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Acoustic phonon scattering from isolated nanometer-scale impurity particles embedded in anisotropic media
is investigated using molecular dynamics simulation. The spectral-directional dependence of the scattering, for
both longitudinal and transverse modes, is found through calculation of scattering cross sections and three-
dimensional scattering phase functions for inclusions of varying sizes, shapes, and stiffnesses and for waves of
different wave numbers. The technique enables direct observation of the effects of mode conversion, lattice
mismatch strain, elastic anisotropy, and atomistic granularity on acoustic phonon scattering from nanoparticles.
The results will be useful for the design of nanoparticle-based thermal insulating materials, for example,
quantum dot superlattices for thermoelectric energy conversion.
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I. INTRODUCTION

Nanostructured thermoelectric materials based on super-
lattice arrays of thin films,1,2 nanowires,3–5 and quantum
dots5–8 have attracted increasing research attention in recent
years because of their potential to enable dramatic efficiency
increases9–11 in solid-state cooling, heating, and direct energy
conversion applications as compared to conventional ther-
moelectric materials. Increased efficiency is related to in-
creased thermoelectric figure of merit ZT,12

ZT =
STE

2 �eTTE

kc
, �1�

where STE is the Seebeck coefficient, �e is the electrical con-
ductivity, TTE is the temperature, and kc is the thermal con-
ductivity. The goal of thermoelectric materials research has
thus been to increase ZT by engineering materials with high
STE, high �e, and low kc.

Quantum dot superlattices, which are regular arrays of
semiconductor nanoparticles embedded in a semiconducting
host material, are potentially the most promising materials
for ZT enhancement.6,13,14 These materials have recently
demonstrated ZT values higher than 1, and this enhancement
arises primarily from the reduction of kc.

6,15,16 The funda-
mental reasons for thermal conductivity reduction in quan-
tum dot superlattices are still not fully understood,17 but pho-
non scattering from the embedded particles, changes in the
phonon dispersion relation due to nanostructuring, and quan-
tum confinement are all likely mechanisms.18 Phonons are
quantized traveling elastic waves associated with the dis-
placement of atoms from their equilibrium lattice positions,
and their scattering from “obstacles” in their paths governs
the thermal conductivity of nonmetallic solids. These ob-
stacles include other phonons, grain boundaries, impurity at-
oms, structural defects such as vacancies and dislocations,
changes in atomic mass �isotopes�, and, in general, any fea-
tures that change the bond stiffness, bond orientation, or
mass of adjacent atoms from those of the host lattice. The
scattering of phonons from particles is strongly affected by
the ratio of particle size to phonon wavelength and by par-
ticle arrangement, both of which have a significant influence

on thermal conductivity.1,17 Recent experiments indicate that
including particles of different sizes may be more effective at
reducing conductivity by increasing scattering for a wide
spectral range of phonons.1 Also, for a given mass fraction of
particles, a larger quantity of smaller particles may yield
lower kc.

19

The scattering of phonons during these events is not spa-
tially uniform but instead occurs preferentially in certain di-
rections. The exact spatial distribution depends on many
variables, including phonon wavelength, particle size, and
particle arrangement. The ability to quantify the spectral-
directional nature of scattering from embedded nanoparticles
for different phonon polarizations is critically important for
understanding thermal transport in quantum dot-based mate-
rials. With this knowledge, thermoelectric materials can be
engineered to minimize forward scattering, and thus mini-
mize thermal conductivity and maximize ZT, over the entire
spectral range of phonons present in the material. The inves-
tigation described herein uses a molecular dynamics �MD�
simulation to quantify this scattering in anisotropic host ma-
terials and to examine intermediate spectral ranges well re-
moved from the analytically straightforward limiting cases of
small and large wavelengths. Section II summarizes the key
background information on previous work on acoustic scat-
tering and the importance of crystal anisotropy on phonon
scattering. Sections III and VII discuss the MD modeling
approach developed for the present calculations and the ad-
vantages and limitations of the technique. Section IV covers
the method applied to resolve mode polarizations from the
simulation data. Section V presents the methodology used to
calculate scattering phase functions and cross sections, Sec.
VI discusses the results, and Sec. VIII summarizes the con-
clusions.

II. BACKGROUND

The scattering of phonons due to impurities in crystals is
a fundamentally three-dimensional problem due to the aniso-
tropic nature of elastic waves in crystals. For a given energy,
changes in phonon wave vector relative to the crystal lattice
orientation will result in change in speed of phonon propa-
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gation �or magnitude of group velocity vg� as well as wave
number k, a concept illustrated in Fig. 1. Figure 1 depicts a
constant-frequency surface in wave space, showing the rela-
tionship between wave vector k and group velocity vector
vg, where vg will be perpendicular to the constant-frequency
surface. The figure shows that a set of wave vectors with a
uniform spatial distribution in k space can have a very non-
uniform distribution of group velocity vectors. Because of
this anisotropy, when describing a scattering event in spheri-
cal coordinates, one needs to express the incoming phonon
direction in terms of two angles �elevation �� and azimuth
��� relative to the crystal lattice axes as well as two angles
describing the direction of travel of the phonon after the
scattering event �scattered into angular directions � and ��.
Figure 2 illustrates the incident and scattered directions and
the corresponding angles.

Prasher20–24 published theoretical discussions of phonon
scattering due to particles and made direct comparisons to
widely used models describing the scattering of radiation,
including Mie scattering, Rayleigh scattering, and scattering

in the geometric regime. Prasher also explained via scatter-
ing equations how wave-interference effects, dependent scat-
tering, and multiple scattering events yield anisotropic phase
functions, which can make large changes in the rate of pho-
non transport. These publications focused on the ultimate
change in phonon propagation rate due to scattering events,
described as a change in intensity, and considered calcula-
tions for conversion between two distinct modes in an iso-
tropic solid.22 Well-established phonon transport models
�e.g., Ref. 25� also generally assume elastic isotropy and iso-
tropic scattering. Existing mesoscale approaches use a cross
section based on phonon wavelength and particle size, but
the model equations in their final form do not track the de-
tails of the directional nature of scattering.26 Other calcula-
tions use a more complex anisotropic phase function but do
not include the details of mode conversion or the effects of
material anisotropy in order to reduce the complexity of the
calculations.27 Such calculations may use directionally de-
pendent dispersion curves for phonons, but the phase func-
tions do not explicitly account for the relative alignment of
the three-component group velocity vector and the crystal
axes. While these practical approaches may be good descrip-
tions for some one-dimensional structures �e.g., nanowires�,
no fully detailed mesoscale models of phonon scattering in
three-dimensional structures have yet been published due to
the complexity of the problem. Thus far, analytical descrip-
tions and calculations have used anisotropic phase functions
in isotropic materials.

Two types of numerical approaches are applicable to the
problem of wave scattering in anisotropic elastic media: fi-
nite difference time domain �FDTD�28 and continuum finite
element modeling �FEM�. The FDTD technique solves an
anisotropic linear wave equation in three dimensions using a
series of discrete points in space and a set of finite difference
approximations. It tracks displacement at nodes in a con-
structed grid, with the properties of certain nodes altered to
simulate an inhomogeneity �a scatterer�. In the FDTD model,
each region of space or set of similar nodes must be sepa-
rately divided and assigned some stiffness values �repre-
sented by a matrix C= �. While useful for macroscopic prob-
lems, this technique will not allow the user to easily
incorporate the atomic-level spatial variations in C= that occur
near a nanometer-scale inclusion, as one would have to per-
form elaborate calculations to determine spatial variations in
C= surrounding a granular, arbitrarily shaped, or nonuniform
inclusion. FDTD models can provide reasonable predictions
of scattering phase functions from inclusions at or above the
micrometer scale and at wave numbers in the linear region of
the dispersion relation �MHz-GHz range�.

The other applicable approach, FEM, is commonly used
to study elasticity problems and was initially investigated as
a possible means to account for anisotropy effects in the
present study. A drawback of continuum finite element mod-
els is their need for high spatial resolution in the finite ele-
ment mesh. It was found that the extremely high mesh den-
sities required to solve this type of three-dimensional wave-
interference scattering problem made FEM impractical as a
tool to study scattering in anisotropic elastic media.

The MD approach29 addresses the deficiencies of both the
FDTD and FEM approaches. This approach models materials
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FIG. 1. �Color online� Slowness surface for quasitransverse
mode in the �100� plane, plotted in k space with various wave
vectors and group velocity vectors, based on linear elastic equations
of Auld �Ref. 36� and stiffness data of Ref. 38.
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FIG. 2. �Color online� Scattering from an embedded particle.
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at an atomic level of detail and is thus easily able to capture
many features that impact scattering from nanometer-scale
inclusions. These key features include atomic roughness
�granularity� effects, elastic stiffness variation around arbi-
trarily shaped inclusions, lattice mismatch/strain effects, and
dispersion at large wave numbers. The approach is flexible
and allows different materials, lattice constants, and geom-
etries to be handled in an expedient manner.

