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We investigate the effects induced by the interplay of microscopic degrees of freedom. In many cases, one
has to consider spin and orbital degeneracy to explain complex structures of magnetic and orbital order.
Frequently, attention is focused on electronic correlations. We study how the interaction of electrons with
lattice degrees of freedom modifies the pure electronic case. Because of orbital degeneracy we have to deal
with the Jahn-Teller effect. In particular, the £ ® 8 Jahn-Teller effect allows a perturbative approach. Assuming
that the excitation energies dominate the hopping rate, we derive an effective model and analyze the
interaction-induced symmetry breaking. The additional orbital degree of freedom results in a spin-orbital
model and phonons are taken into account as modified coupling parameters. A quantum mechanical treatment
of phonons results in an exponentially quenched orbital exchange coupling. Furthermore, by considering
electronic symmetry one obtains symmetry breaking in the orbital sector. This was also found when Hund’s
rule coupling was taken into account, but in this case higher symmetry can be restored by proper choice of
parameters, which is not the case for Jahn-Teller coupling. Surprisingly, adiabatic treatment shows neither

exponential damping nor nonrestorable symmetry breaking in the orbital sector.
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I. INTRODUCTION

The interplay of microscopic degrees of freedom, such as
spin, orbitals, and charge, plays an essential role in the de-
scription of a rich variety of physical phenomena in new and
rediscovered materials.! Over the last years, most research
activities have been based either on purely electronic pictures
or on electronic models, which include coupling of the elec-
trons to the static lattice degrees of freedom, to understand
the peculiar features and exotic orders of strongly correlated
many-body systems, such as, e.g., manganites and various
spinel compounds.> Less is known about the dynamical
effects on the properties, due to the interplay between
electron-electron and electron-phonon interactions, of
strongly correlated materials. In this context, a large amount
of work has been devoted to the study of the Holstein-
Hubbard model within the dynamical mean field theory
(DMFT).° In this highly simplified model, electronic states
from a nondegenerate band are considered and electron-
electron as well as electron-phonon interactions are assumed
to act locally only. It has been shown, for example, that the
presence of electron-phonon interaction may give rise to po-
laronic bands at finite electron density near the Fermi level.”
Most strongly correlated systems of interest to condensed
matter physicists, however, require extensions that take into
account orbital degeneracy in addition to spin degeneracy. In
general, degenerate orbital states couple to degenerate vibra-
tional modes, such that the electronic and vibrational motion
cannot be simply decoupled by a canonical transformation
due to the breakdown of the Born-Oppenheimer
approximation.® In this paper, we consider an analytically
treatable minimal model in which this type of decoupling is
possible and the local problem can be treated exactly. In this
regard, we are interested mainly in the influence of the
electron-phonon interaction on orbital and spin exchange
processes, which are treated in a spin-orbital model of the
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Kugel-Khomskii type.>!? In this paper, we consider a two-
band Hubbard model at quarter filling and analyze the dy-
namical consequences due to the Jahn-Teller effect of local,
tetragonal E-doublets,'! but the approach also generalizes to
other electron-phonon interacting systems, such as, e.g., T
® € Jahn-Teller coupling'? in cubic systems. Strictly speak-
ing, our model is directly applicable for rare earth (R) com-
pounds, like RVO, and RAsO, with, for example, R:Dy3+,
Tb3*, ete.!3

The paper is organized as follows. The model is intro-
duced in Sec. IL. In Sec. III the interaction-induced symmetry
breaking is discussed. We derive an effective Hamiltonian in
Sec. IV. Its limits and symmetries are studied and compared
with the microscopic Hamiltonian in Sec. V.

