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We study theoretically, by means of layer-multiple-scattering techniques, the propagation of elastic waves
through finite slabs of phononic crystals consisting of metallic spheres in a polyester matrix, embedded in air.
In particular, we focus on the study of modes localized on the surfaces of the structure. Their origin and
behavior, as well as the physical parameters that influence and determine their appearance, are investigated in
detail. Our results reveal the existence of absolute phononic frequency gaps in these finite structures, and point
out the possibility, under an appropriate choice of the parameters, of tunable regions of frequency free of
propagating and/or surface-localized modes.
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I. INTRODUCTION

In recent years, the research related to phononic crystals,
composite structures consisting of periodically arranged
macroscopic inhomogeneities of a given material �scatterers�
in an otherwise homogeneous matrix of different elastic co-
efficients �mass density � and elastic constants cij�, has in-
creased rapidly.1 The simplest case is that of cylindrical or
spherical scatterers, and in such a case we name the corre-
sponding composite structures two-dimensional �2D� or
three-dimensional �3D� phononic crystals, respectively. The
interest in these materials was, especially at the beginning,
stimulated by the investigation of absolute frequency gaps in
these structures, i.e., regions of frequency where no elastic
waves can propagate inside the crystal, independently of
their polarization and angle of direction of propagation.
Nowadays, the research on phononic crystals increasingly
focuses on nonperiodic structures and related phenomena
such as disorder effects, sound focusing, waveguiding, etc. In
this framework, the study of surface elastic waves associated
with the surface of a semi-infinite phononic crystal, or of the
plate modes in a finite-thickness phononic crystal, has at-
tracted a lot of attention in recent years, in the domain of
basic research,2–17 but also because of its promise in techno-
logical applications, mostly in telecommunications,18,19 in
microelectromechanical systems,20 etc. On the other hand the
investigation of gaps in the frequency spectra of the above-
mentioned finite structures is important again, as it is the
base for the development of defect or guided modes in a
region free of modes. All the above facts clearly point out the
need of a thorough understanding of the behavior of surface
and slab modes from a fundamental point of view. The rel-
evant literature is so far almost exclusively focused on sys-
tems of 2D phononic crystals, which have been extensively
studied theoretically2–10 and experimentally.11–16 In these
studies cases of both semi-infinite2–6,14–16 and finite7–13 slabs
are considered. The corresponding 3D systems remain from
this point of view practically unexplored, apart from one
exception,17 as far as we know.

In the theoretical study of propagation of elastic waves
through a finite phononic-crystal slab, one assumes in the
simplest case that the slab is embedded in a material different

from the one surrounding the scatterers �spheres or cylin-
ders�, and, usually, in an actual experiment in a fluid �water
or air� or even in vacuum. For a slab finite along the z direc-
tion �the direction normal to its surface�, the description of
the modes of this system can be realized through its disper-
sion diagram �� ,k��, where k� is the component of the wave
vector of the elastic wave reduced in the corresponding sur-
face Brillouin zone �SBZ� of the 2D periodic lattice. Here,
we are interested in the study of surface modes of a slab
made of a 3D phononic crystal; therefore we will consider it
sufficiently thick. In such a case one in general expects that
most of the modes of the slab reproduce the bulk bands of
the phononic crystal, while some �a few� of them will appear
in the frequency range of the absolute band gap of the
phononic crystal, having their origin in the two end surfaces
of the slab. They clearly represent the surface waves of a
semi-infinite crystal. In this respect, we take advantage of the
existence of an absolute band gap in the band structure of a
3D phononic crystal, which will be translated as a gap in the
dispersion diagram of a slab or even of a semi-infinite crys-
tal. This is in contrast to the case of a 2D phononic crystal.
Indeed, for an infinite 2D crystal, the absolute band gap ex-
ists only for in-plane propagation and disappears when
propagation along the z direction �parallel to the cylinders� is
taken into account. On the other hand, it should be remem-
bered that a finite-thickness slab of a 2D phononic crystal
�where the cylinders are placed with their axes of symmetry
normal to the surface and their lengths equal the thickness of
the slab� can still exhibit an absolute band gap7–9 provided its
thickness is chosen to be of the order of the lattice period.
Therefore, this band gap disappears if the slab is thick
enough to mimic the situation of a semi-infinite crystal,
whereas for a thin plate it is not appropriate in general to
make a distinction between bulk and surface modes. We note
here that in the discussion of the modes of a �sufficiently
thick� slab we adopt the term “propagating modes” for those
modes that coincide in frequency with the bulk bands of the
infinite crystal and whose z spatial behavior is oscillatory.
Correspondingly, we will use the term “surface-localized
modes” for those modes appearing within the band gaps of
the infinite crystal and having an evanescent behavior along
the z direction.
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Slabs made of 3D phononic crystals offer more possibili-
ties for the tailoring of the surface-mode properties, since
their geometrical configuration allows the use of more de-
grees of freedom. We assume here for simplicity that the
surfaces are parallel to a specific crystallographic direction of
the 3D crystal. The 3D finite slab can therefore be viewed as
a repetition of NL parallel identical planes of spheres of a
given crystallographic direction �layers�, with a distance d
separating them. Each of the two end surfaces is located at a
distance ds=d /2 from the center of each surface plane of
spheres, but of course along the z direction more complicated
structures can also be constructed. The slab can be a se-
quence of different layers, where in this most general case
we adopt the term “layer” for any of the following: a plane of
spheres, a homogeneous plate, or a single interface. In this
manner, one can modify the surface layers, and consequently
the properties of the surface modes of this slab �by changing
the radius of the spheres of the surface layer, and/or the
distance between the end surface and the plane of the
spheres, or by adding extra surface homogeneous layers�
without destroying the crystal structure in the internal layers
and, therefore, the possible useful properties and features that
result from it.