The MD method described herein generates quantitative
descriptions of scattering probabilities incorporating known
information about the three-dimensional nature of the crys-
tal. The model is essentially a simulation using classical me-
chanics of particle motion and classical wave mechanics. It
does not consider those effects that are purely quantum me-
chanical and, as such, provides an approximate representa-
tion of the phonon-nanoparticle scattering. The approach is
to calculate the parameters necessary to describe a scattering
event involving the disruption of a mechanical wave in a
lattice of atoms �discrete masses� connected by springlike
bonds.

The terminology and equations that describe the phonon
scattering events are chosen to be similar to those presently
used for scattering of acoustic waves and electromagnetic
radiation. For an elastic scattering event, a phonon traveling
in a region containing a scatterer has a finite probability of
scattering. If a phonon is described as similar to a plane wave
packet traveling through the lattice, then any event that
changes the phase or wave vector of the packet may be con-
sidered a scattering event. The probability of occurrence of a
scattering event is described using a cross section �s, which
may be interpreted as being proportional to the likelihood of
occurrence of a scattering event or as a description of the
effective size of the scatterer as it intercepts the incoming
wave. For multiple independent but identical scattering
events with identical incident phonons, the total scattered
energy will be proportional to �s. The cross section for a
single independent scattering event is a function of many
variables including phonon mode, wave number, incident
and outgoing angles relative to the lattice axes, lattice com-
position, and scatter size, shape, and material.

The likelihood of scattering into a particular direction is
described with a normalized probability density function �,
known from acoustics and electromagnetics as the scattering
phase function. This phase function describes the relative
amount of scattered wave energy that travels in each direc-
tion, expressed per unit solid angle. The phase function may
be alternatively interpreted as the relative likelihood of an
incident phonon being scattered into a selected direction or
span of solid angle. In addition to tracking these two param-
eters ��s and ��, there are multiple vibrational modes avail-
able in a solid �e.g., transverse acoustic and longitudinal
acoustic�, and mode conversion during scattering events is a
common phenomenon, so one must track the cross section
and phase function for each of these independent acoustic
modes of vibration. In this discussion, we use the term
“mode” to mean the same thing as wave polarization. The
ratios of mode cross sections describe the relative likelihood
of scattering into each of the available modes.

The existing analytical solution methods for this type of
engineering problem are based on the calculation of � and

�s. The general approach of the analytical model is to evalu-
ate a series of amplitude coefficients for scattering into vari-
ous spherical harmonic modes. The phase function equations
for acoustic scattering from a sphere in an isotropic solid
take the form

���� = c�
n=0

�

�
m=0

�

�in���− i�m��AnAm
*Pn�cos ��Pm�cos ��

+
klongitudinal

ktransverse
BnBm

*Pn
1�cos ��Pm

1 �cos ��� , �2�

where Pn� � represents a Legendre polynomial, Pn
1� � is an

associated Legendre polynomial, and A and B represent har-
monic mode amplitudes, which must be solved for one mode
at a time as detailed in Refs. 22 and 30. The computation of
A and B for each indexed harmonic mode m or n involves an
evaluation of spherical Bessel functions and trigonometric
functions. Prior to use, the phase function is normalized by
multiplying it by some constant c, the value of which may be
selected to make the integral over all directions ���d�
equal to a chosen constant such as 1 or 4	. In many cases,
this phase function is written as ��� ,��, a confusing ap-
proach as this isotropic equation for a spherical scatterer has
no � dependence. In order to complete the calculations, the
series summations must be stopped at some finite upper lim-
its. Due to the number and type of evaluations involved, this
calculation becomes impractical and prone to error as the
case approaches the geometric regime �kadot
6�, where adot

is the scatterer radius. Following this calculation of �, the
scatterer cross section may be calculated as

�s = 4	�
m=0

�
1

2m + 1
�AmAm

* + �m2 + m�
klongitudinal

ktransverse
BmBm

*� ,

�3�

once again truncating the series at some chosen limit.
The simpler related case of fluid acoustics is instructive in

interpreting the scattering of longitudinal waves in solids,
although it is not applicable to transverse waves since fluid
media do not support purely wavelike motions with trans-
verse modes. The wave energy in fluid acoustics is tracked
by monitoring the fluctuation in a local gauge pressure p,
which corresponds to wave amplitude, rather than monitor-
ing the complete stress tensor. The group velocity vg simply
equals the speed of sound, and the continuous medium is
isotropic. The wave intensity I is the measure of energy
transferred per unit time per unit area and may be expressed
as I= p2 /�vg for a material with mass density �. This may be
integrated over a spherical surface to obtain total energy
scattered, normalized to produce �, and divided by the inci-
dent intensity to get a scatterer cross section. For this sim-
plified case, a number of analytically based solutions have
been generated for spheres and cylinders using representa-
tion of waves as summations of spherical harmonics.31 These
solutions can be recovered from Eqs. �2� and �3� upon re-
moval of the B terms, which represent the contribution of
transverse modes.
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The phase functions of theoretical acoustics have distinct
trends as a function of kadot. For large kadot, the geometric
limit, the prediction indicates that the majority of scattered
energy travels in a long, narrow lobe around the �=0° �for-
ward� direction. In the limit of low kadot, sometimes called
the Rayleigh limit, the majority of the longitudinal-mode en-
ergy is backscattered in one large, almost circular lobe in the
�
90° sector, with a small, almost elliptical lobe in the for-
ward sector. Morse and Ingard31 provided an approximation
of this shape using ����� �1−3 cos ��2. These features are
expected to appear in the longitudinal-mode scattering phase
functions from MD.

III. SIMULATING A SCATTERING EVENT USING
MOLECULAR DYNAMICS

The simulation of a scattering event is conducted using a
MD model. The method used is based on the approach of
Schelling et al.,32 who simulated wave packet propagation
and reflection in one dimension by a change in atomic mass
at a planar boundary. Here, we track scattering in three di-
mensions from sources of many shapes and types. This kind
of simulation can offer insight into the details of phonon
scattering and can provide the ability to examine the behav-
ior of individual phonons of a chosen polarization and wave
vector. It allows the study of their interactions with many
structures of interest, including those that have been care-
fully manufactured, those that occur incidentally as an un-
controlled part of material formation, and those structures
that have been described but not yet physically created. Ad-
ditionally, by defining pressure as −1 /3 of the trace of the
stress tensor, the methods described herein are capable of
generating phase functions for acoustic materials containing
only one mode of vibration and are, in theory, applicable to
molecular dynamics simulations of fluid acoustics. Such
studies would be useful to the nanofluids community, for
example, in enabling an analysis of wave transport in fluid
suspensions of nanoparticles.

To perform the simulations, a molecular dynamics model
is used based on the program code of Lukes and Tien.33 This
solid inert-gas model serves as a tool to generate three-
dimensional scattering data for this study, rather than as a
representation of a physical system of practical interest. The
model simulates a solid argon crystal in an fcc lattice, which
supports acoustic modes only. The interaction of the argon
atoms is computed using the 12-6 Lennard-Jones pair poten-
tial function, with parameters �=0.34 nm and =1.67
�10−21 J. The simulation of other inert gases is performed
by changing these two parameters and using geometric aver-
ages of the parameters for interactions of different elements.

This structure has a lattice constant Acell and supports a
maximum wave number of 2	 /Acell in the �100� direction,
which is equal to 1.2�1010 m−1 or approximately 4 /�. The
lattice is configured as a box-shaped domain with rigid walls
on two opposite sides and periodic boundaries on the other
four sides. The lattice is initialized at a temperature of 0 K.
Typical simulation cell sizes range from 10 000 to 300 000
atoms, but the method has no intrinsic limits on simulation
size.

For purposes of modeling, the incident phonon is de-
scribed as a plane wave having some displacement field
u�r , t� with corresponding velocities v�r , t�. The discrete
pulse of the phonon is represented by a wave packet gener-
ated with some frequency �, wave number k, and width �or
half-width�, an example of which is shown in Fig. 3. The
packet shape is created by multiplying a sine wave by an
exponential envelope, as used by Schelling et al.32 Different
sections of a wave packet have slightly different values of k
and �, and elongating the packet in space and time can re-
duce this variation. The elongation of the packet requires an
increase in both the number of atoms and number of time
steps used in the simulation in order to avoid spurious sig-
nals at the monitoring points such as echoes from periodic
nanoparticle images or reflections from the back wall of the
domain. Following the scaling relations discussed near the
end of this paper, this means that a packet that is twice as
long in time and space will require 16 times the computa-
tional time. The goal of forming a packet with a narrow
spread of � must be balanced against the desire for more
rapid computation times.

The frequency spread of each wave packet may be found
by a Fourier analysis of the time history of atomic displace-
ments, measured as the wave packet travels through a se-
lected lattice location.34 In practice, the wave packet be-
comes mildly distorted as it travels due to bond
anharmonicity and numerical discretization error present in
the calculations of packet initialization and propagation. Fig-
ure 4 presents a typical displacement time history measured
in the MD model, showing the wave packet shape after pass-
ing through 15 lattice cells, a typical distance between the
source and the scatterer in our simulations. The packet ex-
hibits some mild trailing-edge noise. Figure 5 shows the cor-
responding frequency spectrum of the signal. It consists of a
single Gaussian peak centered around the center frequency of
0.8 THz with a 0.33 THz full width at half maximum
�FWHM�. In general, the wave number spread of our packets
�FWHM� falls in the range of 20%–45% of the packet’s cen-
ter frequency, with narrower FWHM for higher-frequency
wave packets. In Fig. 5, there is a weak but visible frequency
background associated with packet distortion in the anhar-
monic medium, but the signal outside of the primary
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FIG. 3. �Color online� Example wave packet shape—amplitude
vs position.
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0.5–1.3 THz peak contains only 1.3% of the total packet
energy.