II. MODEL

We consider ions with an E-doublet electronic ground
state at lattice sites of tetragonal point group symmetry. The
interaction of the electronic orbitals with ligand displace-
ments has a destabilizing effect on the ionic configuration. In
the above case, symmetry allows a local coupling of the
doubly degenerate electronic state to a nondegenerate vibra-
tional mode: the E® B Jahn-Teller (JT) effect.'>'* We shall
be particularly concerned with 2E states having electronic
spin 1/2 in addition to orbital degeneracy. The highest local
symmetry of the problem is given by the group SU(4) whose
defining representation is spanned by |yo-)i=ciTW|0) on each
lattice site where the orbital label y=0, € (refers to the orbit-
als yz and zx) and the spin index o=1,]. Ionic displace-
ments break the fourfold symmetry and stabilize a distorted
configuration with orthorhombic point group symmetry,
shown in Fig. 1. The energy minimum is given by E ;,=
—(nw—nis)zEp, where n;,, is the occupation number on site i
in the orbital . The Jahn-Teller stabilization energy E,, in
units of the excitation energy of the harmonic oscillator, is
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FIG. 1. On-site energy splitting of a doubly degenerate elec-
tronic state under a nondegenerate distortion Q that lifts the elec-
tronic degeneracy in first order and gives rise to a twofold degen-
eracy of the coupled electronic-ionic (vibronic) system: E® 3
instability of the symmetric configuration Q=0.

the squared dimensionless JT coupling g. The associated dis-
tortion is Qmin=2g(nw—nie).

The Hamiltonian of the coupled electron-phonon system,
including electronic correlations and electronic and vibra-
tional motion, reads H=H,+H,+Hyr+H,,, where

H,=-1t E ciTwch, (1a)
({)yo

th= E b;bi, (1b)

H]T=_g2 (b2'+bi)(ni0_nie)’ (10)

Hee =U E Ny Niy| + Uaz njgNie

iy=0.¢e i

13 S ded (10
+ > Ciya'ciy/(r/ciyo"ciy’o'

ioo’ y#y'

(ij) denotes nearest neighbors. cl(;zr is the annihilation (cre-

ation) operator for an electron on site i in the orbital vy with
spin o. bg” are bosonic annihilation (creation) operators for
phonons on site i. The orbital occupation operator is given by
Miy="iy) iy,

The dynamics of the electrons is modeled within H, [Eq.
(1a)], which describes an orbital-conserving hopping be-
tween nearest-neighbor JT ions with isotropic hopping rate ¢.
The decoupled motion of the vibrational 8 mode in terms of
a harmonic oscillator on each site is governed by Hy, [Eq.
(1b)]. Hyr [Eq. (1c)] is the bilinear JT coupling.'? The elec-
tronic correlations are modeled by a two-band Hubbard
model. The electron-electron interaction is expressed as H,,
[Eq. (1d)]." Double occupancy requires an energy U (U,)
for electrons in the same (different) orbital(s). Furthermore,
we deal with Hund’s rule coupling J that favors spin triplets
compared to singlets. The energies are given in units of Ziw
and the parameters are assumed to be positive. Correlations
and JT coupling are treated as on-site interactions and non-
local interactions, such as nearest-neighbor Coulomb repul-
sion or phonon-phonon coupling as well as on-site pair hop-
ping, are disregarded.
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In the following section, we analyze the symmetry prop-
erties of the Hamiltonian (1a)—(1d) depending on the choice
of interaction parameters. The aim is the identification of
conserved quantities which can be used to reduce the dimen-
sion of the Hilbert space and to characterize the eigensystem.

III. SYMMETRY AND CONSERVED QUANTITIES

We investigate symmetries related to electronic and
phononic degrees of freedom. It is assumed that the lattice
symmetry is tetragonal. Below we study the interaction-
induced symmetry breaking of the Hamiltonian (l1a)—(1d).
The aim is the classification of symmetry breaking caused by
on-site interactions and comparison with various models in
the current literature. Furthermore, symmetry analysis allows
the identification of conserved quantities. Utilizing these
quantities enables a decomposition of the electronic Hilbert
space.

To discuss electronic symmetry properties, it is conve-
nient to introduce electronic spin-1/2 and orbital spin-1/2
(pseudospin) operators. These operators are defined in terms
of the Pauli matrices o for A=x,y,z,

1

S;\y = E 2 CZ.YG.O'}(;O,,CWGJ , (23)
N 1 i A
Ti0'= 52 Ciyoayy’ciy’07 (2b)
124
Si = Si0+ SiE’ Ti = TlT + Tll (20)

It is easily verified that the angular momentum operators
defined in this way satisfy the standard SU(2) commutation
relations

[S}.51] = 3yji€y .57 (3a)
[T}, T¢] = 8jien 17 (3b)

and in addition
(S} 1 =0. (3c)

The same relations hold true for the global operators S*
=3,5" and T =3,T". The total site spin S; generates SU(2)
rotations in the spin sector, whereas total pseudospin T; gen-
erates SU(2) rotations in the orbital sector and they satisfy
(S;‘)2=(T§‘)2=3-l1 in the single-particle representation. Equa-
tion (3¢) shows that the local site spin and pseudospin alge-
bras are decoupled, which in general does not hold for the
components S%‘y and T{‘o, respectively.