In the present paper we are concerned with the study of
surface-localized modes in finite, but relatively thick, slabs
of 3D solid phononic crystals, embedded in air. We investi-
gate in detail the evolution of these modes by changing the
surface properties of these slabs, and we demonstrate the
possibility of tuning their position inside the absolute gap by
means of these surface characteristics. We also study the be-
havior of these modes below the first passbands of the cor-
responding infinite system, offering a simple way to create
tunable regions of frequency free of propagating and/or sur-
face modes.

In Sec. II we briefly give the outline of the method used
for our calculations, and in Sec. III we present the results
obtained by this method and the relevant discussion. Finally,
we conclude the paper in Sec. IV.

II. METHOD OF CALCULATION

For the study of propagation of elastic waves in finite
slabs of 3D phononic crystals, and especially in slabs of
layered form along the z direction, normal to their surfaces,
the layer-multiple-scattering method as developed for
phononic crystals21–23 is an appropriately chosen tool as it
does not require periodicity in the z direction. The method
can treat efficiently, in addition to an infinite phononic crys-
tal, also a slab of the crystal of finite thickness which may
be, in the general case, a succession of different layers,
which can be single interfaces, homogeneous slabs, or planes
of spheres arranged with a given 2D periodicity on each
plane. The only requirement of this method is that the 2D
periodicity must always be the same among the different
layers. This implies that k�, the component of the wave vec-
tor of the elastic wave reduced in the corresponding SBZ of
the 2D periodic lattice, must be a conserved quantity. For
each layer, the method calculates the transmission and reflec-
tion matrices, QI and QIII, respectively, for a plane wave

incident on the layer with given frequency and k� from the
left �i.e., with kz�0�, as well as the corresponding matrices
QIV and QII for incidence from the right �i.e., with kz�0�.
Explicit expressions for these Q matrices can be found
elsewhere.22 If one is interested in studying the propagation
of elastic waves of frequency � incident from the one side
�e.g., from the left� of the finite slab with a given k�, then the
layer-multiple-scattering formalism provides us with a set of
transmission and reflection matrices, for the whole finite
structure. These matrices are calculated from those of the
constituent layers, and through them the transmittance and
reflectance of this slab for a wave of given �, k�, and polar-
ization, as well as the corresponding density of states of the
elastic field, are obtained.22,23

Moreover, the method can also be applied to calculate the
dispersion diagrams ��,k�� for a finite slab, i.e., to determine
the eigenfrequencies of the bound and virtual bound states of
such a structure.17 In this case, one needs to consider an
appropriately chosen internal point �or, more correctly, a
plane parallel to the surfaces of the slab� inside the slab,
which separates the slab into a left and a right part with
corresponding reflection matrices QL

II and QR
III. The condi-

tion of bound states is then given by the equation

det�I − QL
IIQR

III� = 0, �1�

which results from the requirement of the existence of a
wave field localized within the slab. All the quantities enter-
ing into Eq. �1� are functions of � and k�. For a given value
of the latter, one solves the above secular equation to obtain
the real- or imaginary-frequency solutions that correspond to
bound or virtual bound states �leaky modes� of the system
under consideration.