Two approaches can be used to generate these packets
with satisfactory results. A boundary-condition-based
method functions by moving a rigid wall on the side
of the simulation domain, using an exponentially damped
displacement of the form xi�t�=xi�0�+U sin���t
− tcenter��e−�2�t − tcenter�

2
where xi�t� represents the position of

atom number i at time t, and U, �, and tcenter are parameters
used to control packet size and shape. Typical atomic dis-
placements are in the range of 0.005Acell to 0.010Acell to
ensure a linear wave behavior and reduce anharmonic packet
distortion �phonon-phonon scattering� approaching the scat-
terer. The motion of the wall then creates a traveling wave
packet in the material adjacent to the wall. A general sche-
matic of the domain is shown in Fig. 6. Figure 7 shows the
corresponding image from a section cut through an MD
model with a Xe inclusion in an Ar crystal. An alternate

initial-condition-based approach uses fixed wall positions
and imposes a wave packet in the domain upstream of the
scatterer by assigning initial velocities and displacements to
the atoms in order to form a traveling plane wave packet.
Due to improved packet quality, this method is preferred
over the method using boundary conditions. The simulations
performed thus far all align the incoming wave’s group ve-
locity vector with the crystal’s �100� direction, though the
method using initial conditions is feasible and valid for any
incident wave orientation and polarization, as are the post-
processing methods.

Primary outputs of the simulation are velocity vector and
stress tensor data at multiple locations in space at multiple
locations in time. The program calculates atomic-level
stresses based on the equations of Vitek and Egami.35 As
necessary, it performs inverse-distance-weighted interpola-
tion of the stresses at local atomic locations to get pressure at
an arbitrary spatial location within the domain. These large
arrays are postprocessed to calculate scattering information.
Output data are sampled at a time resolution between 1 fs
�the MD step size� and 10 fs to remain within memory limits
during postprocessing. Simulated time ranges are typically in
the range of 10 000–45 000 fs. The spatial resolution of the
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FIG. 7. �Color online� MD model section cut showing the posi-
tion of Xe scatterer in Ar lattice.
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points at which velocity and stress data are recorded may
vary, with values of spacing typically 2.25° ��spacing�5°
and 4.5° ��spacing�9°.

IV. METHOD FOR CALCULATING THE ORIENTATION
OF VIBRATIONAL MODES

As part of the modeling process, it is necessary to identify
the directions of oscillation associated with each of the vi-
brational modes. For each choice of wave vector k describ-
ing a wave propagating in a direction �� ,��, there are up to
three distinct acoustic modes with orthogonal directions of
oscillation. Along selected crystal axes, these may be pure
modes �transverse and longitudinal� where the directions of
atomic displacement are aligned perpendicular or parallel to
the group velocity. In general, for an arbitrary choice of
�� ,��, the modes are mixed �not pure� and must be deter-
mined by calculation. We use the following procedure, which
is based on those described by Auld36 and Carcione37 for a
continuous medium. An alternative to this method would be
to perform the eigenvector calculations using a lattice dy-
namics model, an accurate but more complicated approach.

To begin, a strain tensor S= is defined as the �symmetric�
gradient of the displacement vector ui,

S= =
1

2
��u� + 	�u�
T� =

1

2
� �ui

�xj
+

�uj

�xi
� = Sij , �4�

which is written as a six-element matrix SJ
T

= �Sxx Syy Szz 2Sxy 2Sxz 2Syz�. In a similar manner, the con-
ventional symmetric stress tensor

T= = Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz
� �5�

is written as a stress matrix TI
T= �Txx Tyy Tzz Txy Txz Tyz�. The

two are then related by the matrix equation TI=CIJSJ, in
which CIJ is a stiffness matrix. For a material with cubic
crystal symmetries, CIJ will take the form

CIJ = 
C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

� = C= . �6�

In this study, using 12-6 argon potentials, the values of the
components are set to C11=3.71�1010 dyn /cm2, C12=2.07
�1010 dyn /cm2, and C44=2.15�1010 dyn /cm2, as docu-
mented by Barker et al. for 12-6 fcc argon.38 For purposes of
calculating normalized eigenvectors, the critical tasks are to
select the proper form for CIJ and to establish the relative
magnitudes �ratios� of the stiffness values.

Traveling wave motion is assumed, with wave number k,
frequency �, and mass density �. For each direction of in-
terest, the corresponding spherical coordinates �� ,�� are se-

lected and used to generate a unit direction vector l̂ in Car-
tesian coordinates,

l̂ = lxx̂ + lyŷ + lzẑ . �7�

The vector l̂ is the direction of wave propagation and is
aligned with k, which is not necessarily aligned with the
local particle velocity or the group velocity vector. The group
velocity vector vg corresponds to the direction in which en-
ergy travels and is often called the energy propagation veloc-
ity Ve.

The vector l̂ is used to define a matrix L= ,

L= = lx 0 0 0 lz ly

0 ly 0 lz 0 lx

0 0 lz ly lx 0
� . �8�

For wavelike disturbances of the form ei�kx−�t�, −ikL= will
function as a spatial gradient operator. The motion of elastic
waves is governed by the Christoffel equation, a three-
dimensional form of the wave equation for linear elasticity in
solids,36,37,39

k2�L= · C= · L= T� · u� = ��2u� . �9�

This eigensystem equation has up to three distinct eigenval-
ues and eigenvectors. The eigenvalues may be expressed as
individual values of ��2 /k2. The matching eigenvectors are
the individual directions of oscillation of each mode. These
eigenvectors are expressed as unit vectors and, for a wave

propagation direction l̂, may be ordered by increasing slow-
ness �decreasing phase velocity� to define quasilongitudinal,
quasifast transverse, and quasislow transverse modes in the
linear regime. The wave vectors are mapped to group veloc-
ity vectors using Eqs. �10� and �11�,36

� = det�k2�L= · C= · L= T� − ��2I=� , �10�

vg i = −
1

k

��/�li

��/��
. �11�

With a chosen wave vector, to get a unit vector aligned with
a group velocity, one need only calculate the numerator of
Eq. �11� for three coordinate directions, generating Cartesian
vector components proportional to those of vg, and then scale
the vector to unit length. The sets of eigenvectors, wave vec-
tor, and group velocity vector are computed and tabulated for
an array of � and � values.

V. CALCULATION OF SCATTERING PHASE FUNCTIONS
AND CROSS SECTIONS

The postprocessing method is based on the superposition
of solutions for wave motion in a linear elastic solid. For
small displacements, i.e., low temperatures, the crystal is ex-
pected to behave as a linear elastic material. In such a case,
the incident wave packet and reflected wave packet are sim-
ply superposed. The form of the scattered wave packet is
found by comparing the results of two separate molecular
dynamics models, with and without the scatterer. The veloc-
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ity vectors and stress tensors at chosen locations in space �r�
in spherical coordinates� are tracked over time for the two
cases. Values of r� are selected to cover the �� ,�� angular
range of interest. The number of points selected determines
the resolution of ��� ,��. We typically use 100–300 values
of r�, though a greater number will improve � resolution. In
addition, spatial symmetries common to the crystal structure,
simulation cell, and scatterer may be used to reduce the
monitored range of �.

The relative differences between the two sets of results
are defined as �v� =v�scatterer−v�no scatterer and �T= =T= scatterer

−T= no scatterer, where v� is the atomic velocity vector and T= is
the stress tensor. As with v� and T= , both �v� and �T= are
functions of position r� and of time t, and are stored as large
arrays. To capture a far-field solution, the radial distances at
which data are collected �r� need to be large compared to the
size of the scatterer, so the changes in the components of v�
and T= are relatively small, meaning ��v� �� �v� �. In addition to
the primary scattering event, this set of �v� and �T= time
histories also contains signals associated with echoes of pe-
riodic reflections and with the reflection from the far wall of
the simulation cell. After examining the results, a time range
is chosen to identify and isolate the signals associated with
the first reflected pulse due to the scattering event. This need
to distinguish between the primary scattered signal, wall-
reflected packet, and periodic echo signals puts a minimum
size requirement on the simulation cell. For this method to
work, it is necessary to clearly distinguish between the dif-
ferent signals by the time range over which they travel
through the selected locations in space.

We then need a method by which we can use velocity,
stress, and energy information to calculate heat flux. Follow-
ing the heat flux equation of Volz and Chen40, we can define
an instantaneous heat flux at the location of an atom i. For
pair potentials, the heat flux vector takes the form

q� i =
1

Vi
�v� i�PEi + KEi� +

1

2 �
j,all j�i

N

r�ij�v� i · F� ij�� , �12�

where Vi is the volume associated with a single atom, vi is
the atomic velocity, KEi is the atom’s kinetic energy, PEi is
the atom’s potential energy, rij is the relative position vector
between atom i and neighbor j, and Fij is the two-body in-

teraction force between i and j �F� ij is parallel to r�ij�. The heat
flux has units of energy per unit time per unit area and is
analogous to the intensity I in acoustics. The summation
may be divided into three terms,

q� i =
1

Viv� iPEi + v� iKEi +
1

2 �
j=1

j�i

N

�v� i · F� ij�r�ij� , �13�

where the first term tracks the rate of transport of potential
energy by atomic motion, the second term provides the rate
of transport of kinetic energy by atomic motion, and the third
term provides the energy transport rate associated with the
work done by interatomic or intermolecular forces Fij.

