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We study elastic systems such as interfaces or lattices pinned by correlated quenched disorder considering
two different types of correlations: generalized columnar disorder and quenched defects correlated as �x−a for
large separation x. Using functional renormalization group methods, we obtain the critical exponents to two-
loop order and calculate the response to a transverse field h. The correlated disorder violates the statistical tilt
symmetry resulting in nonlinear response to a tilt. Elastic systems with columnar disorder exhibit a transverse
Meissner effect: disorder generates the critical field hc below which there is no response to a tilt and above
which the tilt angle behaves as ���h−hc�� with a universal exponent ��1. This describes the destruction of
a weak Bose glass in type-II superconductors with columnar disorder caused by tilt of the magnetic field. For
isotropic long-range correlated disorder, the linear tilt modulus vanishes at small fields leading to a power-law
response ��h� with ��1. The obtained results are applied to the Kardar-Parisi-Zhang equation with tem-
porally correlated noise.
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I. INTRODUCTION

Elastic objects in disordered media are a fruitful concept
to study diverse physical systems such as domain walls in
ferromagnets,1 charge density waves in solids �CDW�,2 and
vortices in type-II superconductors.3 In all these systems, the
interplay between elasticity, which tends to keep the object
ordered �flat or periodic�, and disorder, which induces distor-
tions, produces a complicated energy landscape.4–6 This
leads to rich glassy behavior. For instance, at low tempera-
ture, weak defects in a crystal of type-II superconductor,
such as oxygen vacancies, can collectively pin the flux lines
in the so-called Bragg glass state.7 Vortex pinning prevents
the dissipation of energy, and thus, its understanding has a
great importance for applications. It was observed in experi-
ments that columnar defects produced in the underlying lat-
tice of superconductors by heavy ion irradiation can signifi-
cantly enhance vortex pinning.8 Nelson and Vinokur9

mapped the problem of flux lines pinned by columnar defects
onto the quantum problem of bosons with uncorrelated
quenched disorder in one dimension less. The mapping pre-
dicts a low temperature “strong” Bose-glass phase which
corresponds to the localization of bosons in a random poten-
tial provided the longitudinal applied field H� is weak enough
to create vortices with density smaller than the density of
pins. For larger H�, the Bose-glass can coexist with a resis-
tive liquid of interstitial vortices which, it is argued, can
freeze upon cooling into a collectively pinned weak Bose-
glass phase.10 At low tilts of the applied magnetic field rela-
tive to the parallel columnar defects, flux lines remain local-
ized along the defects, so that vortices are characterized by
an infinite tilt modulus. This phenomenon which is known as
the transverse Meissner effect has been extensively studied
experimentally.11 Vortices undergo a delocalization transition
to a flux liquid state at some finite critical mismatch angle �c
between the applied field and the direction of defect align-
ment, i.e., at some finite transverse field H�

c . The schematic
phase diagram is shown in Fig. 1. The breakdown of the
transverse Meissner effect above H�

c can be described by

B� � �H� − H�
c ��, �1�

where B� is the transverse magnetic induction due to the
tilted flux lines. Heuristic arguments of Ref. 12 based on
kink statistics predict �=1 /2 in d=1+1 dimensions and �
=3 /2 in d=2+1. However, experiments on a bulk supercon-
ductor �d=3� with columnar disorder find ��0.5,13 while
the strong-randomness real-space renormalization group sug-
gests �=1 in d=2,14 that is in disagreement with the predic-
tions based on kink statistics. Thus, further investigations are
needed.

The theoretical advances for elastic objects in disordered
media are achieved by developing two general methods: the
Gaussian variational approximation �GVA� and the func-
tional renormalization group �FRG�. GVA relies on the rep-
lica method allowing for the replica symmetry breaking.15 It
is exact in the mean field limit, i.e., in the limit of a large
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FIG. 1. Phase diagram of flux lines with columnar disorder at a
fixed applied field H� parallel to the columns as a function of trans-
verse field H� and temperature T. The Bose glass corresponds to
vortex localization and exhibits a transverse Meissner effect. The
transition to liquid phase occurs at the critical field H�

c �T�. In �1
+1� dimensions, the temperatures TBG and T* are related to the
special values of the Luttinger interaction parameter: g�TBG�=3 /2
and g�T*�=1. The inset shows the response to a transverse field in
the vicinity of transition.
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number of components. FRG is a perturbative renormaliza-
tion group method which is able to handle infinite number of
relevant operator.16 Simple scaling arguments show that the
large-scale properties of a d-dimensional elastic system are
governed by uncorrelated disorder in d�duc=4. In particu-
lar, displacements grow unboundedly with distance, resulting
in a roughness of interfaces or distortions of periodic struc-
tures. The problem is notably difficult due to the so-called
dimensional reduction which states that a d-dimensional dis-
ordered system at zero temperature is equivalent to all orders
in perturbation theory to a pure system in d−2 dimensions at
finite temperature. However, metastability renders the zero-
temperature perturbation theory useless: it breaks down on
scales larger than the so-called Larkin length.17 The peculiar-
ity of the problem is that for d�duc there is an infinite set of
relevant operators. They can be parametrized by a function
which is nothing but the disorder correlator. The renormal-
ized disorder correlator becomes a nonanalytic function be-
yond the Larkin scale.16 The appearance of a nonanalyticity
in the form of a cusp at the origin is related to metastability,
and nicely accounts for the generation of a threshold force at
the depinning transition.18–21 It was recently shown that FRG
can unambiguously be extended to higher loop order so that
the underlining nonanalytic field theory is probably renor-
malizable to all orders.22–24 Although the two methods, GVA
and FRG, are very different, they provide a fairly consistent
picture and recently a relation between them was
established.25 There is also good agreement with results of
numerical simulations, not only for critical exponents26–28

but also for distributions of observables29,30 and the effective
action.31

The FRG techniques were also applied to pinning of elas-
tic systems by columnar disorder.32–34 The models studied by
FRG, though that may be more directly applicable to systems
such as charge density waves or domain walls, exhibit many
features of the Bose-glass phase of type-II superconductors.
In particular, they demonstrate the absence of a response to a
weak transverse field and provide a way to compute the ex-
ponent �.34 However, since FRG intrinsically assumes col-
lective pinning, it also predicts a slow algebraic decay of
translational order, that is not expected in the strong Bose-
glass state when each vortex is pinned by a single columnar
pin. Thus, the FRG is able to handle only a weak Bose-glass
phase, exhibiting both the transverse Meissner effects and
the Bragg peaks.

In the present paper, we extend the FRG studies to two-
loop order. We also extend to two-loop order our recent
work35 on the elastic objects in the presence of long-range
�LR� correlated disorder with correlations decaying with dis-
tance as a power law. This type of disorder can be induced,
for example, by the presence of extended defects with ran-
dom orientations. In particular, we address the question of
the response to a tilting field and compare the effects pro-
duced by different types of disorder correlations. The outline
of this paper is as follows. Section II introduces the models
of elastic objects in the presence of generalized columnar
and LR-correlated disorder. In Sec. III, we study the model
with LR correlated disorder using FRG up to two-loop order.
In Sec. IV, we consider the response of elastic objects to a
tilting field and discuss the relation to the quantum problem

of interacting disordered bosons. In Sec. V, we revise the
problem of surface growth with temporally correlated noise
using the results obtained in the previous sections.

II. MODELS WITH CORRELATED DISORDER

The configuration of elastic object embedded in a
D-dimensional space can be parametrized by an
N-component displacement field ux, where x belongs to the
d-dimensional internal space. For instance, a d-dimensional
domain wall corresponds to d=D−1 and N=1, vortices in a
bulk superconductor to d=D=3 and N=2, and vortices con-
fined in a slab to d=D=2 and N=1. In this paper, we restrict
our study to the case N=1 and elastic objects with short-
range elasticity. In the presence of disorder, the equilibrium
behavior of the elastic object is defined by the Hamiltonian

H�u� =� ddx	 c

2
��ux�2 + V�x,ux�
 , �2�

where c is the elasticity and V�x ,u� is a random Gaussian
potential, with zero mean and variance that will be defined
below. We denote everywhere below �q=� ddq

�2��d and �x

=�ddx. The short-scale UV cutoff is implied at q�� and the
system size is L. The random potential causes the interface to
wander and become rough with displacements growing with
the distance x as C�x��x2�. Here, � is the roughness expo-
nent. Elastic periodic structures lose their strict translational
order and exhibit a slow logarithmic growth of displace-
ments, C�x�=Ad ln�x�. Although most results of the paper
concern the statics at equilibrium, it is instructive to give a
dynamic formulation of the problem. The driven dynamics of
the elastic object in a disordered medium at zero temperature
can be described by the following overdamped equation of
motion:

	�tuxt = c�2uxt + F�x,uxt� + f . �3�

Here, 	 is the friction coefficient, F=−�uV�x ,u� the pinning
force, and f the applied force. The system undergoes the
so-called depinning transition at the critical force fc, which
separates sliding and pinned states. Upon approaching the
depinning transition from the sliding state f → fc

+ the center-
of-mass velocity v=L−d�x�tuxt vanishes as a power law

v � �f − fc�
. �4�

In the present work, we consider model �2� with two differ-
ent types of correlated disorder, which are described in two
subsequent sections.