III. RESULTS AND DISCUSSION

To begin with, we consider a fcc crystal, of lattice con-
stant a0

�2 �a0 is the first-neighbor distance�, consisting of
steel spheres �mass density �s=7800 kg /m3, longitudinal
and transverse velocities cls=5940 m /s and cts=3200 m /s�
in polyester �mass density �=1220 kg /m3, longitudinal and
transverse velocities cl=2490 m /s and ct=1180 m /s�. The
spheres have a radius S=0.325a0, leading to a value f
= �4��2 /3��S /a0�3=0.20 for the volume filling fraction of
the crystal. This system, in its infinite form, is known to
present large absolute gaps, originating from the interaction
of the dipole resonances of the scatterers with the effective
medium bands which describe the propagation in a homoge-
neous medium.24 This type of gap, the so-called hybridiza-
tion gaps, in opposition to the Bragg gap, can be present
even with only one plane of spheres. In the case considered
here this gap extends from �a0 /cair=16.72 to 23.63. In Fig.
1�a� we show the projection of the frequency band structure
of the acoustic field in this crystal on the SBZ of its �001�
surface, which we calculated using the computer program of
Ref. 22. The shaded regions extend over the frequency bands
of the acoustic field: at any one frequency within the shaded
region, for a given k� �the component of the reduced wave
vector within the SBZ of the �001� surface�, there exists at
least one propagating mode �the corresponding kz��� is real�
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of the acoustic field in the infinite crystal. The blank areas
correspond to frequency gaps �all kz��� are complex�. Over
the frequency region of the absolute gap, from �a0 /cair
=16.72 to 23.63, there are no propagating modes of the
acoustic field in the infinite crystal. We verified that this is
indeed an absolute gap by calculating the band structure at a
sufficient number of k� points within the SBZ.

We next consider the corresponding finite slab of this
crystal, constructed as a sequence of NL successive fcc �001�
planes of spheres �layers�, with a distance d=a0

�2 /2 be-
tween them, and for the present study we assume it suffi-
ciently thick: we consider NL=8. The whole structure is em-
bedded in air �mass density �air=1.23 kg /m3, sound velocity
cair=340 m /s� with the two end surfaces at a distance ds
from the center of the surface sphere planes, as shown in Fig.
1�b�. Of course ds can vary, following the inequality ds�S
�the spheres cannot be cut from the air-polyester interface�.
We assume ds=d /2, unless otherwise stated. For this finite
system as described above, we find the modes of the slab
propagating along the z direction which reproduce in a dis-
crete way the regions of elastic states of the infinite crystal
�shaded regions in Fig. 1�a��: each band of the infinite system
corresponds in the finite-system case to a discrete number of
points directly related to the number of layers of spheres

along the z direction. For sufficiently thick slabs �which is
the case here�, the frequency limits of these two representa-
tions are practically the same; therefore, in what follows we
represent the propagating modes of the finite system by the
continuous �shaded� regions of the corresponding infinite
system. We note here that the use of the term “propagating
modes” refers to the z direction: these modes of a finite slab
have an oscillatory behavior inside the slab region, along this
direction. Apart from these propagating modes of the slab,
additional modes originating from the presence of the two
end surfaces of the finite system �air-polyester interfaces�
appear, shown by the solid lines in Fig. 1�a�. In the region of
the absolute gap they extend from �a0 /cair=18.74 to 23.63
and of course they continue upward, penetrating within the
region of propagating modes, but we are not interested in
those regions. We focus our study only on such modes lying
within the frequency-gap regions of the corresponding infi-
nite system. In the low-frequency region �i.e., in the first
frequency gap� they follow in general the shape of the first
passband, and are located always a little bit lower, at a small
distance from it. For slabs sufficiently thick, which is the
case here, these modes are doubly degenerate, each of them
associated with each one of the two surfaces �apart from the
low-frequency region, i.e., for �a0 /cair	5, where a split is
observed because of the strong repulsion of the two corre-
sponding modes�. Strictly speaking, the above-mentioned
modes are not surface modes, in the sense that they do not
decay exponentially on both sides of the air-polyester inter-
faces: they propagate along the z direction in air regions, as
they are higher in frequency than the sound propagation line
in air ��a0 /cair= �k��a0�. However, one expects that they will
be strongly localized in the surface regions, i.e., between the
air-polyester interface and the first sphere planes: they at-
tenuate in the interior of the thick phononic-crystal slab, in
the gap-frequency regions of the corresponding infinite sys-
tem. We shall call them “surface-localized modes” to distin-
guish them from the above-mentioned “propagating modes.”

The orientation of the surfaces of the slab does not leave
unaffected the form of these modes in the corresponding dis-
persion curves. Keeping the same infinite system �same crys-
tal structure, same materials and filling fraction�, we can
choose the surfaces of the slab parallel to the �111� planes.
The distance between successive �111� planes is now d
=a0

�6 /3 and again we assume ds=d /2=a0
�6 /6=0.408a0,

unless otherwise stated. Obviously, the position in the fre-
quency of the absolute gap of the infinite structure remains
the same, independently of the crystallographic orientation
of the surfaces, as can be seen in Fig. 2. In other words, the
propagating modes in the finite structure pertain to the same
frequency band regions, although the detailed form of the
projection of the band structure in the corresponding SBZ
associated with the �111� surface changes. However, this is
not the case for the surface-localized modes lying inside the
gaps. Compared to the previous case �see Fig. 1�a�� they are
in general less extended in frequency: from �a0 /cair=22.68
to 23.63 in the region of the absolute gap, and almost disper-
sionless along the KM direction in the first phononic gap. In
what follows, we shall consider this system as the base for
our study and we will refer to it as the reference system.

