e−l0 are classical. As T→0, the cross-
over variable l0→� and, as expected, all degrees of freedom
are in the quantum regime.

In addition to this quantum to classical crossover, the sys-
tem undergoes a dimensional crossover at a scale l* defined
via

t1,2�l*� = t� , �41�

depending whether t1�l*� or t2�l*� first reaches t�. In analogy
to the quantum to classical crossover, it holds that excitations
with momentum larger than �e−l* behave quasi-two-
dimensional while those with momentum below �e−l* are
sensitive to a coherent interlayer coupling. We show that l0
� l* if the system is close to the critical temperature, i.e., the
dimensional crossover is driven by the existence of thermal
excitations in the system. However, quantum fluctuations are
nevertheless crucial for the dimensional crossover, as they
lead to nonlocal interactions vijkl that are responsible for the
dimensional crossover once thermally excited bosons exist.

As long as the system is in the regime l� l*, the renor-
malized coherent interlayer coupling is small. This has im-
portant implications for the distinction between low and high
energy degrees of freedom. For l� l* we have to integrate
out states with �e−l� �q� � ��, regardless of the momentum
perpendicular to q�. Only once the RG flow enters a three-
dimensional regime for l� l* is it sensible to distinguish low
and high energy modes with momentum qz perpendicular to
the planes. Then we integrate out states with �e−l

��q�
2+qz

2��.
We first give the one loop renormalization group equa-

tions for l� l*. It holds that

d�

dl
= 2� − 2�

lm
vilmi

k

�

Glm�q� ,

dt�

dl
= 0,

dtj

dl
= 2tj + 2�

lm
vi,l,m,i+j

k

�

Glm�q� ,

dT

dl
= 2T , �42�

as well as

dvijlm

dl
= − �

stuv
vijuvvstlm

q

�

Gsu�q�Gtv�− q�

− 4�
stuv

visluv jtmv
q

�

Gsv�q�Gtu�q� , �43�

where we use the short hand notation


q

�

¯ = lim
l→0

l−1T�
n


�e−l��q����

d2q� ¯ . �44�

For l� l* the renormalized interlayer hopping element is
comparable to the in-plane hopping t� and we are finally
allowed to perform a continuum’s theory for the direction
perpendicular to the layers as well. Then, the problem is
identical to the one of an isotropic three-dimensional Bose
system

2D quantum
regime

0l *l2D classical
regime

3D classical
regime

pair scattering
between layers

weakly coupled
layers

isotropic
3D behavior

l= log( / (l))

FIG. 3. Regimes of the renormalization flow.
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S = 
Q

� �− i�n +
t�

2
�q�

2 + qz
2� − ��l*��aQ

† aQ

+
1

2


Q1¯Q4

�

viso�l*�aQ1

† aQ2

† aQ3
aQ1+Q2−Q3

, �45�

where Q= �q� ,qz ,�n� is a �3+1�-dimensional vector that in-
cludes the momentum qz. The initial values for this flow are
determined by the final values for the flow for l� l*. The
isotropic boson interaction

viso�l*� = c�
ijkl

vijkl�l*� , �46�

corresponds to the qz=0 value of the coupling constants vijkl.
For short ranged couplings viso it is dominated by the largest
coupling constant. The additional prefactor c, with lattice
constant in the z direction, ensures that viso is a three-
dimensional coupling constant with dimension
�length�d�energy� for d=3.

A. Quantum-classical crossover

We first analyze the quantum to classical crossover at l
= l0. It is useful to consider separately the behavior in the
quantum regime, where the renormalized temperature is
small compared to the upper energy cutoff T�l�� t� and the
classical regime, where T�l�� t�. We treat both regimes sepa-
rately and assume T�l�� t� in the former and T�l�� t� in the
latter regime and connect the flow of the various coupling
constants smoothly at l0. This is essentially the approach
taken in Ref. 20. The analysis of Ref. 22 demonstrates that
the approach used here is fully consistent with results ob-
tained using a more careful analysis of the crossover behav-
ior.