For our case of traveling harmonic wave motion, the time
integral of the first term will go to zero when integrated over
a full cycle, as the potential energy varies in phase with
displacement, and the displacement is 90° out of phase with
the velocity. Selecting a location x, we get u�cos�kx-�t� and
v�sin�kx-�t�. We then have a harmonic potential energy
expression of the form PE�PE0+PE1 cos2�kx-�t�, in which
PE0 is the potential energy when u=0 and PE1 is the maxi-
mum potential energy increase associated with the traveling
wave. As a result, the first term of the heat flux equation is
proportional to sin�kx-�t��PE0+PE1 cos2�kx-�t��. For any
meaningful choices of the constants k, PE0, and PE1, and a
selected value of x, this term yields a value of zero when
integrated over a time interval corresponding to a cycle of
oscillation �t=0 to t=2	��. Likewise, the second term will
be proportional to sin3�kx-�t�, which has a time integral of
zero over a full cycle.

The combination of the second and third terms is propor-
tional to the vector-tensor product of stress and atomic ve-
locity. If we define the atomic stress tensor T= i as

T= i = −
1

Vimi�v� i � v� i� + �
j=1

j�i

N

�F� ij � r�ij�� �14�

per Ref. 35, we can rearrange the heat flux equation in the
simpler form

q� i =
1

Viv� iPEi + v� iKEi +
1

2 �
j=1

j�i

N

v� i · �F� ij � r�ij�� =
v� iPEi

Vi
−

v� i · T= i

2
.

�15�

The term −v� i ·T= i /2 resembles the acoustic Poynting vector
used in studies of continuum acoustics, for which the poten-
tial energy term v� iPEi is not a factor.

From this, we conclude that for pure harmonic wave mo-
tion or with well-formed wave packets, the PE and KE con-
tributions to q� i due to atomic motion are not significant. We
also note that the instantaneous transport of energy q� i �r�i , t� is
linearly proportional to atomic-level stress and linearly pro-
portional to atomic velocity, the same principle seen in con-
tinuum acoustic theory. For cases with small atomic dis-
placements in a single crystal �e.g., less than 1% of a lattice
constant�, the Vi term varies very little during the motion and
may be approximated as a constant, Vi=Vsystem /N. Thus, af-
ter time integration of a harmonic wave, the important inter-
molecular force term remains, giving

Q� i =
1

2Vi
�

time
�
j=1

j�i

N

�v� i · F� ij�r�ijdt , �16�

where Q� i represents the time integral of heat flux q� i. As a
result, the heat flux contribution of each pair i and j will be
along r�ij, the direction vector connecting the two atoms, and
proportional to the projection of the atomic velocity v� i in this
direction. The prefactor 1 /2Vi appears in both the numerator
and denominator of our equations for phase function and
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cross section, and thus cancels out of the final equations. As
long as displacements are small, the value of the prefactor is
not important. In our present calculations, we preserve this
constant as well as all of the terms in the heat flux equation
in order to verify our expectation that the PE and KE terms
have minimal contributions to the time-integrated heat flux.

It is expected based on acoustic theories that at suffi-
ciently large r, meaning r�adot, the scattered wave will
carry energy in the radial direction, away from the scatterer.
Though the wave vector may have various orientations, vg

and Q� i should be parallel to r�. This alignment is checked
during postprocessing of the MD results as a verification of
the fundamental physics of the scattering model and the as-
sociated computational procedure shown in Eqs. �15� and
�16�. First, the center of the scatterer is assigned a coordinate
�0, 0, 0� and used as the origin. The coordinate system is
aligned with the crystal’s cubic axes, so the incident plane
wave travels along the Cartesian direction +x, which corre-
sponds to the �=0° direction. Scattered waves travel radially
outward from the scatterer to reach the selected positions r�.
The heat flux vector associated with the scattered wave is
computed by examining the change in velocity and stress
resulting from the inclusion of a scatterer. At sufficiently
large �r��, corresponding to a far-field location, we may state
that in our lossless medium the group velocity is in the radial
direction and then simplify the calculation procedure by set-
ting q�scattered in the direction of r�. Our use of a wave packet to
describe the motion of a particlelike phonon will occasion-
ally cause the incident and scattered waves to overlap at
various positions and times. This occurs when data are col-
lected at a value of r less than half the packet length. If terms
of the type �v� ·T= or v� ·�T= are included in the heat flux equa-
tion, we will then be combining the incident and scattered
wave effects and calculating “interference power,” which is
not the heat flux of the scattered wave. Incorporating these
interference terms may result in scattered heat flux vectors
that are not aligned with the radial unit vector, an indication
of the error of such an approach. Following the approach of
Gubernatis et al.,41 we calculate �v� and �T= and use terms of
the form �v� ·�T= to examine the rate at which energy is car-
ried by the scattered wave alone. This method yields q�scattered

vectors, which are properly aligned in the radial direction,
and this alignment is checked as part of the computational
procedure. The average angle cosines between q�scattered and r�
are in the range of 0.95–0.99 for cases with r
3adot.

At each selected point in space at each instant in time, the
orientation of the local atomic velocity vector is compared to
the three eigenvectors associated with mechanical vibrations
to establish the fraction of energy in each mode. For a given
direction, these fractions are labeled F1, F2, and F3. These
values are functions of �, �, and t and thus form a large array
of data. By examining when the atomic velocities increase
and decrease, the time corresponding to the end of the in-
coming packet’s passage is identified. An integration is per-
formed over this carefully selected time interval for each
point r� to get the scattered energy per unit area in a particular
mode, referred to as Qis,

Qis�r,�,�,mode� = �
time

Fmode��,�,t�

��− �v��r,�,�,t� · �T= �r,�,�,t�/2�dt

�17�

or, more simply,

Qis�mode� = �
time

Fmode�− �v� · �T= /2�dt , �18�

noting that the PE term should not make a contribution.
Here, the term Qis is tracked as a scalar because scattered
waves are assumed to travel radially away from the scatter-

ing center at large r, but Q� is may be preserved as a vector if
desired. It is commonly assumed that scattered wave power
per unit area decreases in magnitude in proportion to 1 /r2,
the expected trend for a wave expanding from a pointlike
scattering source, where r is large compared to the length
scale of the scatterer.31 An examination of computed results
collected at multiple radial distances in the model domain
confirms that the Qis�1 /r2 trend is valid. At large r, meaning
r
10adot, the signal may become weak. To maintain a high
signal-to-noise level, it is preferable to keep r small. The
desire to avoid collection of data in the near-field region
motivates the selection of large r values. In practice, our
most successful models used monitoring points in the range
3adot�r�10adot. Our present model is constructed to collect
data at points on a surface of constant r, though this is not
strictly necessary.

Plotting �� �� ,� ,mode�=Qis �r ,� ,� ,mode�r2 as a func-
tion of direction �� ,�� produces a phase function. �� is nor-
malized to produce the phase function � based on the equa-
tion

���,�,mode�

=
Qis�r,�,�,mode�r2

1

4	
�

�=0

�=2	 �
�=0

�=	

Qis�r,�,�,mode�r2 sin �d�d�

.

�19�

Integration over the entire 4	 steradians of solid angle �
yields ���d�=4	, and � may be interpreted as propor-
tional to the probability density per unit of solid angle. This
is similar to the procedure used for scattering of electromag-
netic radiation.42 The inclusion of the r2 term in the equation
allows for the possibility of collecting data at points with
various values of r. With data sets collected at constant r, the
r2 terms cancel out of Eq. �19�. A convenient feature of this
method is that as long as all of the units used in the MD
model are consistent, � will be normalized and dimension-
less.

To obtain cross section �s, a point in space is selected in
a model without a scatterer. The value of q� at this location is
monitored to get an energy flux time history that describes
the incoming packet. It is then integrated over time to get
total incident energy per unit area passing through the do-
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main in the unscattered packet, which is here labeled
Qincident. Total scattered energy Escattered is computed by inte-
gration,

Escattered�mode�

= �
�=0

�=2	 �
�=0

�=	

Qis�r,�,�,mode� r2 sin �d�d� .

�20�

While the time-integrated Qis is chosen to have units of en-
ergy per unit area, the integrated value Escattered has units of
energy. The ratio of the total scattered energy to incident
energy per unit area is a cross section �s,

�s,mode =
Escattered�mode�

Qincident
, �21�

which has the fundamental units of area used in the MD
model ��2�. A separate cross section is computed for each
mode, and the sum of these gives the total cross section �s.
Dividing the value of �s by the scatterer projected area gives
the scattering efficiency C �where C=�s /	adot

2 for a sphere�.
For a selected scatterer shape with a characteristic dimension
adot, the use of � and C allows description of scattering in
completely nondimensional units.