FIG. 1. �a� Projection of the phononic band structure of a fcc
crystal of steel spheres �radius S=0.325a0� in polyester along the
high-symmetry lines of the SBZ of its �001� surface �shown in the
inset�. Propagating modes, shaded regions; gaps, blank regions.
Solid lines: additional modes of the corresponding finite slab con-
sisting of eight �001� layers of spheres, embedded in air �see �b��.
Dotted lines: lines of propagation of longitudinal and transverse
waves in infinite polyester �higher and lower branch, respectively�.
�b� Slab finite along the z direction, as described in the text. d and
ds denote, respectively, the distance between two successive planes
of spheres and between the air-polyester interface and the center of
the surface plane of spheres.
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A. The region of absolute frequency gap

One expects that for a given crystal structure and surface
orientation these modes appearing within the gaps will also
be sensitive to appropriate modifications of the slab surfaces.
The latter can be realized through a variety of methods in
finite 3D phononic-crystal slabs. In such a case one takes
advantage of the ability of 3D structures to generate more
complicated layered structures based on the same initial 3D
crystal. Using the periodicity of the internal layers to create
regions of frequency where the waves attenuate in any direc-
tion of propagation inside them, we can at the same time
tune the position in frequency inside the gaps of the internal
crystal structure of the modes originating from the surface
layers by modifying these surface layers. In Fig. 3 we dem-
onstrate such an effect by changing the distance ds between
each of the two end surfaces of the finite slab and the center
of the surface planes of spheres. When the two surfaces are
placed just at the position where the surface layers of spheres
terminate �ds=0.325a0=S�, the surface-localized modes are
completely suppressed at the top of the absolute gap, and the

inverse happens as we progressively increase ds: they move
downward, becoming more dispersive, and destroy com-
pletely the full region of this gap.

Similar behavior can be obtained through modifications of
the surface planes of spheres �e.g., by changing the material
and/or the size of the spheres�, although the detailed picture
will be different from those presented in Fig. 3. As an ex-
ample, we consider a slab of the phononic crystal consisting
of ten planes of spheres, two of which, the external planes
�so-called surface layers�, may be different from the other
eight. They all have, of course, the same 2D periodicity, but
their spheres have a smaller or larger radius Ss compared to
those of the spheres of the internal planes, S. Our results are
summarized in the six diagrams of Fig. 4. The first four, Figs.
4�a�–4�d�, correspond to cases with Ss�S, the fifth gives the
reference system �Ss=S�, as presented in Fig. 2, and the last
one is for Ss�S. The general trend is similar to those of the
previous case �Fig. 3�, with the only difference that now,
when Ss is decreased progressively, new modes appear also
at the bottom of the absolute gap.

In the two cases presented here �Figs. 3 and 4� the picture
obtained for the surface-localized modes is not exactly the
same, because different mechanisms are responsible for their
behavior. The latter can be qualitatively described by using
some simple arguments. It is well known25 that a homoge-

neous slab of thickness d̃ sandwiched on both sides by semi-
infinite homogeneous media presents waveguide modes
�modes localized in its interior and propagating along it, par-

allel to the surfaces� determined by the thickness d̃ of the
slab. Its dispersion plot given in dimensionless units

��d̃ /c , �k��d̃�, where k� is the component of the wave vector
parallel to the surfaces and c one of the velocities of the

materials of the structure, is independent of the choice of d̃.
In the first case �Fig. 3�, progressive addition of a thin ho-
mogeneous polyester layer corresponds, roughly speaking, to
an effective surface homogeneous layer of increasing thick-

ness d̃, sandwiched between air at its left and the phononic-

crystal slab at its right. By increasing the thickness d̃ of such
a layer �if one follows the simplified image of a homoge-

FIG. 2. Dispersion curves for a finite slab consisting of eight fcc
�111� planes of steel spheres of radius S=0.325a0 in a polyester
host, embedded in air, along the high-symmetry lines of the SBZ of
its �111� surface �shown in the inset�. Propagating modes, shaded
regions; gaps, blank regions. Solid lines: surface-localized modes.
Dotted lines: lines of propagation of longitudinal and transverse
waves in infinite polyester �higher and lower branch, respectively�.