A. Generalized columnar disorder

Real systems often contain extended defects in the form
of linear dislocations, planar grain boundaries, three-
dimensional cavities, etc. We consider the model with ex-
tended defects which can be viewed as a generalization of
columnar disorder. The defects are �d-dimensional objects
�hyperplanes� extending throughout the whole system along
the coordinate x� and randomly distributed in the transverse
directions x� with the concentration taken to be well below
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the percolation limit.36–38 The corresponding correlator of the
disorder potential can be written as

V�x,u�V�x�,u�� = R�u − u���d−�d�x� − x�� � . �5�

The case of uncorrelated pointlike disorder corresponds to
�d=0 and the columnar disorder to �d=1. For interfaces, one
has to distinguish two universality classes: random bond
�RB� disorder described by a short-range function R�u� and
random field �RF� disorder corresponding to a function
which behaves as R�u���u� at large u. Random periodic
�RP� universality class corresponding to a periodic function
R�u� describes systems such as CDW or vortices in d=1+1
dimensions.6

The standard way to average over disorder is the replica
trick. Introducing n replicas of the original system, we derive
the replicated Hamiltonian as follows:

Hn�u�
T

=
1

2T


a
�

x

�c����ux
a�2 + c����ux

a�2 + m2�ux
a�2�

−
1

2T2
a,b
� d�dx�d�dx��d

d−�dx�R�ux�,x�

a − ux��,x�

b � ,

�6�

where we have added a small mass m providing an infrared
cutoff. Replica indices a and b run from 1 to n and the
properties of the original disordered system can be restored
in the limit n→0. We explicitly show in Hamiltonian �6� that
one has to distinguish the longitudinal and transverse elastic-
ity modules. Even if the bare elasticity tensor is isotropic, the
effective elasticity may not due to the renormalization by
anisotropically distributed disorder.

B. Long-range correlated disorder

In the case of isotropically distributed disorder, the
power-law correlation is the simplest assumption with possi-
bility for scaling behavior with new fixed points �FPs� and
new critical exponents. The bulk critical behavior of systems
with RB and RF disorder which correlations decay as a
power-law x−a was studied in Refs. 39–42. The power-law
correlation of disorder in the d-dimensional space with ex-
ponent a=d−�d can be ascribed to �d-dimensional extended
defects randomly distributed with random orientation. For
instance, a=d corresponds to uncorrelated pointlike defects,
and a=d−1 �a=d−2� describes infinite lines �planes� of de-
fects with random orientation. The power-law correlation
with a noninteger value a=d−df can be found in the systems
containing fractal-like structures with the fractal dimension
df.

43 Here, we consider the model with LR-correlated disor-
der introduced in Ref. 35 which is defined by the following
disorder correlator:

V�x,u�V�x�,u�� = R1�u − u���d�x − x�� + R2�u − u��g�x − x�� ,

�7�

with g�x��x−a. We fix the constant in the Fourier space tak-
ing g�q�=qa−d. The first term in Eq. �7� corresponds to point-
like disorder with short-range �SR� correlations and the sec-

ond term to LR-correlated disorder. A priori we are
interested in the case a�d when the correlations decay suf-
ficiently slowly, otherwise the disorder is simply SR corre-
lated.

Using the replica trick, we obtain the replicated Hamil-
tonian Hn�u� and the corresponding action S�u�:

S�u� =
Hn�u�

T
=

1

2T


a
�

x

�c��ux
a�2 + m2�ux

a�2�

−
1

2T2
a,b
�

x

R1�ux
a − ux

b�

−
1

2T2
a,b
�

xx�
R2�ux

a − ux�
b �g�x − x�� . �8�

One could start with model �8�, setting R1�u�=0. However,
as was shown in Ref. 35, a nonzero R1�u� is generated under
coarse graining along the FRG flow. Note that the functions
Ri�u� can themselves be SR, LR, or RP. The generalization of
these universality classes to LR-correlated disorder is dis-
cussed in Ref. 35.