We examine packet characteristics using the Fourier
analysis of displacement data u�r� along radial lines �rays�
starting at the origin �0,0,0� and extending in selected direc-
tions �� ,�� at a selected time t. Along axes of crystal sym-
metry, this produces a wave number–amplitude plot. From
this, we confirm desired wave number components for par-
ticular directions of displacement �e.g., x longitudinal, y
transverse, and z transverse along the �100� direction�. Se-
lecting an early simulation time to capture u�r� gives wave
number data for the incoming wave packet. Performing the
Fourier analysis on u�r� at a suitably late simulation time
gives wave number data for the scattered wave packet. We
also use Fourier analysis with stress and pressure signals at
selected points in space to get wave number–amplitude plots
for the wave packets. This permits the use of model output to
check the properties of the generated wave packet and show
its composition in terms of frequency and wave number
component�s�.

VI. RESULTS AND DISCUSSION

A. Comparison to acoustic theory phase functions

The computational technique described above generates
phase functions and cross sections for a variety of cases in-
volving different scatterer shapes and sizes, different incident
wave numbers and modes, and different scatterer atoms
�rigid Ar and nonrigid Xe�. The MD results for the rigid
spherical scatterers are compared to the predictions of acous-
tic scattering theory, which was documented by Ying and
Truell30 for the case of a plane wave in an isotropically elas-
tic solid with more than one permissible acoustic mode. If
only longitudinal modes are present, the simpler case of the-
oretical fluid acoustics is applicable, and the same results are

obtained using the equivalent tabulated phase function data
from Morse and Ingard.31 In the acoustic theory, a scatterer
has a phase function which is only a function of �, as the
isotropy renders the problem completely symmetric with any
rotation of angle �. This is not the case for scattering of an
acoustic wave in an anisotropic crystal lattice, and � is ex-
pected to be a function of both � and �. Figure 8 shows a
phase function versus both � and �. It is important to note
that the function is not uniform with �, but has a larger
sensitivity to changes in � than to changes in �. For purposes
of display and to ease comparison between different cases or
configurations, many of the charts presented here use a
�-averaged phase function ����, which allows presentation
in the polar plot format that is conventional in studies of
radiation and acoustics. The simplified ���� polar plot is
useful as it gives a more intuitive picture of the relative num-
bers of phonons scattered in each direction. The two-
dimensional depictions of ���� shown herein are aligned
with the direction of forward scattering ��=0° � to the right.

A sample comparison of �-averaged normalized phase
functions for incoming longitudinal waves is shown in Fig.
9. In the majority of cases, the scattering phase function cal-
culated from MD has features different from those of the
acoustic theory prediction, which is based on an isotropic
medium. The �-averaged MD results tend to have sharper
lobes and may exhibit a greater number of small lobes, and
the smaller lobes are shifted. The cases used in this study set
the incoming wave vector along the �100� direction, which
for small scatterers tends to cause narrow lobes �spikes� to
form along the �=0° and �=180° directions, and decreases
the amount of scattering in the lateral �=90° direction. As
scatterer size adot increases with Acell and kadot held fixed, the
longitudinal-mode phase functions more closely resemble
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FIG. 8. �Color online� Example of full phase function, k=1 /�,
adot=3�, all modes.
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those of the acoustic theory, though some differences remain
in the magnitude and positions of the smaller lobes. This is
examined in greater detail in Sec. VI F. Due to multiple ef-
fects such as differences in scatterer shape and roughness
and anisotropy of the crystal’s elastic properties, the physical
phenomena captured in acoustic theory and MD are not iden-
tical, and these are believed to be the reasons for the ob-
served differences, as discussed in Sec. VI B.

The equation set of Ying and Truell clearly separates the
longitudinal and transverse components of the scattering am-
plitudes. This allows us to compare the theoretical and the
computed results for scattering into the transverse mode in
the anisotropic solid. Due to the anisotropy, there are sepa-
rate quasifast transverse and quasislow transverse modes. By
summing the energies in these two modes, we can produce a
�-averaged phase function for scattering into all quasi-
transverse modes, an example of which is shown in Fig. 10.
This phase function can be compared to the analytical pre-
diction of Ying and Truell seen in the same figure. Both
functions show the expected nulls at 0° and 180°. They also
have strong sideward and forward lobes, but the lobes gen-
erated by the anisotropic MD model have shifted and, after �
averaging, show reductions around 35° and 125°. The sin �
term necessary in the spherical coordinate integration causes
the normalization to exaggerate the differences in the analyti-
cal and MD-calculated lobes. This trend of an anisotropic
scattering medium giving a phase function with shifted lobes
and sharp local decreases is also seen in the computational
work of Temple.28

B. Causes of variation between theoretical and computed
phase functions

This initial comparison between the theoretical isotropic
fluid acoustic phase functions and the molecular dynamics
results highlights a number of important differences between
the two.

�1� The acoustic theory presented by Morse describes
wave motion in an isotropic material. The solid argon fcc
structure is not isotropic but instead has stiffness that varies
with direction, which results in increases and decreases in �
along certain directions when compared to � for an isotropic
material. This effect will persist at all length scales within a
crystal and is a dominant effect, which is infrequently dis-
cussed in the literature covering scattering of phonons. We
separately used this model to simulate propagation of waves
from a point source in a crystal,34,43 and these phonon imag-

ing results compared favorably with those of phonon focus-
ing experiments,44 indicating that the model properly ac-
counts for the influence of anisotropy on group velocity.

�2� The continuum theory of acoustics has mass distrib-
uted uniformly through space. The solid argon structure has
mass associated with discrete atoms, which results in a dis-
persion curve. The majority of models used in this study
have low wave numbers for which the dispersion relation �
vs k is close to linear, though wave speed is still a function of
the direction of k. The molecular dynamics model accounts
for dispersion at all values of kAcell and can also properly
model wave motions in the continuum regime �kAcell�1�.

�3� Due to the discrete nature of the lattice, the scatterer
shape used is granular and has a lumpy or faceted surface,
instead of the spherical surface of the continuum theory. For
large scatterer sizes �adot
10Acell�, this effect becomes less
significant. The continuum description identifies a scatterer
boundary at a precise location in space, while in the simula-
tion the boundary between free and rigid atoms spans a finite
region. In addition to the aspherical surface, the preposition-
ing of the atoms within and adjacent to the scatterer restricts
the force interactions to a finite number along particular
axes, though atomic displacements can, in principle, occur in
any direction. Compared to the continuum theory, the granu-
lar lattice of discrete masses has fundamental differences in
both the nature of the scatterer and its mechanical interac-
tions with the wave packet.

Isotropic Continuum Theory
Anisotropic Solid Argon from MD

θ

(quasi-)transverse modes only
(quasi-)transverse modes only

θ

FIG. 10. �Color online� Phase function for the sum of quasi-
transverse modes, analytical equations of Ying and Truell vs aniso-
tropic MD model, longitudinal incoming wave, kadot=3, k=1 /�,
adot=3�.

Isotropic
Continuum
Theory

k=2/σ, adot =2σ, ka=4

Anisotropic solid Ar:
from MD model

rigid spherical
scatterer

kadot =4, k= 2/σ, adot =2σ
kadot = 4, k = 2 σ-1, adot = 2 σ

FIG. 9. �Color online� Phase function comparison for longitudinal mode, rigid spherical scatterer, kadot=4.
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�4� The propagation of waves in the argon is not purely
harmonic. All force interactions are slightly nonlinear, with
the spring constant becoming progressively more nonlinear
with larger deflections. This causes some unavoidable degra-
dation of packet shape, which can be limited by using low-
intensity wave packets �maximum displacement �Acell /100�.

�5� The incoming wave packet is not and cannot be at an
exact value of k, but has a range in its component values of
k and �. Lengthening of the packet decreases its lateral span
on the amplitude–wave number charts.

�6� The solutions found in the continuum theory describe
scattered energy distributions in the far-field region, where r
approaches �. The solutions generated by the MD model
certainly cannot reach r=�; instead, the model uses r values
one order of magnitude greater than adot. Further increasing r
steeply increases the computational cost due to the necessary
increase in simulation cell extent, and for larger r, postpro-
cessing may reveal an insufficient signal-to-noise ratio. As a
result, the MD solutions are not completely far-field solu-
tions but have unavoidable traces of near-field solution pat-
terns.

Of these differences, the first and third have the greatest
influence on the phase functions examined herein. The sec-
ond difference is minor for values of k less than 30% of
kmax�100�, and the fourth difference is reduced by selecting
small displacements. The first three differences are based on
the physical behavior of materials, while items �4�–�6� result
from modeling limitations.

C. Energy present in each mode

The intensity of the various modes may be compared, as
shown in Fig. 11, which presents the relative energy per unit
area scattered from a longitudinal incoming plane wave by a
rigid spherical inclusion. The presence of additional modes
with nonzero energy confirms that mode conversion occurred
as part of the scattering event. Here, the assignment of labels
qL, qFT, and qST is conducted by independently evaluating
the speed of each mode at each individual direction selected.