FIG. 3. Dispersion curves in the region of the absolute frequency gap of the infinite fcc crystal, for a slab consisting of eight fcc �111�
layers of steel spheres of radius S=0.325a0 in a polyester matrix, embedded in air. The two surfaces are placed at a distance ds from the
center of the surface planes of spheres �ds= �a� 0.908a0, �b� 0.608a0, �c� 0.508a0, �d� 0.458a0, �e� 0.408a0=d /2 �reference system�, and �f�
0.325a0=S�.
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neous slab placed on the surfaces� the waveguide modes of

the slab have to move to lower frequencies �, so that �Rd̃
=const, �R being the resonance frequency of the waveguide
mode of given k�. This explains why an increasing number
of localized modes come downward from the top region of
the absolute gap of the infinite phononic crystal, and fill it
gradually, when one increases ds. Of course the real picture
is more complicated, since the surface layer contains an array
of spheres and its behavior cannot be quantitatively de-
scribed by an effective homogeneous slab of frequency-
independent elastic parameters. It is expected that the form
of the dispersion plot of the modes of such a layer �an ex-
ample for a slab containing a monolayer of spheres is given
in Fig. 5�a�� will be the result of the folding of the dispersion
lines due to the 2D periodicity and of the interaction of the
homogeneous-slab modes with those originating from the in-
dividual scatterers, leading to a possible hybridization gap.
The latter will be valid only if the scatterers �spheres� can
support eigenmodes, and the case we study here �metallic
spheres in a polyester host� is such a case. The whole picture
obtained is an interplay between the homogeneous slab and
the influence of the presence of the spheres, which becomes
dominant for small ds values, thus creating the hybridization
gap. When ds increases, the upper limit of this gap moves
downward, and finally penetrates within the propagating-
mode region located below the absolute gap of the phononic
crystal. Its lower limit cannot be seen: in all cases presented
here, it is “buried” within this region.

In the second case �Fig. 4�, again the idea of an effective
surface layer of appropriate thickness whose modes are su-
perposed on those of the infinite system can be used to quali-
tatively describe the obtained picture; however, the surface-
layer radius Ss dominates in the determination of the limits of
the hybridization gap, which differ from those of the refer-
ence system �Ss=S� when Ss�S. For a system of steel scat-
terers in a polyester host arranged in a fcc structure, such a
gap begins to open up for Ss�0.24a0, and for the range of
sphere radii Ss shown in Fig. 4 it develops almost symmetri-
cally around its center, located at about �a0 /cair�19.5, as

we increase Ss.
24 Consequently, the top and bottom of the

gap associated with the surface planes of spheres of radius Ss
are pushed simultaneously upward and downward by in-
creasing Ss, while its center frequency remains almost con-
stant at �a0 /cair�19.5.

Independently of the mechanism that determines the de-
tailed behavior of the modes lying within the absolute-gap
region of the corresponding infinite system, these modes can
be tuned in frequency as has been shown in Figs. 3 and 4
through an appropriate choice of the geometrical parameters
of the surface layers �ds and Ss, respectively� of the consid-
ered finite structure.

B. Physical origin of the modes

The results presented so far imply that these modes ap-
pearing within the gap regions of the corresponding infinite
crystal are surface-localized modes. For a deeper understand-
ing of their origin one needs to make a more detailed study,
and to begin with we calculate the dispersion diagram of a
slab consisting of only one �111� plane of spheres of radius
S=0.325a0 embedded in polyester. The slab is of thickness
d=a0

�6 /3 and embedded in air. The corresponding disper-
sion diagram is shown in Fig. 5�a�. One can clearly see the
three branches at the long-wavelength limit ��→0�, which
of course are deformed with respect to a purely homoge-

neous slab because of the folding at the K̄ and M̄ points due
to the periodicity occurring at about �a0 /cair�11.5 and be-
cause of the opening of a large hybridization gap extending
from �a0 /cair=16.10 to 21.52 �six bands are observed below
the gap�. This �absolute� gap results from the interaction of
the Lamb modes of the effectively homogeneous slab with
those originating from the strong interaction of dipole reso-
nances of metallic spheres lying on the plane. If successive
fcc �111� layers of spheres are added one by one to create a
thicker slab, these modes are progressively suppressed to-
ward higher frequencies. For thin slabs the two surface-
localized modes appearing in pairs, each of them associated
with each one of the two surfaces, interact strongly with each