In the case of uncorrelated disorder, the system �2� exhib-
its the so-called statistical tilt symmetry �STS�, i.e., invari-
ance under transformation ux→ux+ fx with an arbitrary func-
tion fx. The STS issues that the one-replica part of the
replicated action, i.e., the elasticity, does not get corrected by
disorder to all orders. The presence of LR-correlated disorder
or extended defects destroys the STS, and thus allows for the
renormalization of elasticity.

For a non-Gaussian distribution of disorder, higher order
�p�2� cumulants would generate additional terms in the ac-
tion with factors of 1 /Tp and free sums over p replicas.
These terms are irrelevant in the RG sense that can be seen
by power counting, and thus will be neglected from the be-
ginning.

III. RENORMALIZATION OF THE MODEL WITH
LONG-RANGE CORRELATED DISORDER

A. Perturbation theory and diagrammatics

We now study the scaling behavior of model �8� starting
with simple power counting. The elastic term in action �8� is
invariant under x→xb, u→ub�, c→b−c provided T
→b�TT with �T=d−2+2�−. Since �T is positive near d
=4, the temperature T is formally irrelevant. The STS would
fix =0; however, this is not the case here. � and  are for
now undetermined and their actual values will be fixed by
the disorder correlators at the stable FP. Under the rescaling
transformation, the disorder correlation functions R1 and R2
go up by factors bd−2�T =b4−d−4�+2 and bd−2�T =b4−a−4�+2,
respectively. Thus, in the vicinity of Gaussian FP �Ri=0�, SR
disorder becomes relevant for �− /2� �4−d� /4 and LR dis-
order is naively relevant for �− /2� �4−a� /4. A posteriori
these inequalities are satisfied at the RB and RP FPs. For RF
disorder, however, power counting suggests that SR disorder
is relevant for �−� �4−d� /2, while LR disorder is relevant
for �−� �4−a� /2.35
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Let us consider the perturbation theory in disorder and its
diagrammatic representation. In momentum space, the qua-
dratic part of action �8� gives rise to the free propagator
�uq

auq�
b �0= �2��d�d�q+q��T�abC�q� represented graphically by

a line:

=TC�q��ab =
T

cq2 + m2�ab.a b

�9�

We will distinguish two different interactions, SR and LR,
for which we adopt the following splitted diagrammatic rep-
resentation:

=�
ab

R1�ux
a − ux

b�
2T2 ,

a

b

�10�

=�
ab

R2�ux
a − ux�

b �

2T2 g�x − x�� .
a

b

�11�

Following the standard field theory renormalization program,
we compute the effective action and determine counter-terms
to render the theory UV finite as d ,a→4. To regularize in-
tegrals, we use a generalized dimensional regularization with
a double expansion in �=4−d and �=4−a. The effective
action ��u� is defined by the Legendre transform ��u�=Ju
−W�J�, W��J�=u of the generating functional for connected
correlators W�J�=ln Z�J�. The replicated partition function
Z in the presence of sources J is given by

Z�J� =� �
a

Dua exp�− S�u� + �
x


a

Jx
aux

a� . �12�

The effective action ��u� is by definition a generating func-
tional of one-particle irreducible vertex functions. However,
it turns out to be nonanalytic in some directions, and there-
fore, the relying on the expansion in u is danger. To over-
come these difficulties, we employ the formalism of func-
tional diagrams introduced in Ref. 24. Since the temperature
is formally irrelevant, we compute the correction to the ef-
fective action at T=0. Analyzing UV divergences of the
functional diagrams contributing to the effective action, we
find that the disorder is corrected only by local parts of two-
replica diagrams and the elasticity only by one-replica dia-
grams.

B. Correction to disorder and � functions

To one-loop order at T=0, the correction to disorder is
given by the local parts of the two-replica diagrams shown in
Fig. 2. The corresponding expressions read

�1R1�u� = 	1

2
R10� �u�2 − R10� �u�R10� �0�
I1 + �R10� �u�R20� �u�

− R10� �u�R20� �0��I2 +
1

2
R20� �u�2I3, �13�

�1R2�u� = − R20� �u�R10� �0�I1 − R20� �u�R20� �0�I2, �14�

where we have included factor of 1 /c0
2 in Ri0�u�. In this

section, bare parameters are denoted by the subscript “0.”