At T=0, the flow of the chemical potential and of the
coherent interlayer boson hopping tij are unaffected by the
interaction between bosons. This result is specific for the
problem of dilute bosons with ��0 since for T=0


q

�

Glm�q� = 0, �47�

as a result of the integration over frequency. Physically this
is due to the fact that the boson number vanishes for T=0
and ��0. This yields the renormalization group equations

d��l�
dl

= 2��l� ,

dt1,2�l�
dl

= 2t1,2�l� . �48�

At T=0, the interaction does not affect �, t1 and t2. This only
happens once the system reaches the classical regime l� l0.
Since t1,2�0�=0, it follows that t1,2�l�=0 as long as the sys-
tem is in the quantum regime. Quantum fluctuations do not
induce a coherent hopping between layers. The interlayer
hopping tij�k��=�ijt�kxky remains unchanged. Note, that the
amplitude t� of this interlayer coupling is unchanged under

renormalization. The flow of the chemical potential is

��l� = �e2l. �49�

Next we analyze the behavior of the interactions. At T
=0 holds


q

�

Gsv�q�Gtu�q� = 0, �50�

which vanishes again because of the vanishing Boson den-
sity. We are left with the analysis of

dvijlm

dl
= − �

stuv
vijuvvstlm

q

�

Gsu�q�Gtv�− q� . �51�

In the Appendix we analyze this flow equation in the limit
where the bare interlayer hopping t� is much smaller than
the in-plane hopping t�. Up to order �t� / t��4 we have to ana-
lyze the coupling for bosons in the same layer v0=viiii, in
neighboring layers v1=viij j with j= i�1 and second neigh-
bor layers v1=viij j with j= i�2. We obtain at large l
�l�2
t� /u�:

v0�l� 	
2
t�a2

l
�1 −

1

2
�t�/t��2 +

3

32
�t�/t��4� ,

v1�l� 	 −

t�a2

2l
��t�/t��2 − �t�/t��4� ,

v2�l� 	 −

t�a2

l

5

32
�t�/t��4. �52�

It is important to keep in mind that these results were ob-
tained with the assumption that initially v0�l=0�=u is the
only coupling constant. The interlayer interactions v1 and v2
result from multiple scatterings in distinct layers where vir-
tual bosons propagate between layers. Thus, we find that
there is no coherent coupling between layers in the quantum
regime, i.e., t1,2�0�=0. On the other hand, we do find that
nonlocal interactions, that couple different layers, emerge.
This is fully consistent with the finding of Refs. 5 and 6.

At finite T, the flow in the quantum regime stops at

l0 =
1

2
ln�t�/T� . �53�

For l� l0 thermal, as opposed to quantum fluctuations, come
into play. The initial values for the subsequent flow are of
course the final values of the RG flow of the quantum re-
gime: ��l0�=�e2l0 = t�

�
T and vi�l0� where the vi�l� are given in

Eq. �52�.

B. Dimensional crossover

The RG flows for l� l0 continues to be two-dimensional,
as no coherent interlayer was generated in the quantum re-
gime. As discussed above we will now analyze the flow
equations as if the problem was purely classical, i.e., we
include solely the lowest Matsubara frequency in the evalu-
ation of the Feynman diagrams. In this case temperature only
enters the flow equations in the combination
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wi�l� =
T�l�

t�

vi�l� . �54�

Thus, it is convenient to use wi�l� in what follows. The lead-
ing order flow equations of wi�l� are

dwi�l�
dl

= 2wi�l� , �55�

with solution

wi�l� = wi�l0�e2�l−l0� = vi�l0�e2�l−l0�. �56�

The coupling constants wi�l� are relevant. This is a conse-
quence of the fact that the upper critical dimension of the
classical regime is du,class=4 as opposed to du,qu=2 for the
zero temperature quantum regime. If we wanted to determine
the critical exponents of the classical phase transition, we
would have to include higher order terms. As pointed out by
Millis,22 it is not necessary to include these higher order
terms if one only wants to determine the value of the transi-
tion temperature: At low T, the coupling constants vi�l� de-
crease for large l0 as follows from Eq. �52�. Thus, the initial
values wi�l0� of the classical flow are small. While the inter-
actions become relevant for l� l0 corrections to Eq. �55� re-
main negligible unless the flow enters the actual critical re-
gime. However, in our case the flow only enters the critical
regime after the dimensional crossover. Thus, we can, for the
moment, safely neglect corrections beyond Eq. �55�.

As shown in Appendix B, the RG flow equations for the
coherent hopping elements and the chemical potential in the
classical regime are

d�

dl
= 2� −

2



w0,

dt1

dl
= 2t1,

dt2

dl
= 2t2 +

t�
2


t�
2w2. �57�

It immediately follows that t1�l�=0 since t1�l0�=0. No coher-
ent nearest-neighbor hopping t1 is being generated by the
mechanism we describe. This is a consequence of the dis-
cussed Z2 symmetry. A finite value for t1 corresponds to a
broken Z2 symmetry. However, the second neighbor coupling
t2 flows to a finite value even if its initial value vanishes. If
we use wi�l� of Eq. �56� with initial values vi�l0� from Eq.
�52� it follows that