FIG. 4. Dispersion curves in the region of the absolute frequency gap of the infinite fcc crystal, for a slab consisting of ten fcc �111� layers
of steel spheres in a polyester matrix, embedded in air. The two surface layers consist of spheres of radius Ss �Ss= �a� 0.10a0, �b� 0.20a0,
�c� 0.28a0, �d� 0.30a0, �e� 0.325a0=S �reference system�, and �f� 0.35a0�, while the eight remaining internal layers are of radius S
=0.325a0.
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other, giving rise to a significant repulsion in the frequency
domain. As the slab becomes thicker, the interaction between
them is weaker and their repulsion smaller; therefore they
come closer and closer. A typical example is given in Fig.
5�b�, at the M̄ point. This effect could be considered as evi-
dence that these modes are not propagating along the z di-
rection, normally to the slab, but are strongly localized close
to its surfaces. We have used the term surface-localized
modes so far, without any direct proof, to describe them,
because since these modes appear within the absolute gap
region one expects that they will be attenuated inside the
relatively thick slab. We can say that the phononic-crystal
slab under consideration behaves, for frequencies within the
gap, as a homogeneous and isotropic effective medium char-
acterized by an imaginary wave number Im�kz���� which
determines the attenuation of the wave field over this
region.26 As an example we consider the case described
in Fig. 3�c�, i.e., for ds=0.508a0. For given � and k�

= �2� /a0��1 /2,�3 /6�=k�
M̄ �i.e., the wave vector parallel to

the surface is at the M̄ point of the SBZ�, one can obtain this
effective attenuation indirectly by the relation ln T=
−2 Im�kz�dNL+const, where T is the transmittance through a

very thick slab �NL�1�. In this manner we find 

	 Im�kz�d=1.56 for the resonance frequency �a0 /cair
=22.011. The value of 
 coincides perfectly with that corre-
sponding to the minimum imaginary part of kz along this
crystallographic direction, as calculated at the given fre-
quency from the complex band structure diagram of the in-
finite crystal.26 In order to verify the above hand-waving
arguments, we also calculated the normalized field
�u�r��2 / �u0�2 ��u0� is the amplitude of the incident wave� in
the space between the different layers �interfaces or planes of
spheres� of the slab when a longitudinal wave of frequency �

is incident on it with wave vector k�
M̄ �i.e., it propagates

along the �M direction�. The calculation was performed at
points ri, i=1,2 , . . . ,NL+1, lying on the line passing through
the centers of the unit cells of consecutive 2D �111� lattices,
in the middle of the interlayer space. This is demonstrated in
Fig. 5�c� for the resonance frequency �a0 /cair=22.011
within the gap shown in Fig. 3�c�, and for an off-resonance
frequency �a0 /cair=21.00 �no modes are observed at this

frequency at the M̄ point in the corresponding dispersion plot
of Fig. 3�c��. In the latter case �off resonance� the values of
the field at these points ri follow, apart from their oscillatory
character, an exponential decay as can be seen from the dot-
ted lines �guides to the eye� in Fig. 5�c�. At the resonance
again an exponential decay can be recognized, but now lo-
calization effects close to the surfaces are also present �see,
for example, the relative enhancement of the field at the right
interface�. In both cases this exponential decay is described
by ln��u�r��2 / �u0�2�=−2
̃z /d+const, giving 
̃=2.12 at the
resonance, and 
̃=1.82 for the off-resonance case. These val-
ues of 
̃ are close to those of 
=1.56 and 1.67, respectively,
obtained from the transmittance for very thick slabs. Of
course, one cannot expect better agreement between these
two cases, since in the case of 
̃ �NL=8� the thickness of the
slab is relatively small and finite-size effects associated with
the two surfaces dominate: in other words, the field close to
the surfaces �within a depth of NL
6 layers for the present
case� exhibits an oscillatory character which disappears for
z /d�6, revealing a clear exponential decay, for this region
of z. We checked this for a slab similar to those of Fig. 5�c�
but consisting of NL=30 layers, and a perfect agreement is
found between 
 and 
̃, i.e., 1.56 at the resonance and 1.67
for the off-resonance case.

These surface modes manifest themselves as resonances
in the transmission spectrum of a longitudinal wave incident
on the slab. However, in contrast to resonances originating
from propagating states of the finite slab, their height de-
creases on increasing the thickness of the slab. For relatively
thin slabs, the two modes are coupled, giving rise to two
distinct strong resonance peaks in the transmission spectrum.
As the slab becomes thicker, these two peaks approach each
other �the coupling is weaker� until they merge to a common
resonance peak. After this point, the degree of coupling di-
minishes dramatically as we add more layers, and the height
of the resonance decreases rapidly. A typical case is shown in
Fig. 5�d� for a longitudinal wave incident with wave vector

k�
M̄ on the slab described in Fig. 3�c�, from the left. Of course

the degree of coupling depends on several parameters �elastic
or geometrical� of the system. For example, in a slab of a