The one-loop integrals I1, I2, and I2 diverge logarithmically
and for � ,�→0 are given by

I1 = �
q

1

�q2 + m̂2�2 = K4
m̂−�

�
+ O�1� , �15�

I2 = �
q

qa−d

�q2 + m̂2�2 = K4
m̂−�

�
+ O�1� , �16�

I3 = �
q

q2�a−d�

�q2 + m̂2�2 =
K4m̂−2�+�

2� − �
+ O�1� , �17�

where we have set m̂=m /�c0 and Kd is the area of a
d-dimensional sphere divided by �2��d. Let us define the
renormalized dimensionless disorder Ri as

m�R1�u� = R10�u� + �1R1�u� , �18�

m�R2�u� = R20�u� + �1R2�u� . �19�

Note that to one-loop order, there is no correction due to the
renormalization of elasticity �see below�. The 
 functions are
defined as the derivative of Ri�u� with respect to the mass m
at fixed bare disorder Ri0�u�. It is convenient to rescale the

field u by m� and write the 
 functions for the function R̃i
=K4m−4�Ri�um��. Dropping the tilde subscript, the flow
equations to one-loop order read

��R1�u� = �� − 4��R1�u� + �uR1��u� +
1

2
�R1��u� + R2��u��2

+ AR1��u� , �20�

��R2�u� = �� − 4��R2�u� + �uR2��u� + AR2��u� , �21�

where A=−�R1��0�+R2��0�� and ��ª−m �
�m . The FPs of flow

equations �20� and �21� characterizing different universality
classes have been computed numerically in Ref. 35 and the
corresponding critical exponents have been derived to first
order in � and �. The remarkable property of the FRG flow is
that the LR part of disorder correlator R2�u� remains an ana-
lytic function along the flow for all universality classes. We
will show below that due to this feature, one can obtain the
critical exponents to two-loop order just computing the two-
loop correction to elasticity and avoiding exhaustive two-
loop calculations.

(ii) (iii)(i)

a

b

a a a a a

a ab b b

FIG. 2. Two-replica one-loop diagrams correcting disorder. The
dot line corresponds to either SR disorder vertex �dashed line� or to
LR disorder vertex �wavy line�. Diagrams of types �i� and �ii� con-
tribute to SR disorder. Only diagrams of type �iii� give corrections
to LR disorder.
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C. Correction to elasticity

The STS violation causes a renormalization of elasticity.
The first order correction to the single-replica part of effec-
tive action is expressed by the following diagram:

=− �
x,x�

�
a

R20� �ux
a − ux�

a �g�x − x��

2T
C�x − x�� ,

a

a �22�

where the bare correlation function C�x� is given by Eq. �9�.
Using the short distance expansion

ux
a − ux�

a = 
i=1

d

�xi − xi��
�ux

a

�xi
+ . . . �23�

and identifying the terms of the kind −��ux
a�2 /2T as a cor-

rection to elasticity, we find

�1c =
1

2d
R20

�4��0��
x

x2g�x�C�x� = c0R20
�4��0�

� − �

4�
m̂−� + O��,�� ,

�24�

where in the last line we have included K4 /c0
2 in a redefini-

tion of R20�u�. Since Eq. �24� is finite for � ,�→0, the elas-
ticity does not get corrected to one-loop order.

We now turn to the two-loop corrections. The three dif-
ferent sets of diagrams contributing to elasticity are depicted
in Fig. 3. The details of calculations are given in the Appen-
dix. Summing up all contributions, we arrive at

�2c

c0
= R10� �0�R20

�6��0�m̂−��+��� − �

� + �

1

4�
+ R20� �0�R20

�6��0�m̂−2�� − �

8�2

+ O�1� . �25�

To render the poles in � and �, we introduce the renormal-
ization group Z factor as follows:

c = Zc�R1,R2�−1c0. �26�

The exponent  is given then by

 = � − m
d

dm
ln Zc�R1,R2��

0
, �27�

where subscript 0 indicates a derivative at constant bare pa-
rameters. Taking the derivative with respect to the mass, we
obtain

� − m
d

dm
ln Zc�

0
= −

1

4
R20

�4��0��� − ��m̂−�

+ R10� �0�R20
�6��0�m̂−��+��� − �

4�

+ R20� �0�R20
�6��0�m̂−2�� − �

4�
. �28�

To calculate , we have to express the bare disorder via
renormalized one as follows:

R20
�4��0� = m�	R2

�4��0� + R1��0�R2
�6��0�

1

�
+ R2��0�R2

�6��0�
1

�

 .