Explicit calculations establish the following relations that
are useful for making the symmetry of the Hamiltonian
(1a)—(1d) particularly transparent:

S;+ 17 = 5m(4 - ny), (4a)

S; + T; +2(T9) = 2m; — 2migne, (4b)

S;+ T - 2(T5)*=nm-22 MiyiMiy| s (4c)
y

094306-2



JAHN-TELLER EFFECT IN THE AUGMENTED HUBBARD MODEL

_ 1 2
(T)*=J(S+TH -T2 S0, (4d)
Y

where the on-site occupation operator is given by n;
=2 iy, At a first glance, Eqs. (3a)-(3c) suggest that the
identity (4a) is SO(4)=SU(2) X SU(2) invariant, but a closer
inspection reveals that Eq. (4a) is actually SU(4) invariant.'®
Furthermore, Hund’s rule coupling can be expressed in

terms of either spin or pseudospin operators,

H,= —JZ <2sm- Sic+ %) (5a)
=73 [T}~ (1) 3N, (5b)

where N,=2;n; is the total number of electrons.

In the following sections we point out symmetry proper-
ties of the Hamiltonian (la)—(1d) concerning phononic and
electronic degrees of freedom.

A. Electronic symmetry

Due to particle conservation, one finds U(1), symmetry
generated by X;n;,. This symmetry holds as long as the hop-
ping is considered as orbital conserving and on-site pair hop-
ping is neglected. Otherwise only the total particle number
N, is conserved.

To discuss the electronic symmetry of the Hamiltonian
(la)-(1d), we take advantage of the fermion realization of
angular momentum algebras, Egs. (2a)—(2c) and (3a)—(3c), as
well as of the identities (4a)—(4d), (5a), and (5b). Neglecting
a constant, this yields

H,, + Hyp=— >, [bsS} + by T} + b (T5)? + 2g(b] + by)T(],
i

(6)
where bg=2(U+U,), by=3(U+U,~2J), and b,=—U+U,+J.

1. SU(4) and SU(2)y,;, X SU(2),,; symmetry

The highest symmetry in the electronic sector, i.e., the
largest number of conserved quantities, is SU(4), which can
be obtained by setting U=U, and J=g=0. The defining rep-
resentation is spanned by the four states |07), |6]);, |€)
and |€|); at each site. H,, in Eq. (6) can be rewritten in the
form

HO = US (48D =S Snly-4), ()

i

where we have neglected a constant. Since the particle num-
ber is conserved, the Hamiltonian (7) has SU(4) symmetry.
Even when hopping is taken into account the Hamiltonian
has global SU(4) symmetry.

Including Hund’s rule coupling and assuming U=U,+J,
but neglecting JT coupling, leads to a rotational invariance in
spin and orbital space. The resulting symmetry is SU(2)y,
X SU(2)o- The generators are S™ and T*. Equation (6)
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shows that b, vanishes and the Hamiltonian is isotropic in the
spin and orbital sectors. The electron-electron interaction
term can be rewritten as a sum of the SU(4)-invariant form
given in Eq. (7) and a T} term that breaks this symmetry.

2. Jahn-Teller and Hund’s rule coupling

Both JT and arbitrary (U # U,+J) Hund’s rule couplings
break the symmetry only in the orbital sector, whereas the
spin sector stays isotropic. These interactions yield a linear
and a quadratic term in 77, respectively. Hund’s rule coupling
reduces SU(2).,, to U(1),, with generator T°.!7 Setting J
=0 and analyzing the symmetry breaking of the JT term, one
has to take into account that 7; commutes also with the spin
operators with orbital index §7. These commutating opera-
tors yield an enlarged symmetry in the spin sector U(1)y,
X SU(2) X SU(2), which can also be interpreted as U(1),,
X SO(4).1° The significance of this augmented spin symme-
try is the rotational invariance in the spin space for each
orbital. Rewriting of the Hamiltonian H,,+ H,p (6) illustrates
that symmetry. One finds

1 2
ot =-3 | (o o st omh- 238,
Y

+2g(b] + bi)Y}’]. (8)

The first contribution of Eq. (8) is SU(4) invariant while the
remaining terms reduce the symmetry to U(1)q, X SU(2)y
X SU(2),. Arbitrary J results in a Ti2 contribution with inde-
pendent coupling parameter and leads to reduction from
SU(Z)HX SU(2)E to SU(Z)Spin'

The electronic symmetries are summarized in Table 1.