FIG. 5. �a� Dispersion curves for a slab consisting of one fcc
�111� plane of steel spheres of radius S=0.325a0 in a polyester host,
embedded in air. The propagation modes of the corresponding infi-
nite crystal �shaded region� are also shown for comparison. Dotted
lines: propagation lines of elastic waves in polyester. �b� The
change in the position of the frequencies of the surface-localized

modes at the M̄ point, as a function of the thickness of the slab �NL

is the number of �111� layers�. �c� Normalized field-intensity distri-
bution at the center of interlayer regions for the case of the slab
described in Fig. 3�c� �ds=0.508a0� when a longitudinal wave of
frequency �a0 /cair=22.011 �on resonance, filled symbols� and
�a0 /cair=21.00 �off resonance, open symbols� is incident on it with

wave vector k�
M̄. The gray strips denote the space occupied by the

layers of spheres whose centers lie on the vertical dashed lines.
Dotted lines: guides to the eye. �d� Transmittance of a longitudinal

wave incident with wave vector k�
M̄ on the slab of �c�.
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given number of layers of spheres, NL, smaller ds values
produce a stronger coupling, i.e., the repulsion between the
two distinct peaks is stronger, and the fall in height of the
double resonance peak observed in the transmission spec-
trum occurs at larger NL values. On the other hand, the pres-
ence of the second air-polyester interface is responsible for
this splitting �the double resonance peak in the transmission
spectrum�. If it is removed, the second surface of the system
is a virtual interface separating the phononic-crystal slab
from the semi-infinite polyester at its right. The scattering on
this interface is no longer so strong and it produces a reso-
nance in a different frequency range; therefore, now only one
resonance peak is observed in the corresponding transmis-
sion spectrum, whose height is �for the case presented here�
about four orders of magnitude smaller than those presented
in Fig. 5�d�.

C. The region below the first passband

One can follow a similar analysis in order to investigate
the behavior of the surface modes at the frequency region
below the lowest bulk bands. We limit our study along the
KM direction, but the same is valid for the rest of the high-
symmetry lines of the SBZ. In Fig. 6 we show how the first
surface branch, already shown in Fig. 2, is shifted along the
frequency scale with a change in the distance of the air-
polyester surfaces from the center of the surface layers of
spheres, ds. When the two surfaces are placed just at the
position where the surface layers of spheres terminate �ds

=0.325a0=S�, the branch is lowered in frequency with re-
spect to the reference system �Fig. 6�a��, and the same is true
for S�ds�d /2 �Fig. 6�b��. When ds is increased more �Fig.
6�c��, this branch continues to go up toward the propagation
modes of the slab �shaded region� until its penetration begins

to take place �first at the M̄ point, for ds�a0�. However, the
change in ds does not produce dramatic changes as in the
case of the absolute band gap region. The surface-localized
modes are less sensitive to such changes and, moreover, the

trend here is the opposite to that observed in the region of the
absolute frequency gap: the higher the ds, the closer the ap-
proach to the lower limit of the propagating-mode region.
For that there exists a simple explanation: as ds increases we
approach the case of a homogeneous polyester whose propa-
gation lines are given in Fig. 2 as dotted lines. One could
hope to create a small gap along the KM direction, between
the first and the second surface-localized bands �solid lines in
Fig. 6�. For the present configuration this is not possible: the

lower value of the second band �at the M̄ point� is always

FIG. 7. Dispersion curves for a slab consisting of eight fcc �111�
planes of steel spheres of radius S=0.10a0 in a polyester host, em-
bedded in air, on both sides of which one additional surface layer of
different sphere radius Ss=0.40a0 made of �a� steel or �b� tungsten
is added between the air-polyester interface and the eight-layer-
thick phononic-crystal slab. Dotted lines: lines of propagation of
transverse �lower branches� and longitudinal �upper branches�
waves in infinite polyester. The arrows indicate the position of small
gaps and the hatched region a large gap. �c� Same as Fig. 5�c� at the

M̄ point, for the system of �a� �solid lines� and for the correspond-
ing system with the eight internal fcc �111� planes of steel spheres
of radius S=0.10a0 replaced by a homogeneous polyester slab of
the same thickness �dotted lines� at the resonance frequency
�a0 /cair=8.165 and 8.159, respectively, �upper curves� and at off-
resonance frequency �a0 /cair=9.5 �bottom curve�. The small hori-
zontal lines in the margins denote the values of the field intensity
just before the air-polyester interfaces, in the region of polyester.

FIG. 6. Dispersion curves along the KM direction in the region
below the lowest bulk bands of the infinite fcc crystal, for a slab
consisting of eight fcc �111� layers of steel spheres of radius S
=0.325a0 in a polyester matrix, embedded in air. The two surfaces
have a distance ds from the center of the surface planes of spheres
�ds= �a� 0.325a0=S, �b� 0.375a0, and �c� 0.458a0�. Dashed lines:
reference system �ds=0.408a0=d /2�, shown in Fig. 2.
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below the higher value of the first band �at the K̄ point�. This
distance 
 �in units of �a0 /cair� takes its lower value 0.198
for the case where the surfaces touch on the surface planes of
spheres �Fig. 6�a�� and increases as we increase ds �

=0.213 and 0.301 for the cases of Figs. 6�b� and 6�c�, respec-
tively�.