d�

dl
= 2� −

g0t�

l0
e2�l−l0�,

dt2

dl
= 2t2 −

g2t�

l0
e2�l−l0�, �58�

where

g0 = 4�1 −
1

2
�t�/t��2 +

3

32
�t�/t��4� ,

g2 =
5

32
�t�/t��6. �59�

The solutions of these differential equations are

��l� = e2�l−l0����l0� −
g0t�

l0
�l − l0�� ,

t2�l� = − e2�l−l0�g2t��l − l0�
l0

. �60�

In the last equation we already took into account that the
initial value of the coherent hopping vanishes: t2�l0�=0. The
dimensional crossover takes place at l* where �t2�l*� � 	 t�,
which corresponds to

e2�l*−l0�g2�l* − l0�
l0

= 1. �61�

For large l*− l0 this is equivalent to

e2�l*−l0� 	
l0

g2 ln l0/g2
. �62�

This yields

w0�l*� = v0�l0�e2�l*−l0� = v0�l0�
l0

g2 ln l0/g2
�63�

as well as

��l*� = � l0

g2 ln l0/g2
��l0� −

g0

g2
t�� . �64�

Inserting l0= 1
2 ln��0 /T� and ��l0� gives

w0�l*� =
g0
t�

2

1

g2 ln �1

2
ln�t�/T�/g2� �65�

for the value of the coupling constant at the end of the two-
dimensional flow and

��l*� = t��
1

2
ln�t�/T�

g2 ln�1

2
ln�t�/T�/g2�

�

T
−

g0

g2� �66�

for the corresponding chemical potential. As pointed out
above, for l� l*, the RG probes energies sufficiently low to
be sensitive to the three-dimensional character of the system.
These final values of the combined quantum and classical
two-dimensional flow become the initial value of the three-
dimensional flow. Since always holds l*� l0, it follows that
this three-dimensional flow is always in the classical regime.

C. Flow in the three-dimensional classical regime

The final regime of the flow is in the classical three-
dimensional regime. The flow equations are the usual ones
for an isotropic three-dimensional classical bosonic system,
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i.e., for a two component �4 or XY model. The condition for
the critical temperature is that the initial values for the flow
of this three-dimensional classical flow obey

��l*� 	 w�l*� . �67�

This ensures that the flow is on the critical surface and the
system is close to the critical temperature. An alternative
way to interpret this condition was given in Ref. 22, where it
was shown that Eq. �67� is equivalent to the Ginzburg crite-
rion for the onset of critical fluctuations. Whenever a system
is in the Ginzburg regime of classical critical fluctuations, it
is very close to the actual critical temperature. The detailed
analysis inside this regime is the usual one for a d=3 classi-
cal XY model and does not need be reproduced here. We are
more interested in the value of the transition temperature at
low T. We use our previous results for the initial values ��l*�
and w�l*� of the three-dimensional flow to analyze the con-
dition Eq. �67� and obtain

� = Tc

2g0



2
+ ln� 1

2g2
ln�t�/Tc��

ln��0/Tc�
	 8Tc

ln� 16

5�6 ln�t�/Tc��
ln��0/Tc�

.

�68�

Solving this result for Tc with logarithmic accuracy yields
the transition temperature as function of chemical potential,
as given in Eq. �11�. The phase diagram that results from our
RG analysis is represented in Fig. 1.

V. SUMMARY

In summary, we have shown that interlayer frustration re-
duces the effective dimensionality of a BEC quantum phase
transition induced by a change of the chemical potential. The
BEC-QCP exhibits 2D quantum critical fluctuations that
dominate over an extended region of the phase diagram. The
phase boundary between the disordered and ordered phase
extends to finite temperatures although the universality class
of the transition changes from BEC in 2+2 dimensions at
T=0 to 3D-XY at finite T. For T�0, there is a crossover
from the 2D quantum critical to a 2D classical regime as the
system approaches the phase boundary from disordered side.
The dimensional crossover occurs within the classical regime
as the system gets even closer to the phase boundary �see
Figs. 1 and 3�. In our model, the dimensional reduction oc-
curs because of an emergent symmetry in the problem which
is caused by the fact that the tuning parameter of the phase
transition �the chemical potential� is coupled to a conserved
order parameter.

The BEC ordering is accompanied by bond ordering that
results from a spontaneous breaking of the Z2 symmetry dis-
cussed in Sec. II. Both, the BEC and the bond order param-
eters increase continuously from zero for �→�c. A finite
bond-order parameter induces a finite hopping between
nearest-neighbor layers that vanishes at the phase boundary
together with the bond ordering.