B. Vibronic symmetry

So far we have been concerned with continuous electronic
symmetries. We now consider the influence of the lattice and
in particular the symmetry of the coupled vibronic system,
giving rise to discrete space group symmetries.

The B mode, shown in Fig. 1, transforms according to the
B, representation of the point group D,,. The associated
matrix group is Z,, i.e., elements of D, are mapped onto *1
in the B, representation. Elements with +1 form the sub-
group D,;,. Hyy, is written as the sum of the squares of the
distortion and the momentum and hence is invariant with
respect to Dy;,. The electronic operator has the same trans-
formation properties as the coordinates. Hence Hjy is invari-
ant with respect to Dy;,. In Sec. IIT A it was shown that 7° is
a conserved quantity, and therefore a rotation with arbitrary
angle about this axis leaves the Hamiltonian invariant. How-
ever, due to the coupling term Hjp, we have to consider
symmetry elements of the vibronic system, i.e., take both
electronic and phononic degrees of freedom into account.
The appropriate on-site operators 73? , A=x,y, consist of
phononic and electronic parts R; and F:‘ and are given by®

7Di)\ = Rif?

where
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TABLE I. Electronic symmetries of the microscopic Hamiltonian (1a)—(1d) and the effective Hamiltonian

(16), respectively.

Parameters Coupling Symmetry

U=U, and J,g=0 af=a ===y SU4)
Adiabatic, E,=(1/4)(U-U,)and J=0 at=a=B"=B"=vy SU4)
Arbitrary U,U,,g, and J=0 a*=a, B*=", y given by T U(1) o X SU(2) g X SU(2)
U=U,+J and g=0 a*=pt=yand a =43 SU(2)or X SU(2)pin
Adiabatic, E,=(1/4)(U-U,~J) a*=Bt=yand a =" SU(2)orp X SU(2)pin
Adiabatic at=p% and a =8 U(1)or X SU(2) gpin
Arbitrary U,U,,g,J o, a7, B, B, ygivenby T U(1)or X SU(2) gpin

Ri= exp(iﬂ'b:bi) and ff‘ = exp(iﬂ'Tz‘). 9)

R; changes the sign of the distortion and the momentum
while F} describes 7 rotations about the T} axis. For the

electronic and bosonic operators, it follows that

RIBIR;=-b{", (10a)

Cibo

(FD) i Fl =ioe;, where ci(,:( ) (10b)

Cieor
The identities (10a) and (10b) imply the invariance of the
Hamiltonian under P*. Hence, to describe symmetry proper-
ties of the coupled electron-phonon system, we must use
vibronic operators.

IV. EFFECTIVE HAMILTONIAN

In this section we derive an effective Hamiltonian, which
describes the ground state properties and low-lying excita-
tions. We consider excitations from the quarter-filled ground
state without phonons and consider hopping processes to
second order. The quantum mechanical nature of phonons is
included, and one obtains a spin-orbital model of the Kugel-
Khomskii type®!® with modified coupling parameters com-
pared with the pure electronic case. The dimension of the
Hilbert space of such a model is given by the electronic
degrees of freedom while JT coupling (Ic) gives rise to an
infinite-dimensional Hilbert space due to phononic excita-
tions. In the effective model, the couplings are modified by
the phononic excitations and appear in the form of infinite
series.