�29�

Substituting Eq. �29� in Eq. �28�, we find that the leading
two-loop corrections are exactly canceled by the counter-
terms, so that we leave with

 = −
1

4
�� − ��R2

�4��0� . �30�

The finite part of the single-replica two-loop diagrams �25� is
expected to correct elasticity at three-loop order. Hence, we
argue that the perturbation theory for this model is organized
in such a way that the single-replica p-loop diagrams correct
the elasticity only to �p+1� order. Since R2�u� remains ana-
lytic along the FRG flow, we have R2

�4��0��0, and therefore,
�0. The corresponding values of the exponent  computed
for the RF, RB, and RP universality classes using the FPs
found in Ref. 35 are shown in Fig. 4.

D. Roughness exponent to two-loop order

We now show how one can calculate the roughness expo-
nent � to second order in � and � knowing only the exponent
 computed to second order in Sec. III C. To that end, we do
not need the whole FRG to two-loop order. Let us start with
the RB universality class. The roughness exponent is fixed
by a stable RB FP solution of Eqs. �20� and �21� which
decays exponentially fast for large u. The equations possess
both the SR RB FP with R2�u�=0 and the LR RB FP with

[ ]a

x
y

y

y

1

2

3

� �

[ ]b

x
y

y
y

1

2

3� �

[ ]c

x y

y

y

1

2

3

� �

�� �� ��

FIG. 3. Single-replica two-loop diagrams correcting elasticity.
The dotted line corresponds to either SR disorder vertex �� ,
=1�
or to LR disorder vertex �� ,
=2�. The solid line corresponds to
bare correlation functions C�y�. The corresponding expressions are
computed in the Appendix.

FIG. 4. �Color online� Exponent  as a function of � /� at two-
loop order for the RF, RB, and RP universality classes.
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R2�u��0. The roughness exponent corresponding to the SR
RB FP is known to second order in � and reads22,24

�SRRB = 0.208298� + 0.006858�2 + O��3� . �31�

Despite the smallness of the two-loop correction, the estima-
tion of the exponent in d=1, �SRRB=0.6866 given by Eq.
�31�, visibly differs from the known exact result 2 /3. One
can improve the accuracy of � by use the Padé approximant
�2 /1� involving also the unknown third order correction.
Tuning the latter in order to reproduce the exact result 2 /3
for �=3, we end up with the expression

�SRRB
imp =

0.208298� + 0.040017�2

1 + 0.159192�
, �32�

which is expected to be fairly accurate for 0���3.
We now focus on the LR RB FP with R2�u��0. We can

integrate both sides of flow equation �21� over u from 0 to �
taking into account that for RB disorder R2�u� decays expo-
nentially fast. Since for RB disorder the integral �0

�duR2�u�
is nonzero, we can determine the roughness exponent
�LRRB=� /5 to first order in � and �. Fortunately, one can go
beyond the one-loop approximation. Indeed, the direct in-
spection of diagrams contributing to the flow equation �21�
shows that the higher orders can only be linear in even de-
rivatives of R2�u�. The only term which is linear in R2�u�
comes from the renormalization of elasticity and can be re-
written as 2R2�u� to all orders. Hence, we have to all orders

���
0

�

duR2�u� = �� − 5� + 2��
0

�

duR2�u� , �33�

and as a consequence, �0
�duR2�u� is exactly preserved along

the FRG flow resulting in the exact identity

�LRRB =
� + 2

5
. �34�

Substituting Eq. �30� into Eq. �34�, we obtain the roughness
exponent �LRRB to second order in � and �. Before we pro-
ceed to compute the exponents, let us to check stability of
the SR and LR RB FPs. As was shown in Ref. 35, the SR RB
FP is unstable with respect to LR disorder if �LRRB��SRRB.
To one-loop order, this gives that the SR RB FP is stable for
��1.0415�. Equating �34� and �32�, we can compute the
stability regions to second order in � and � �see Fig. 5�. The
alternative way to determine the crossover line relies on the
requirement that the exponent  is a continuous function of �
and �. It is zero in the region controlled by the SR FP, and
therefore has to vanish when approaching the crossover line
from the LR stability region. Since the  is of second order
in � and �, the  criterion at two-loop order gives the same
stability regions as the roughness exponents equating at one-
loop order. However, we can significantly improve the latter
if we take into account that =0 on the crossover line. The
resulting crossover line is shown in Fig. 5. We can also im-
prove the two-loop estimation of . To that end, we write
down a formal expansion of  in �,

 = �2f1��/�� + �3f2��/�� + ¯ . �35�

The function f1�x� is basically the function shown in Fig. 4.
We now tune the function f2�x� in order to make =0 on the
crossover line and find

f2�x� =
0.159192x − 0.200087

x − 1.04149
f1�x� . �36�

Using Eqs. �35� and �36�, we compute the roughness expo-
nent �LRRB as a function of � for �=1 and �=2 �see Fig. 6�.
Unfortunately, the accuracy rapidly decays with �, so that
estimation of the roughness exponent for �=3 is very diffi-
cult and postponed to Sec. V.