It is visible that in the forward and backward directions the
scattering of energy is primarily in the quasilongitudinal
mode, as expected based on the acoustic theory. The pres-
ence of a large longitudinal component near the �=90° side
sector is the result of a particular choice of kadot, and small
changes in kadot may make large shifts in the alignment of
this lobe, a characteristic also seen in acoustic theory. The
total amount of energy in each mode, when properly summed
�area weighted�, gives the relative probability of scattering
into each mode. The relative height of the bars gives the
relative probability of scattering into each direction.

D. Scatterer shape and roughness

For small dots with adot�3Acell, the effects of scatterer
granularity and limited directions of force interaction cause
changes in �. Though all of the nominally spherical dots are
generated by selecting atoms within a well-defined spherical
boundary, the actual surfaces of the small dots have lumps or
facets rather than the smooth spherical boundary described in
the continuum theory. Forces causing reflection events near
the scatterer atoms are limited to discrete atomic interactions
in preset directions, the stiffnesses of which vary with dis-
tance due to anharmonicity and vary with direction due to
elastic anisotropy.

To see some of these effects, we compare cubic scatterers
to the roughly spherical scatterers. Changes in � are seen as
a result of the faceted shape of the cubic scatterer. Figure 12
shows an example of � for a case with a cube of side length
of 6�, faces along the 	100
 planes, and packet wave number
1 /�. The plot includes a comparable � for a spherical scat-
terer. Total phase functions are used, rather than separate
modal phase functions �qL, qFT, and qST�, to more clearly
illustrate the proportion of energy traveling in each direction.
The total phase function may be compiled by setting the
factor Fmode to a value of 1 in Eq. �17�, simply integrating all
scattered wave energy traveling through each monitoring
point and normalizing per Eq. �19�.

The cubic inclusion’s � shape has a larger lobe in the
backward region, aligned with its natural facet. The
sideward-scattered lobes have decreased in size as well. This
shows geometric-scattering characteristics that scatterers will
start to exhibit as kadot increases beyond 1, approaching the
geometric regime of kadot�1. It also indicates that control-
ling the shape and alignment of inclusions in a material may
allow the designer to channel scattering along particular di-
rections.

As actual nanometer-scale structures may not have clean,
sharply defined boundaries, it is useful to consider the influ-
ence of additional roughness caused by less-than-perfect
scatterer boundaries. This is simulated by rearranging the
atoms near the surface of the scatterer and randomly select-
ing their type until a particular scatterer mass is reached.
Figure 13 shows a randomly roughened spherical scatterer
compared to a smoother spherical scatterer of the same mass,
with kadot=3. The total phase function of the roughened scat-
terer has the same general shape with an increase in the size
of the backscattered lobes. The roughening process used here
effectively raises adot while maintaining the same scatterer
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FIG. 11. �Color online� Scattered energy per unit area vs direc-
tion, longitudinal incoming wave, k=1 /�, kadot=3, nondimensional
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mass. The increase in kadot would decrease the size of the
lobes for a case with a smooth scatterer. The change to a
slightly rougher scatterer thus results in a scattering event
which is more diffuse than that of the smooth scatterer with
regular surfaces. Also visible in the phase function is a de-
crease in the direct backscatter lobe at �=180° due to the
removal of a backward-aligned scatterer facet upon roughen-
ing.

To investigate shapes similar to experimentally fabricated
nanostructures,14 models of pyramid-shaped scatterers were
used. The resulting total phase functions shown in Fig. 14
correspond to cases with pyramids of height 3.5� and base
dimensions 7��7�. The kadot value of 3.5 used in this case
suggests that the scattering will have a large geometric com-
ponent. The phase function shows that at high kadot, the fac-
eted nature of the scatterer has a strong influence. The inci-
dent wave is strongly reflected from the pyramid base and
creates a large backscatter lobe. In the case with the wave
incident on the pyramid apex, the phase function has side
lobes not present in the case with the base incidence. The
similarities between the base-incidence case and that of the
cubic dot show that at higher kadot values with a rigid scat-
terer, the incident wave is primarily influenced by the leading
surface of the inclusion and weakly influenced by the rear

surface, as seen with geometric scattering from a reflective
object.

The difference between the two phase functions at high
kadot values indicates that the thermal conductivity can de-
pend on direction in a fabricated solid structure containing
pyramidal scatterers of controlled orientation �e.g., a Si-Ge
quantum dot superlattice�, rather than remaining invariant
following a ��=180° rotation. As temperature increases, the
phonon-phonon scattering events may overcome this
inclusion-based method of controlling conductivity, but a
weak directional dependence will remain for some range of
phonon wave numbers. It is possible that at some combina-
tion of scatterer size and temperature, the dominant phonon
wave number�s� will be high enough that heat conduction
may have a strong dependence on material orientation, cre-
ating a material with diodelike properties only available
through the use of nanometer-micrometer-scale structures.

E. Mass, strain, and stiffness effects on scattering

To examine the effects on scattering of inclusions with
different masses, stiffnesses, and lattice constants, six types
of inclusions were investigated: �1� rigid argon, �2� an argon
isotope with the mass of krypton �2.1 times that of argon�,

spherical dot
cubic scatterer

θ

FIG. 12. �Color online� Total phase functions, cubic vs spherical scatterers, kadot=3, normalized.

spherical dot
roughened dot

θ

FIG. 13. �Color online� Phase functions, rough vs smooth spherical scatterers, kadot=3, normalized.
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�3� an argon isotope with the mass of xenon �3.3 times that
of argon�, �4� a xenonlike material, but with the argon energy
scale parameter , �5� xenon, and �6� an argon isotope with
ten times the mass of argon. Table I gives the masses,
Lennard-Jones energy parameters, and Lennard-Jones spac-
ing parameters for the cases and also shows the resulting
scattering cross sections. All of the cases are set at k=1 and
adot=2, and the spherical inclusions are embedded in a lattice
of mobile argon atoms. For these cases, the scatterer is very
lumpy and granular, with kAcell=1.5. The total scattering
phase functions for these cases are shown in Figs. 15–17.

Figure 15 presents the effects of changing scatterer mass.
It compares the phase functions for the cases with a com-
pletely immobile scatterer and three isotopes of argon. The
phase functions are normalized, but we can see differences in
the relative distribution of scattered energy. In general, in-
creases in mass are accompanied by higher backscattering.
The rigid argon phase function is very similar to that of the
extremely high-mass inclusion �m=10mAr, case 6�, support-
ing the description of the rigid scatterer as one with effec-
tively infinite mass. However, it should be mentioned that the
rigid inclusion displays somewhat larger forward ��=0� scat-
tering than the comparable high-mass inclusion of case 6. We
believe that this arises from the additional effect of the infi-
nite stiffness of the rigid particle. This belief is supported by
a comparison to Fig. 17, which shows higher forward scat-
tering for stiffer particles.

Figure 16 shows the effects of changing the inclusion lat-
tice constant �, which causes lattice strain. This causes a
local change in elasticity that extends beyond the surface of

the scatterer. In addition to strain in the argon, the exterior
portions of the xenon dot are compressed by the argon. Both
within the inclusion and in the strain-affected region adjacent
to the inclusion, there are spatial variations in mass density,
material stiffness, and the dispersion relations. Wave fronts
passing through the strained region will bend slightly due to
mild refraction. The change in local stiffness will also cause
reflection of a small portion of the wave energy. In addition
to changing the phase function due to redirection of the
backscattered waves, this causes phase shifts in some por-
tions of the forward-moving wave front, which do not di-
rectly contact the xenon atoms. Though primarily in the for-
ward direction, these mild phase shifts come from
interactions that are ultimately caused by the scatterer and
are thus interpreted as legitimate scattering events. As a re-
sult, the influence of the dot extends beyond adot, increasing
the scattering efficiency. A phase shift in forward-scattered
waves with almost no bending of the wave front would ap-
pear as an increase in �s and a growth in the forward lobe of
����� which, taken together, would make very little change
in the rate at which phonons travel through the medium. The
local strain affects waves both before and after they reach the
inclusion, resulting in a very different boundary condition
compared to that of the rigid scatterer. For case 4, the lattice
strain and the change in stiffness combine to increase the
cross section by 50% as compared to case 3. The lobes in
case 4, with the strained lattice, have rotated farther forward
and the side lobes have grown as well, showing a strong
redirection of energy by the inclusion with the larger lattice
constant.

wave incident on apex
wave incident on flat base

θ

FIG. 14. �Color online� Total phase functions for rigid pyramid-shaped scatterers, wave incident on base and apex, k=1 /�, 7��7�
�3.5� inclusion dimensions, normalized.

TABLE I. Scatterer characteristics and scattering cross sections for different inclusion cases.

Case Description  /argon � /�argon Mass /Massargon �s

1 Rigid argon 1 1 effectively � 16

2 Argon isotope, mass of Kr 1 1 2.1 13

3 Argon isotope, mass of Xe 1 1 3.3 24

4 Xenonlike with argon bond energy 1 1.15 3.3 35

5 Xenon 1.92 1.15 3.3 55

6 Argon isotope, ten times mass of Ar 1 1 10 17
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Figure 17 shows the effects of a bond energy change for
cases with the same mass and lattice constant. In these cases,
both of the scatterers have atoms with the mass and lattice
constant of xenon but different values of the binding energy

constant , which results in different forces. Case 5 has a
92% stiffer bond, and this results in a 54% greater cross
section. The increase is seen primarily as a growth in the
forward-scattered lobe.