We start by applying the Lang-Firsov (LF)
transformation'® U p=IL;U; to the Hamiltonian (1a)—(1d),
where

Ui = exp[g(bj‘ - bi)(niﬁ - nie)]’ (1 13.)
UIingT)ULF = b;” +g(nip—nie), (11b)
U]tigerLFz Cl('Iyz)XI('Iy)’ (11c)

and X;,=X;.=exp[—g(b; —b;)] are shift operators that change
the electronic to polaronic operators. The transformed

Hamiltonian is given by H= U{FH ULF:I;V0+I-I, with the on-
site interaction

Hy=(U- 2EP)E iy, + (U, + 2Ep)2 Niglie
iy i

J
¥
+ E E E C;—yo-ciy’g-'ciy(r’ciy’o-'- 2 bjbl - EpNe
i

ioo’ y#y'
(12)
and the hopping term
Ht=—l 2 CiTyUCjVO"X;ijy' (13)
(i) yo
_ 2 . . . .
E,=g" is the energy gain due to JT coupling and N, is the

total number of electrons. The inter- and intraorbital Cou-
lomb interaction is modified in such a way that U is reduced
by 2E, while U, is increased by a similar contribution. The
reason is that the JT term vanishes for double occupancy of
different orbitals (JT inactive) while the energy is further
reduced by the double occupancy of the same orbital (JT
active). The local states for single and double occupancy and
the related energies are shown in Fig. 2.

The transformed Hamiltonian H, Egs. (12) and (13),
serves as a starting point to derive the effective model. We

study the low-energy properties of H by perturbation theory.

single occupancy

0| — — + + JT active
€ + + -_— By
double occupancy
et B e SEE R
JT active JT inactive
U —4E, U,—J U,FJ

FIG. 2. Local states with single and double occupancy without
excited phonons.
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: ; x a*

FIG. 3. Hopping processes of second order. The dots stand for
electrons. The label * indicates whether the intermediate state is a
spin singlet or triplet. The coefficients o™, 8=, and 7y are given in
Eq. (17).

ﬁo is taken as the zeroth-order Hamiltonian while I-NI, is re-
garded as a perturbation. To evaluate H.y, we consider a
quarter-filled lattice with single occupancy and no excited
phonons. Excitations from the ground state are given via six
possible doubly occupied states labeled with | Bj\)» shown in
Fig. 2, plus phononic excitations relative to shifted harmonic
oscillators caused by the LF transformation. To ensure the
singly occupied ground state for a system without hopping
we have to assume U-2E,>0 and U,—J+2E,>0. Up to
second order, we obtain the effective Hamiltonian

Heffz ph<0|ﬁtAﬁt|0>ph Wlth A= 2 AJ
J
and

© 6
_ B linh{n} (B
=3 3

; (14)
{n}=0 =1

where |0),, is the phononic vacuum and [{n}) is the phononic
configuration associated with the energy n. The zeroth-order
Hamiltonian is given by —N E, and is neglected. Contribu-
tions from the first-order perturbation vanish. The excitations
consist of a doubly occupied and a nearest-neighbor empty
site and phononic excitations. The ground state energy is
-N,E,. The excitation energies Ez are U-4E,—(N,-2)E,
and U, *J-(N.-2)E, for intra- and interorbital doubly oc-
cupied sites, respectively (left and right lower panels in Fig.
2). Additional phonon excitations entail a nonzero n.

To derive an effective model we have to take into account
the hopping processes shown in Fig. 3. Processes for nearest-
neighbor electrons in the same orbital (upper panel) lead to
the same energy gain, independent of whether spin exchange
occurs or not. These processes and the role of changing the
lattice configuration have been discussed in the context of
bipolaron formation in the Holstein-Hubbard model.'>?* The
situation differs for processes with nearest-neighbor elec-
trons in different orbitals (lower panel). The energy gain of
such processes, caused by Hund’s rule coupling, depends on
whether the doubly occupied state is a spin singlet or triplet
state. We distinguish these situations with the label =. Pro-
cesses conserving the orbital occupancy relative to the initial
state are preferred compared with processes that change the
orbital configuration. This last conclusion was also found
from studies of the bipolaron problem of the model.?' In
other words, changing the orbital configuration reduces the
energy gain. The different contributions from the hopping
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FIG. 4. Coupling parameters in units of 2¢% versus the JT stabi-
lization energy E,=g* for U=4, Uy=3, and J=1.

processes yield a symmetry breaking in the orbital sector and
SU(2) cannot be restored by a special choice of param-
eters. This is in contrast to the case without electron-phonon
interaction or in the adiabatic limit. We will discuss this point
later on. The isotropy in the spin sector results in SU(2) .