Similar to the case of RB disorder, one can show that the
roughness exponent at the LR RF FP is exactly given by

FIG. 5. �Color online� Stability regions of SR and LR RB FPs
on plane �d ,a�. The borderline between regions is given by equa-
tion �LRRB=�SRRB �on the exact crossover line also =0�. The
shown lines are computed using the one-loop, two-loop, and im-
proved results. The circle is a point on the exact crossover line.

FIG. 6. �Color online� RB disorder: roughness exponent as a
function of � for �=1 and �=2. The solid lines are computed using
the improved estimation �35� and �36� of the exponent . The
dashed lines are computed using  which is given by Eq. �30� and
shown in Fig. 4. The dotted line is the one-loop result �LRRB=� /5
which does not depend on �.
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�LRRF =
� + 2

3
, �37�

and the crossover line between the SR and LR RF FPs is
exactly given by �=�.

IV. RESPONSE TO TILT

In this section, we study the response of a d-dimensional
elastic object to a small tilting force tending to rotate the
object in the plane �x1 ,u�. The tilting force can be incorpo-
rated into the Hamiltonian as follows:

Hh�u� = H�u� − h� ddx�x1
ux. �38�

Such a force can be caused, for example, by a tilt of the
applied field in superconductors, or by tilted boundary con-
ditions in the case of interfaces. For superconductors, we
have h=�0H� / �4��, where H� is the component of the ap-
plied magnetic field transverse to the flux lines directed
along x1 and �0 is the magnetic flux quantum.12 Since we
restrict our consideration to the case N=1, our results can be
applied only to flux lines confined in �1+1� dimensions.
However, the methods we use here can be extended to gen-
eral N, and therefore applied to vortices in �2+1� dimen-
sions.

We focus on the response of the system to a small field h,
which can be measured by the average angle between the
perturbed and unperturbed orientations of the object in the
�x1 ,u� plane: ��h�ª�x1

ux. In the absence of disorder, the
straightforward minimization of the Hamiltonian leads to the
linear response: ��h�=h /c. To study the effect of disorder, it
proves more convenient to work in the tilted frame: ux→ux
+�x1. The corresponding Hamiltonian is

Hh�u� =� ddx	1

2
i=1

d

ci��xi
ux�2 + V�x,ux + �x1�

− �h − c1���x1
ux
 , �39�

where the field u satisfies �x1
ux=0. Note that due to the vio-

lation of the STS symmetry, the tilted system can exhibit
anisotropic effective elasticity even if the bare elasticity and
disorder are isotropic. We now show by simple power count-
ing that a finite tilt does introduce a new length scale in the
problem which can be associated with the correlation length
defined through the connected two point correlator,

��x;�� = �x1
u�0��x1

u�x�
c

� exp�− x1/��� . �40�

Indeed, upon scaling transformation x→bx, u→b�u the ar-
guments of the disorder term in Hamiltonian �39� scale like
V�bx ,b�ux+�bx1�. Comparing two terms of the last argu-
ment, we find that finite � changes the character of disorder
correlator above the length scale

�� � �−1/�1−��, �41�

diverging for �→0 provided that ��1. Below �� one can
neglect the tilt, while above �� the dependence on ux is com-

pletely washed out and the � term starts to suppress the
correlation of disorder along x1. Thus, �� serves as the cor-
relation length along x1, and therefore c1 does not get renor-
malized beyond this scale. In the next two sections, we in-
vestigate the difference in the response to tilt for
anisotropically distributed extended defects and isotropic
LR-correlated disorder.