Rigid: mass effectively infinite (case 1)
Mass = 2.1 * Argon mass (case 2)
Mass = 3.3 * Argon mass (case 3)
Mass = 10 * Argon mass (case 6)

θ

×
×

×

FIG. 15. �Color online� Total phase functions
of argon isotopes, scattering from rigid and non-
rigid inclusions, kadot=2,=Ar, �=�Ar.

(case 3)

(case 4)

θ

Argon bond spacing σ

Xenon bond spacing σ
(wider)

σ = σAr

σ = 1.15 σAr

FIG. 16. �Color online� Total phase functions, scattering from inclusions of differing bond length, kadot=2, mass=3.3mAr, =Ar.
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In cases where the  and � parameters of the inclusion
material differ from those of the host, atomic disordering
occurs in the vicinity of the interface. To capture this effect,
molecular statics calculations are performed to find a relaxed
configuration of host and inclusion atoms for all cases except
those with rigid inclusions. After reaching static equilibrium
at 0 K, the argon lattice has a new nonuniform spacing in the
vicinity of the inclusion, which becomes the initial condition
of the molecular dynamics calculation. This variation in
atomic spacing may also be described as a change in local
number density, as shown in Fig. 18 for a spherical volume
with a radius of 2� surrounding each atom.

The strain-induced refraction effects add another require-
ment on the choice of r at which data are collected. The
value of r needs to be well outside the strain-affected region,
at least greater than 3adot and ideally as high as 10adot. The
suitability of a chosen value of r at which data will be col-
lected is evaluated by comparing the calculated strains asso-
ciated with scattered waves with the initial local strain asso-
ciated with the nearby inclusion atoms. This condition may
be alternately described as a requirement for the difference
between initial stress fields T�r , t=0�, with and without the
scatterer, to start out at approximately the same values such
that elements of �T are very small at time t=0, much smaller
than the stresses generated by the incoming wave. This is
achieved by selecting large r and by using a large cubic
simulation cell to reduce the irregularity of the strain field
due to the different far-field boundaries. If the incoming
pulse amplitude is too low, then the reflected signal �stress
field� would be faint compared to that of the initial stress
field.

F. Scaling of results

The characteristic sizes of the quantum dots in quantum
dot superlattices typically range from a few nanometers to

tens of nanometers. The present MD method used to inves-
tigate scattering from nanometer-scale inclusions becomes
prohibitively expensive for inclusion sizes larger than about
10 nm, so it is useful to investigate whether results calcu-
lated for small inclusion sizes ��10 nm� can be scaled to
predict scattering cross sections and phase functions for
much larger inclusions. In acoustic theory, which assumes
perfectly sharp, smooth interfaces and specular reflections,
the scattering cross sections and phase functions depend only
on kadot and do not specifically depend on inclusion size adot.
This indicates that scattering of large wave number waves
from small inclusions should be identical to scattering of
small wave number waves from large inclusions, provided
that kadot is the same in both cases. In other words, scattering
cross sections and phase functions for large inclusions could
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FIG. 18. �Color online� Local density profile due to mismatched
inclusion particle �Xe in Ar�.
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Argon bond energy
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ε = εAr ε = 1.92 εAr

FIG. 17. �Color online� Total phase functions, scattering from inclusions of differing bond energy, kadot=2, mass=3.3mAr, �=1.15�Ar.
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ideally be predicted from simulation runs on much smaller
systems, provided the wave numbers are scaled appropri-
ately. Unfortunately, this is not always possible due to the
influence of a second parameter that is important in realistic
systems but neglected in acoustic theory: the roughness pa-
rameter kAcell.

The roughness parameter measures the atomic granularity
of the scatterer and is effectively a measure of the unavoid-
able surface roughness present with small inclusions. Small
scatterers constructed to resemble spheres �e.g., Fig. 7� have
facets due to the underlying crystal structure, and for higher
wave numbers these facets direct energy in particular direc-
tions. At small kAcell, the inclusion surface appears smooth to
the incoming wave, scattering is specular, and acoustic
theory applies. At large kAcell, the inclusion surface appears
rough to the incoming wave and scattering is diffuse. In ad-
dition, for small scatterers, the lattice granularity restricts
strong force interactions near the scatterer surface to a finite
number, generally along directions of close atomic packing.
These directions of strong force interactions are fixed by the
lattice and do not rotate with a change in incoming phonon
direction ��� ,���. These atomic-scale effects are, of course,
not addressed in the continuum acoustic theory. The shifts in
lobe patterns caused by material anisotropy should occur at
all length scales.

A series of phase function calculations for various combi-
nations of k and adot with Acell fixed were performed to de-
termine how smooth the surface must be �how low kAcell
must be� in order for scaling to be applicable. Figure 19
contains a table of the obtained phase functions. In this fig-
ure, the size and roughness parameters can be varied inde-
pendently to isolate their respective effects on scattering. The
size parameter can be increased while holding the roughness
parameter constant by progressing left to right across the

rows in the table. The roughness parameter may be increased
while holding the size parameter constant by progressing
from top right to bottom left along the diagonals in the table.
The upper right corner of the table presents cases with the
smoothest, most spherical dots, relative to packet wave-
length. Isotropic acoustic theory predicts that for the range
2�kadot�10, the total phase function for all modes should
appear as a large forward lobe with a lesser scattering into
the sideward and backward directions, the region spanning
45° ���315°. As the size parameter kadot increases, the
primary forward lobe should increase in radius, and the re-
mainder of the phase function should decrease in radius. As
this trend progresses, the number of lobes in a given mode’s
phase function may increase, while the they decrease in
width and length. This is illustrated in Fig. 20 which presents
the corresponding isotropic continuum phase functions for
all modes �total �� calculated per Ref. 30. The MD results
show that as kadot increases, the size of the forward-scattered
lobe grows and the backscattered energy decreases, which
follows the trend of the acoustic theory. This corresponds to
a transition from the upper left corner to the lower right
corner of Fig. 19.

The k=2 /�, adot=1.5� phase function serves as an ex-
treme example of the changes in phase functions resulting
from inclusions with a nanometer length scale. For this case
in the lower left corner of Fig. 19, the phase function does
not resemble that of the continuum theory due to the great
differences in the scatterer shape and interaction mechanics
at or near the scatterer surface. Moving diagonally across
Fig. 19, from the lower left corner to the upper right corner,
the dot surface becomes smoother and the phase function
starts to take on the expected shape of a single forward lobe
with smaller features in other directions. As none of the di-
agonal images of Fig. 19 with identical kadot have matching

k=2/σ

k=1.4/σ

k=1/σ

adot=3σadot=2.1σadot=1.5σ

towards Rayleigh regime

geometric regime

kadot = 3 kadot = 4.2

kadot = 4.2kadot = 3

kadot = 3

kadot = 6

kadot = 2.1

kadot = 2.1kadot = 1.5

more granular
(greater kAcell, smaller adot/Acell)

smoother

FIG. 19. �Color online� Total phase functions for rigid Ar spherical scatterers, longitudinal incoming wave, Acell=1.55�.
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phase functions, we concluded that scaling could not yet be
justified in this range of kAcell. We further investigated con-
figurations for which kadot=3 to look at trends for lower
kAcell �lower roughness�. Figure 21 shows additional phase
functions for the kadot=3 case at progressively lower k,
lower kAcell, and greater adot. It also shows the normalized
isotropic continuum theory phase function for all modes and
the geometric-limit diffuse scattering theory phase function
�Eq. 11–92 in Ref. 42�. The resulting trend running from
large kAcell �very granular� to lower kAcell �smoother� is a
decrease in the energy scattered to the side and back sectors
and the development of a single large lobe in the forward
direction, as expected for phase functions with kadot
2. This
behavior is consistent with a transition from diffuse scatter-
ing at high kAcell to specular scattering at low kAcell. The

phase functions for larger adot and smaller k show forward
lobe shapes and sizes closer to those found in the isotropic
continuum theory. Even at very low kAcell, the �-averaged
phase functions are not identical to those of continuum
theory due to material anisotropy.

To first order, the kadot=3 phase functions have the same
general shape and local magnitudes for the cases with k=1,
adot=3 and k=0.67, adot=4.5 �Fig. 21�. This first-order simi-
larity does not hold for cases with kAcell�1.5, here equiva-
lent to adot /Acell�2. Based on these computed results, results
for cases with kadot of order of magnitude 3 and kAcell�1.5
are expected to match to first order when scaled up to greater
adot at given k and Acell. As an attempt to simulate a 10 nm
inclusion particle and collect far-field scattering data will re-
quire many millions of atoms and may thus be impractical,

(k)(a dot) = 1.5
(k)(a dot) = 2.1
(k)(a dot) = 3
(k)(a dot) = 4.2
(k)(a dot) = 6

increasing size parameter kadot
increases size of forward lobe

kadot = 6kadot = 4.2

kadot = 2.1

kadot = 3

kadot = 1.5

FIG. 20. �Color online� Continuum phase functions, total of all modes, kadot=1.5–6.

k=1.5, a dot =2, k Acell = 2.3
k=1.0, a dot = 3, k Acell = 1.55
k=0.67, a dot = 4.5, k Acell = 1.0
k=0.5, a dot = 6, k Acell = 0.78
Isotropic Continuum Theory, (k)(a dot)= 3
Diffuse spherical scatterer, geometric regime

FIG. 21. �Color online� Total phase functions �all modes� for various scatterer length scales, kadot=3, rigid scatterer. The decrease in
kAcell shows a transition from diffuse to a specular scattering behavior.
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the error associated with scaling results in a limitation on the
accuracy of the approach. This limitation is flexible because
as computational power continues to grow, progressively
larger and more accurate models will become possible and
the required degree of scaling will decrease.