Evaluation of Eq. (14) results in products of an electronic
creation and annihilation operator on sites i and j. These
fourfold products can be rewritten in terms of spin and pseu-
dospin operators in the following way. One considers the
action of c;wcj,//(,r on a state with quarter filling Hicsyiai|0>el
and finds the translation rules'

! !

Yy (oxon

00— 5+T° 11— 5+5

ece—3-T || —1-5°. (15)
e — T 11— 8*

€0— T 1T—=58

For instance, the operator. Cgmcjel can })e expressed as T;(%
—S;). One finds the effective Hamiltonian

Her= 2, (‘ a'Ty- Tj+ (B + " - 29)TiT; - %/— %)Pis;o
(i

. (a‘Ti~Tj+(,3_—a_)Tf’T§—%)Pisjzl, (16)

where the coupling parameters, shown in Fig. 4, are

a*=T(U,+J+2E,2E,),
B =T(U,*J+2E,-2E,),

y=[(U-2E,,-2E,), (17)

where
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- o (=)
L(A,y) =25 2, ————
(A.y)=2r p,%n!(n+A)

The spin singlet and triplet operators on a bond are given by

P0=5-S;-S; and PJ'=S;S;

J+%. (18)

Interorbital processes differ in intermediate spin singlet (o™,
B*) and triplet (a~,87) states. Due to their lower excitation
energy the triplet states lead to an enhanced energy gain. In
the following, a und B without the label = indicate coupling
parameters for J=0. Moreover, one has to distinguish be-
tween changed (@) and conserved (8~) orbital configura-
tions. The former results in an alternating series and leads to
exponential quenching for increasing E,,, while the latter be-
haves algebraically as shown in Fig. 4. In the limit of strong
JT coupling, i.e., E,> 1, one obtains the approximation

L 27e 21

Bt~

212
Lt
U, *J+4E, U

(19)

Without JT coupling one finds the parameters known from
the two-band Hubbard model

y=—". (20)

To discuss spin-orbital models of terms of the Kugel-
Khomskii type, it is useful to rewrite H. in isotropic spin,
orbital, and mixed coupling and anisotropic contributions.
This yields

Hy= 2 JS;- Sj+ 7T - Ty + Jr(T - T)(S; - Sy) + AT T
(ij)
+ A TETS(S; - S) + C. 1)

The coupling parameters, also shown in Fig. 4, are deter-
mined from Eq. (16). Starting from SU(2)yi, X SU(2),, for
£=0, one finds vanishing anisotropy coefficients A and Agy.
Jg varies smoothly while the orbital exchange parameters J;
and Jgy are exponentially damped with E,. It is remarkable
that A, changes sign. This anisotropic orbital coupling alters
from antiferro-orbital to ferro-orbital.

V. LIMITS AND SYMMETRY

It is instructive for later discussions to briefly summarize
some results of bare electronic models available in the cur-
rent literature to point out the potential significance of
electron-phonon interaction in strongly correlated materials.
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In this context, particular emphasis is set on symmetry as-
pects associated with electron-phonon coupling.

A. Symmetries of the isotropic model

We start from the case of highest symmetry SU(4) which
is obtained for U=U, and J=g=0. The coupling parameters
of the effective model (21) achieve Jy=J;= J-lJ or and Ag
=Agr=0.2223 One obtains

1 1
HSU(4)=JSTE (Si'sj+_)<Ti'Tj+_)? (22)
) 4 4

where we have neglected a constant. This model, also with
additional interaction terms and in higher dimensions, has
been intensively studied.’>?*3° In one dimension, SU(N)
models are integrable.3' It is known that, in the thermody-
namic limit*? and if the number of sites is a multiple of 4,3
the ground state of the SU(4) symmetric model is a SU(4)
singlet.

The isotropic model (A;=Ag;=0) with free parameters
x=Jg/Jgr and y=Jy/Jgy, respectively, was found to be
SU(2)pin X SU(2) oy invariant, and a rich phase diagram and
points with exact solutions were discussed®**3 and the anal-
ogy to spin ladders was studied.**~4® To achieve this symme-
try we have to take U=U,+J and g=0, which produces a
line in the (x,y) diagram from the SU(4) point for J=0 to
(=1/4,3/4) for the maximum value of J=U/2.