Although the change in ds does not offer possibilities for
tuning such surface-localized modes at low-frequency re-
gions, the case of varying Ss does. In order to reveal these
surface modes in full detail, one needs to use phononic-
crystal slabs made of smaller spheres. In this case, the propa-
gating modes are pushed up to higher frequencies, since the
effective medium velocities of the phononic crystal tend to
the values of the host matrix �polyester�. On the other hand,
the surface-localized modes appear at frequencies which are
mainly determined by the value of Ss. An example is given in
Fig. 7�a�. The slab is now made of spheres of radius S
=0.10a0 resulting in a dispersion plot for the propagating
modes �shaded region� almost identical to the propagation
lines in the homogeneous polyester �dotted lines�. In other
words, the effective medium velocities of such a crystal are
almost identical to those of the polyester host. Moreover,
between the eight-layer-thick slab and the two air-polyester
interfaces, we add now two surface layers of steel spheres of
larger radius Ss=0.40a0 �keeping of course the same 2D pe-
riodicity�, thus obtaining surface-localized modes quite low
in frequency with respect to the propagating modes �com-
pared to the case shown in Fig. 2�, as can be seen in the
corresponding dispersion diagram �Fig. 7�a�� as the solid
lines. One can easily recognize in the modes appearing
within the gap the general form of the dispersion diagram of
a monolayer of spheres �see Fig. 5�a��. A band folding is
clearly seen around �a0 /cair�11.3 at the K̄ and M̄ points
and the bottom of the hybridization gap is also revealed at
about �a0 /cair�12.5. We note the presence of two very nar-
row gaps along the KM direction extending for �a0 /cair from
8.708 to 8.863 and from 11.230 to 11.286. It is worth noting
that practically the same dispersion curves are obtained even
if the eight internal layers of spheres of radius S=0.10a0 are
removed and replaced by a homogeneous polyester slab of
the same thickness. This could be of practical importance
from the point of view of fabrication: a surface layer of
spheres is enough to produce the effect.

When the steel spheres of the surface planes are replaced
with tungsten ones �mass density �s=19 400 kg /m3, longi-
tudinal and transverse velocities cls=5200 m /s and cts
=2900 m /s� the surface-localized modes are pushed down
even more �Fig. 7�b��, an effect which is due mostly to the
mass density difference between steel and tungsten. Now,
apart from two small gaps �for �a0 /cair from 5.783 to 5.915
and from 7.636 to 7.751�, a large region free of modes ap-
pears, above the surface-localized modes, extending from
�a0 /cair=8.72 to 12.43.

Following the same procedure as that described in the
discussion on Fig. 5�c�, one can calculate the normalized
field intensity in the interlayer space for the system of Fig.
7�a� and for the corresponding system with the eight internal
layers of spheres replaced by the homogeneous polyester.
This is shown, for the sake of completeness, in Fig. 7�c� at

the resonance frequencies of the two systems at the M̄ point
��a0 /cair=8.165 and 8.159, respectively� and at an off-
resonance frequency ��a0 /cair=9.5�. Similar conclusions to
those made in the case of the absolute frequency gap region
�Fig. 5�c�� are obtained, and now the oscillatory character of
the field can be better distinguished. And, again, the same
stands for the transmission coefficient: an analog to the be-
havior of Fig. 5�d� is also observed.

IV. CONCLUSIONS

In this work, we presented results concerning the appear-
ance of surface-localized modes inside the frequency gap
regions of relatively thick solid 3D phononic-crystal slabs
made of metallic spheres in a polyester matrix, embedded in
air. We demonstrated that these modes can be tunable under
an appropriate choice of the geometric or elastic parameters
of the slab, giving rise to regions where no propagating and
surface modes exist. Our findings could be useful in the con-
struction and design of devices related to frequency filtering,
waveguiding, etc. We considered here the case of finite slabs
embedded in a symmetric environment, i.e., with the same
semi-infinite medium �air� on both sides; however, the
method can also be applied in an asymmetric system �for
example, a plate placed on a solid substrate� without any
problem. The study of plates supported on substrates should
be the next step as it relates to a large category of practical
applications. Moreover, the creation of linear or point defects
on the surfaces of such systems �by removing some spheres
or by changing the size and/or the material of some of them�
should open another issue in this rapidly increasing subfield
of phononic crystals. In this manner one could enlarge the
possibilities offered by the 3D phononic-crystal plates by
introducing tunable narrow defect bands within the large
gaps found in the low-frequency regions of these systems
�see Fig. 7�b��.
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