The conditions required for scaling can be shown another
way using the asymmetry factor ���,22

��� =
1

4	
�4	

str.

����cos���d� . �22�

The asymmetry factor is a convenient metric indicating the
character of the scattering. It ranges from a maximum of 1,
which indicates pure forward scattering, to a minimum of
−1, which indicates pure backscattering at �=180°. A value
of 0 indicates symmetric scattering relative to the �=90°
plane. The value of ��� provides a sense of a scattering
event’s influence upon phonon transport, with very high ���
values indicating minimal change in phonon-carried heat
current following scattering and small or negative values in-
dicating progressively greater scattering-induced disruption
of the propagation of phonons along the �=0° direction. Fig-
ure 22 shows the asymmetry factor for multiple cases with
kadot=3. The figure illustrates that below a threshold value of
kAcell�1.5, the relative forward and backward scattering lev-
els of the phase functions are approximately constant. This
provides another indication that scaling can be performed for
sufficiently low kAcell.

Scattering cross sections were also investigated by run-
ning a set of simulations for kadot=3, with various adot. The
resulting scattered energy trend is shown in Fig. 23. The
results show that the value of �s increases in proportion to
adot

2 , as expected from geometric scaling, and this supports
the idea of using a scatterer cross section to describe the
scattering events.

VII. ADVANTAGES AND LIMITATIONS OF THE
MODELING TECHNIQUE

The MD approach presented here has several advantages
over alternative approaches in modeling elastic wave scatter-

ing in continuous media, and in some situations, may be
more practical. The MD model enables all possible wave
modes, unlike theoretical fluid acoustics, which treats only
longitudinal modes in isotropic media. Analytical elasticity
calculations handle both longitudinal and transverse modes,
but for some cases with unusual scatterer shapes, strong an-
isotropy, and/or nonrigid scatterers, analytical solutions are
either impractical or require numerical calculations to evalu-
ate many terms and are thus no longer purely analytical so-
lutions. For such cases, which can and do occur in real ma-
terials, an MD calculation is often a more straightforward
and rapid alternative. It is fully three dimensional and also
incorporates discrete masses and their effect on high-
frequency dispersion, more complex and diffuse boundary
definitions, directionally dependent anharmonic potential
functions, irregular or roughened scatterers, and natural lat-
tice strain due to the presence of an inclusion. These features
are not represented in the above theoretical treatments nor in
FDTD and FEM. The computational cost of the present ap-
proach is much less than in FEM and is comparable to that of
FDTD.

MD models are also capable of resolving optical modes,
although these modes have not yet been studied since they
do not occur in the fcc crystals of this work. This simulation
capability is an important distinguishing feature of MD for
which there is no equivalent description and equation set in
continuum acoustic theory. These nonacoustic waves can
play an important role in governing energy transport at high
temperatures and in strongly nonequilibrium systems.

Another advantage is that the scattering phase functions
generated by the present technique are sufficiently detailed to
serve as inputs into mesoscale models of phonon motion
such as Monte Carlo simulations.45–49 Such simulations can
incorporate theoretical rates for phonon-boundary, phonon-
phonon, and phonon-point defect scattering, but do not yet
account for phonon scattering with nanoparticle inclusions.
The scattering phase functions generated using the present
technique could be used to feed polarization-, particle
shape–, and incident direction–dependent scattering prob-
abilities into Monte Carlo simulations of phonon transport.
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This will be important in modeling phonon-nanoparticle
scattering in systems such as semiconductor quantum dot
superlattices that are too large to be treated by molecular
dynamics alone.

The simulation technique selected has a number of draw-
backs and limitations on the range of conditions that can be
practically simulated. One’s choice of computer and the
computation time available both put a lower limit on the
wave frequencies that can be modeled. The simulation cell
must be large enough to resolve the wave packet prior to the
scattering event and to allow it to pass through and leave the
monitoring region before the arrival of the reflected leading
edge of the packet and the arrival of periodic echoes of the
packet. With a given number of oscillations of some selected
amplitude, the packet length grows inversely proportional to
k. If the simulation cell length �per side� is proportional to
the packet length, and the number of simulation time steps is
proportional to the packet length, then the computation time
required will be proportional to 1 /k4. Fortunately, the result-
ing lower limit on k will be eased as computing power in-
creases. The lowest wave numbers we have used so far are
approximately kmax�100� /10 or 0.4�−1.

The method of data processing involves spatial averages
of pressures, velocity components, and stress components.
For small values of k, this produces a fairly accurate descrip-
tion of the pressure at some point in space, as the pressure or
velocity component gradient has a small magnitude. This
Eulerian approach to tracking stress and velocity is selected
to provide a direct analogy with acoustic theories describing
scattering. At high values of k, the weighted-averaging tech-
nique may smooth out local gradients and yield poor results.
This is a basic limitation of the method of using atomic-level
stresses in a molecular dynamics model to study wave scat-
tering. The highest values of k used in this study equaled
kmax /2. The most straightforward and effective solution to
this averaging difficulty is to select data collection points at
the equilibrium lattice locations of various atoms in a thick
radial band. This then requires data collection at multiple
radii and corresponding adjustments in the postprocessing
calculations.

As stresses and velocities are only directly computed at
atomic locations, the source data are interpolated to interme-
diate positions when necessary. Calculations of atomic dis-
placements are also tied to discrete positions of atoms. The
resolution of the amplitude–wave number plots is ultimately
limited by this fundamental spatial resolution of the lattice.
For large simulations, the data will have many elements, al-
lowing long wavelength amplitudes �e.g., k�0.1kmax� to be
well determined with good resolution in k. For the ranges of
wave numbers studied thus far, typical spacing in k points
�the resolution� on the amplitude–wave number graphs is
0.6�−1. This is coarser than desired for examination of waves
with � in the range of 3�–6�. The amplitude–wave number
plots are only truly valid along the axes of symmetry where
wave vector and group velocity vector are aligned, but they
still allow an examination of the characteristics of the scat-
tered waves. We have found it more practical to track the
scattered wave content using frequency-amplitude diagrams.

The simulation uses wave propagation in a lattice of 0 K,
with a local “temperature” elevation due to the wave packet.

Similar simplifications were made in a phonon scattering
study by Sinha et al.,50 which used an ambient environment
without thermal phonons. The application of the results of
this MD method to real materials is only a valid approxima-
tion when the atomic motions at the selected temperature are
small compared to the lattice spacing and lie in the region
where the motion is close to harmonic. The use of this simu-
lation technique to calculate ��� ,�� and �s values in a lat-
tice at an elevated temperature may be possible but would
require careful extraction of background thermal noise using
frequency analysis and would also require larger wave
packet amplitudes, which would subject the wave packet to
stronger phonon-phonon scattering effects during its travel.
As a result, a high-temperature simulation of this type would
be impractical, slow, and unlikely to yield satisfactory re-
sults.

Additionally, the simulations are classical. Except in the
high-temperature limit, the lattice vibrations modeled are not
directly equivalent to phonons, which arise from the quan-
tum field theory �second quantization�. However, as there is
an incomplete theoretical understanding of phonon scattering
from nanoparticles, studies of classical wave scattering pro-
vide an important first step in understanding phonon scatter-
ing from these particles. In the future, methods such as non-
equilibrium Green’s functions for phonons51 may be able to
make similar scattering predictions without invoking classi-
cal assumptions.

VIII. CONCLUSIONS

A technique is developed for the simulation of three-
dimensional elastic scattering events using molecular dy-
namics. Methods of analyzing the data are created and ap-
plied to simulation results to generate phase functions for
multiple modes of vibration in a solid. The results capture
the influences of anisotropy, mode conversion, and scatterer
shape and size, including roughness. In the sample argon fcc
lattice, the technique involved is of practical use for a range
of wave numbers from 10% to 50% of kmax�100�, though it
may be extended to lower k. Scaling and range of applica-
bility are investigated, and a dependence of results on kAcell
is seen for high kAcell. It is seen that phase functions and
cross sections scale well for cases with kAcell�1.5, which
corresponds to adot /Acell
2. This indicates that the results
can describe scattering phenomena at length scales beyond
those of typical molecular dynamics simulations. The scat-
tering phase functions generated by this technique are suffi-
ciently detailed to serve as inputs into mesoscale approaches,
such as Monte Carlo simulation, that enable treatment of
phonon transport processes at length scales longer than those
accessible to molecular dynamics. These approaches can pro-
vide useful tools for investigating heat transfer in materials
with nanometer-scale structures such as semiconductor quan-
tum dot superlattices.
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