B. Pure electronic case

The frequently studied spin-orbital models with electronic
correlations are given by setting g=0.13334047-49 Although
the lattice symmetry considered in these references differs
from our case, the structure of the effective model is the
same because of the high symmetry of H,,. In the underlying
model (la)—(1d) with isotropic orbital-conserving hopping
and without on-site pair hopping, one finds U(1),y
X SU(2)pin symmetry with generators 7° and S*. The effec-
tive Hamiltonian written in these operators, neglecting a con-
stant, is given by

- J
@i

—4Ar (TZTJ+ l)(si -8 - 1). (23)
) 4 4

The dot products of spin and pseudospin operators lower the

SU(4) symmetry to SU(2) o X SU(2)p,. The last term re-

duces the symmetry further to U(1)g, X SU(2)gp, and van-

ishes for U=U,+J.

The limits and symmetries above are well-known proper-
ties of spin-orbital models that take solely electron-electron
interaction into account. Let us now consider the limits in-
cluding JT coupling and investigate their effects on magnetic
and orbital order. Finally, we discuss the consequences of an
adiabatic treatment and show that the anisotropy caused by
different contributions from changed and conserved orbital
configurations is missing.
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C. Ferro-orbital and ferromagnetic case

The restriction to single-orbital occupation results in a
Heisenberg model with an antiferromagnetic coupling con-
stant y. Neglect of the electron-phonon interaction yields the
well-known r<<U limit of the Hubbard model with the
Heisenberg coupling 2¢>/U. This model belongs to the class
of SU(N) models and is solvable in one dimension,*'** too.

Neglecting the spin degree of freedom and taking only
ferromagnetic configurations into account, one ends up with
a model describing orbital degrees of freedom in terms of
spinless fermions. This formulation results in an XXZ pseu-
dospin model®" with an anisotropy parameter A=8/a=1.
The XXZ model is solvable, e.g., via the Bethe ansatz.>>* In
the limit g=0 or within the adiabatic treatment the XXZ
model becomes isotropic (A=1). A>1 corresponds to the
quantum mechanical picture of the JT problem. One obtains
exponential increase of the anisotropy parameter caused by
E, and the nature of the model shifts from Heisenberg to
Ising type. Hence the coupling to phonons favors antiferro-
orbital order. This cooperative effect is induced by hopping
of electrons, in contrast to the cooperative JT effect mediated
by phonon-phonon coupling.

D. Hund’s rule coupling J=0

Vanishing Hund’s rule coupling results in U(l),y
X SU(2),*XSU(2), symmetry. Hence, one finds five con-
served quantities compared to three in the case with Hund’s
rule coupling and without JT coupling. Furthermore, the
symmetry breaking caused by J can be extenuated through
particular choice of the parameters U=U,+J, while this is
not possible in terms of JT coupling. The symmetry proper-
ties for /=0 can be seen by rewriting the effective Hamil-
tonian (16) in terms of generators of the group U(1).y,
X SU(2) 4 X SU(2),, which means T* and S’ One finds

HIP = HVW + Bsr > Siy Sjy+ A TS, (24)
@iy Gj)
where we have neglected a constant. Here we take advantage
of the fact that, at quarter filling, the two-particle operators
TS} can be replaced by 3(Sh,—Sh).

The Heisenberg coupling Ag;/2 for the spin in each or-
bital changes sign for U>U,. Weak JT coupling favors fer-
romagnetic (FM) order and the system switches to antiferro-
magnetic (AFM) coupling with increasing values of the
coupling. Analogously the Ising coupling Ay changes from
antiferro-orbital to ferro-orbital (FO). Hence, in the strong
coupling limit £,> 1, one expects an AFM-FO ground state.
Hund’s rule coupling favors FM order and, therefore, com-
petes with JT coupling.

E. Adiabatic limit

Let us consider the adiabatic limit. One finds that the shift
operators in Eq. (13) vanish in that limit, and therefore the
coupling constants are the same as in the purely electronic
case apart from a renormalization of the Coulomb interac-
tions. Hence, the intraorbital (interorbital) repulsion U (U,)
is converted to an effective repulsion U-2E, (U,+2E,) and
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FIG. 5. Symmetry in the adiabatic limit. (a) Possible values for
SU(4) symmetry given by E,=(1/4)(U-U,) and J=0. (b) The
shaded area shows values of U,/U and J/U, where SU(2)
X SU(2) symmetry is possible without violating E,>0 and Uy—J
+2E,>0. Points on lines satisfy the SU(2) X SU(2) condition E,
=(1/4)(U~U,~J) for constant values of E,/U.