Although according to our results the thermodynamic
phase transition always belongs to the 3D-XY universality
class, this transition becomes more quasi-2D-like as the sys-

tem approaches the 2D BEC-QCP. In addition to the conse-
quences that were already discussed in the paper, such as the
peculiar behavior of Tc��� given by Eq. �11�, this observa-
tion has implications for the T dependence of any thermody-
namic quantity for T→Tc and ���c�T=0� given the dimen-
sional crossover predicted by our RG calculation.

The pheonomenon of dimensional reduction has been dis-
cussed in the context of heavy electron materials, where di-
mensional reduction was introduced as an important ingredi-
ent to rationalize experiments close to quantum critical
points27,28 or to justify theoretical approaches for such criti-
cal points.29 Two-dimensional fluctuations at the quantum-
critical point of CeCu6−xAux were observed as precursors of
three-dimensional ordering in this material. Transport experi-
ments in CePd2Si2 close to a quantum critical point were
interpreted as being caused by a reduced effective dimension
of the system.28 Finally the applicability of a theory for local
criticality in heavy electron intermetallics heavily relies on
the fact that the dimensionality of the system is reduced29 to
d=2. We point out that the dimensional reduction discussed
in this paper is very special as it is related to an emergent
sliding symmetry and ultimately caused by the fact that the
disordered ground state is “classical” in the sense defined
above and the tuning parameter of the transition couples to a
conserved order parameter. This is a very special situation
and most likely not realized in any of the above heavy elec-
tron materials. Thus the dimensional reduction discussed in
this paper does not seem to be a viable way to understand the
peculiar observations of Refs. 27 and 28. Instead, order by
disorder effects will lead to a coherent three-dimensional
quantum critical point.5 While much more general, this con-
clusion can be arrived at explicitly by studying a model of
collective order parameter fluctuations on a body centered
tetragonal lattice �see also Ref. 16�. We consider an action

S = Sdyn +
1

4�
k
 d��� + Ek���k,����− k,��

+
u

4�
i
 d����ri,����ri,���2, �69�

where � is the is a three component vector order parameter.
Depending on the problem under consideration, the dynami-
cal part Sdyn corresponds to ballistic or overdamped dynam-
ics, see Ref. 22. Ek for a bct lattice is the same as for the
BEC problem studied in this paper and is given by Eq. �3�. If
we investigate this model using the renormalization group
approach of this paper, we find that the transition is always
three-dimensional as quantum fluctuations immediately pro-
duce coherent interlayer hopping and no dimensional reduc-
tion at the critical point occurs.

The dimensional reduction at a QCP that we discussed in
this paper can, however, be experimentally verified in real
quantum magnets such as BaCuSi2O6.11,10 For quantum mag-
nets, the chemical potential corresponds to a magnetic field
applied along the symmetry axis while the particle density
corresponds to the magnetization per site. Therefore, the
quantum phase transition discussed in this paper corresponds
to the suppression of magnetic XY ordering by the applica-
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tion of a magentic field that saturates the moments along the
Z direction. Although we discussed the case of a bct lattice,
our result can be applied to more general layered structures
with frustrated interlayer coupling.

ACKNOWLEDGMENTS

We thank A. J. Millis, N. Prokof’ev, and M. Vojta for
helpful discussions and M. Vojta for pointing out Ref. 6.
LANL is supported by the US DOE under Contract No.
W-7405-ENG-36. Ames Laboratory is supported by US
DOE under Contract No. DE-AC02-07CH11358.

APPENDIX

1. Flow in the 2D-quantum regime

In this appendix we derive the result �52� for the interac-
tions vi in the regime l� l0 prior to the quantum to classical
crossover, by solving flow equations

dvijlm

dl
= − �

stuv
vijuvvstlm

k

�

Gsu�k�Gtv�− k� . �A1�

We derive these results by expanding with respect to the ratio
t� / t� of the hopping elements perpendicular and parallel to
the layers. Thus we expanded the propagator Gij�k� of Eq.
�37� in powers of the interlayer hopping, see Eq. �16�. In
perturbation theory in t�, it always holds that i= j, l=m, u
=v, and s= t. Thus we obtain �to simplify the notation we use
vij =viij j�:

dvij

dl
= − �

st
vitvsj

q

�

Gst�q�Gst�− q� . �A2�

Including terms up to order t�
4 it follows that

dvij

dl
= − �

s
visvsj�A�0� + 4B�2�� − �

st
vitvsj�stA

�2�

− �
st

vitvsj�
l

�sl�ltA
�4�, �A3�

where

A�n� =
t�
n

l


q

�

��q�ng�q��n+2�/2g�− q��n+2�/2,

B�2� =
t�
2

l


q

�

��q�2g�q�g�− q�3,

with ��k�=kxky and g�q� of Eq. �17�. Performing the fre-
quency and momentum sums yields A�0�= �2
t��−1, A�2�

=
t�
2

t�
2 �8
t��−1, B�2�=A�2� /2 as well as A�4�= t�

4 / t�
4

�9�128
t��−1. Only terms with j= i�1 and j= i�2 are be-
ing generated at fourth order in t�. We will then introduce
three different coupling constants v0=vii, v1=vi,i�1, and v2
=vi,i�2. It will turn out to be crucial to include v2 in addition
to the leading nonlocal coupling v1. Performing the lattice

sums yields explicit flow equations for the three coupling
constants. If we now keep in mind that due to the initial
conditions v1�l=0�=v2�l=0�=0 vertices with v1 are at least
of order t�

2 and vertices with v2 are at least of order t�
4 we

can restrict the flow equations to fourth order in t�:

dv0

dl
= − v0

2Ã�0� − 2v1
2A�0� − 4v0v1A�2�,

dv1

dl
= − 2v0v1�A�0� + 4B�2�� − v0

2A�2�,

dv2

dl
= − �2v0v2 + v1

2�A�0� − 2v0v1A�2� − v0
2A�4�, �A4�

with Ã�0�=A�0�+4B�2�+2A�4�. For large l we expect a decay
of the coupling constants according to v��l�� l−1. Thus we
assume

v��l� =
h��l�

l
�A5�

and analyze the flow equations for h��l�. For large enough l
we can determine the amplitudes of the coupling constants
from

dh�

dl =0, leading to the algebraic equations

h0 = h0
2Ã�0� + 2h1

2A�0� + 4h0h1A�2�,

h1 = 2h0h1�A�0� + 4B�2�� + h0
2A�2�,

h2 = �2h0h2 + h1
2�A�0� + 2h0h1A�2� + h0

2A�4�. �A6�

We can solve this system of equations once again by expand-
ing with respect to the small parameter

� = A�2�/A�0� =
1

4
�t�/t��2, �A7�

keeping in mind that A�4� /A�0�= 9
4�2. It follows that

h0 = 2
t�a2�1 − 2� +
7

4
�2� ,

h1 = − 2
t�a2�� − 4�2� ,

h2 = − 2
t�a25

4
�2. �A8�

Inserting these results into Eq. �A5� yields the result Eq.
�52�.

2. Flow equations in the 2D-classical regime

As discussed in the main text, in the two-dimensional
classical regime we concentrate on the flow equations of the
chemical potential and coherent hopping elements. We start
from the general RG equations given in Eq. �42�. Using the
fact that vijkl has only three nonvanishing contributions vm
=viij j with j= i�m and m=0 �same layer�, m=1, neighbor-
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ing layers and m=2 �second neighbor layers�. Inserting this
result into Eq. �42� yields

d�

dl
= 2� − 2v0

k

�

Gii�k� ,

dt1

dl
= 2t1 + 2v1

k

�

Gii+1�k� ,

dt2

dl
= 2t2 + 2v2

k

�

Gii+2�k� . �A9�

It holds up to second order in t�:

Gii�k� 	 g�k� + 2t�
2 ��k�2g�k�3,

Gii+1�k� 	 t���k�g�k�2,

Gii+2�k� 	 t�
2 ��k�2g�k�3. �A10�

Here we ignored effects due to t1 and t2 as those will only be
of higher order in t� / t�. This enables us to perform the shell
integration


k

�

Gii�k� =
T�l�


a2t�
�1 +

t�
2

t�
2 � ,


k

�

Gii+1�k� = 0,


k

�

Gii+2�k� =
T�l�

2
a2t�

t�
2

t�
2 , �A11�

where we only included the zeroth’s Matsubara frequency in
the classical regime. The contribution for the nearest-
neighbor coupling vanishes since �k��k�=0, an effect caused
by the Z2 symmetry of the Hamiltonian. Inserting these re-
sults into Eq. �A9� yields Eq. �57�. The solution of the flow
equations then yields values for the second neighbor hopping
small by �t� / t��6, justifying our assumption to neglect t2 in
the right hand side of Eq. �A10�. It is also important to notice
that including terms with coherent neighbor hopping t1 in Eq.
�A10� and self consistently solving the RG equation for t1
still yields t1=0 on the disordered side of the phase transi-
tion.
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