the anisotropy and the exponential behavior of the orbital
exchange processes vanish. One obtains

27 q 27
and - ya=75 E,

%= Ba= U, * J+2E,

. (25
Hence the SU(4) condition U=U, and J=0 without JT cou-
pling changes in the adiabatic limit to E1,=:-1(U -U,) and J
=0. The SU(4) point expands to a line shown in Fig. 5(a).
Alternatively, it is possible to restore SU(2)gi, X SU(2),y, by
setting Ep=%(U— U,-J) instead of U=U,+J and g=0. The
restrictions U,>3J-U and U,+J<U ensure positive exci-
tation energy U,—J+2E, and JT energy E,. These inequali-
ties are satisfied within the shaded area in Fig. 5(b). The lines
satisfy the SU(2)yin X SU(2) 4y, condition Epzi(U -U,-J)
for constant values of E,/U. The restoration of these high
symmetries is solely possible in the adiabatic limit. Taking
phononic excitations into account results in anisotropic be-
havior and one finds @<<f and hence U(1),,, symmetry.
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The relations between coupling coefficients for special
choices of parameters and related symmetries are given in
Table I.

VI. CONCLUSION

In this paper, we have considered a two-band Hubbard
model including both on-site Coulomb interactions and
Hund’s rule coupling as well as the local £® 8 Jahn-Teller
effect.

Treating delocalization of the electrons within the frame-
work of degenerate perturbation theory and taking into ac-
count the quantum nature of the Jahn-Teller effect yields an
effective spin-orbital model for the description of electronic
and lattice degrees of freedom. In this effective model, the
coupling parameters are strongly modified in comparison to
pure electronic models, owing to phononic Jahn-Teller exci-
tations. Additionally, the occupancy of the initial and final
orbitals involved in the various virtual hopping processes
plays an important role. In particular, we find that orbital
exchange («a™) due to virtual nearest-neighbor hopping is
exponentially suppressed with the strength of the Jahn-Teller
coupling and even completely quenched in the limit £,> 1.
This is in contrast to orbital-conserving processes (<S~),
which show algebraic renormalization of the bare electronic
coupling constants. Spin exchange processes (o) are basi-
cally proportional to the value of systems without phonons.
If we treat the lattice as static, the exponential quenching is
absent. Instead, we find algebraic contributions for all ex-
change processes. Particularly in this limit, orbital-changing
and -conserving processes of neighboring electrons in differ-
ent orbitals result in the same contribution (o™ =8"). The
same holds true for the effective model without Jahn-Teller
coupling.
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Hence, the main features that arise for the quantum me-
chanical but not for the adiabatic treatment are the depen-
dence of the energy gain due to virtual hopping processes on
the orbital occupancy and the exponential damping for or-
bital exchange processes. This considerations result in an
anisotropic effective spin-orbital model, which means an
XXZ type of orbital. Since the spin sector is isotropic, one
obtains a Heisenberg-type result for the spin degree of free-
dom. In the limit of strong electron-phonon coupling (E,
> 1), the Ising term dominates the orbital part, because the
contributions from orbital exchange processes are exponen-
tially suppressed. Note that this damping is caused by the
quantum mechanical treatment of the Jahn-Teller coupling.

In addition, the facts mentioned above produce remark-
able results for consideration of the symmetry properties. We
studied the interaction-induced symmetry breaking for both
the microscopic and the effective Hamiltonian. The rota-
tional invariance of the spin in each orbital appears as
SU(2)¢X SU(2),. This symmetry is not affected by the Jahn-
Teller effect but is broken to SU(2), through Hund’s rule
coupling. That the SU(2);,, symmetry is not affected by the
couplings we considered can be seen by the formulation of
the interaction contributions in terms of S; and the local
pseudospin operators, given in Eq. (6). Referring to the sym-
metry breaking in the orbital sector, one finds for the adia-
batic limit, just as in the case without Jahn-Teller coupling,
that both SU(4) and SU(2)yin X SU(2),y, Symmetry are re-
storable through proper choice of parameters. However, in-
cluding phononic excitations breaks SU(2) symmetry in the
orbital sector down to U(1).
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