A. Response in the presence of columnar disorder

Here, we extend the previous one-loop FRG studies32,34 of
elastic systems in the presence of columnar disorder to two-
loop order and proceed to describe the transverse Meissner
physics in a quantitative way. We consider the model with
�d-dimensional extended defects introduced in Sec. II A. We
take ci=c� �i=1, . . . ,�d� and we are also free to put ci=1 �i
=�d+1, . . . ,d� since they do not get corrected by disorder.
Simple power counting shows that the upper critical dimen-
sion of the problem is duc=4+�d. We use the dimensional
regularization of integrals with a �̃=4−d+�d expansion. The
FRG flow equations to two-loop order read

��R�u� = ��̃ − 4��R�u� + �uR��u� − TR�4��u� +
1

2
R��u�2

− R��0�R��u� −
1

2
R��0+�2R��u� +

1

2
�R��u�

− R��0��R��u�2, �42�

�� ln c� = R�4��0� + R�4��0�2 + 2R��0�R�5��0� , �43�

�� ln T = − �T −
�d

2
R�4��0� + O�R2� , �44�

��h̃ = c�
1/2�0e−�R��0+� + O�R2� , �45�

where �T=d−2+2� and �0 is the bare cutoff. In Eq. �45�, h̃
is the coefficient in front of the term

h̃
a
� ddx���ux

a� �46�

ultimately generated in the effective Hamiltonian along the

FRG flow.32 The correction to h̃ is strongly UV diverging,
and thus is nonuniversal. Note that the flow equation for the
generalized columnar disorder �42� coincides to all orders
with that for pointlike disorder up to change �̃→�.

Let us start from the analysis at T=0. The flow picture
very resembles that for the depinning transition with tilt �,
longitudinal elasticity c�, and tilting field h playing the roles
of velocity, friction, and driving force, respectively. For d
�4+�d, the running disorder correlator R�4��u� blows up at
the Larkin scale

lc =
1

�̃
ln�1 +

�̃

3�R0
�4��0��

� . �47�

Consequently, the longitudinal elasticity diverges at zero tilt
� in a way similar to mobility divergence at the depinning
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transition in quasistatic limit. Beyond the Larkin scale l� lc,
the R�2��u� develops a cusp at origin, R��0+��0. The term
�46� is generated in the effective Hamiltonian and the R�4�

��0� changes its sign from positive to negative. The latter
leads to a power law decay of the longitudinal elasticity c�

�L− with

 = − R*�4��0� − R*�4��0�2 − 2R*��0�R*�5��0� , �48�

where R*�u� is a FP solution of the flow equation �42�. Simi-
lar to the threshold force generation at the depinning transi-
tion, term �46� reduces the tilting force and generates the
critical tilting force hc. The flow equation �45� allows us to
estimate the nonuniversal value of hc. Integrating Eq. �45� up
to large scales, we find

hc =
c0

1/2�0e−lc�1+/2�

1 + /2
R*��0 + � . �49�

We are now in a position to compute the exponent �, which
we define as

� � �h − hc��. �50�

To that end, we renormalize the equilibrium balance equation
h−hc=c1�L�� up to the scale L=�� at which the elasticity c1

stops to get renormalized. Using Eq. �41�, we obtain the
exact scaling relation

� = �1 +


1 − �
�−1

. �51�

The exponents �, , and � computed to second order in �̃ for
different universality classes are summarized in Table I. Note
that expansions in �̃ are expected to be Borel nonsummable,
and thus ill behaved for high orders and large �̃. In this light,
the using of exact relation �51� may be more favorable than
the expansions given in the last column of Table I. Systems
described by the RP universality class exhibit slow logarith-
mic growth of displacements

�ūx�
− ū0�2 = Ad ln x�, �52�

where ūx�
ªL−�d �d�dx�ux. The universal amplitude can be

easily deduced from the results for the uncorrelated disorder
and to two loop reads

Ad =
�̃

18
+
�̃2

108
+ O��̃3� , �53�

where we have fixed the period to 1. The logarithmic growth
of displacements corresponds to a slow power-law decay of

the translation order, and thus should lead to Bragg peaks
unexpected for a strongly pinned Bose glass. The system
under consideration shares features of the Bragg glass, such
as power-law decay of the translation order, and the strong
Bose glass, namely, the diverging tilt modulus �transverse
Meissner effect�. One can expect this behavior for a weak
Bose glass which is pinned collectively. Recently, such a
glassy phase called Bragg-Bose glass was observed in nu-
merical simulations of vortices in bulk superconductor at low
concentrations of columnar disorder and low
temperatures.44,45

A finite temperature T�0 rounds the cusp of the running
disorder correlator Rl�u�, so that in the boundary layer u
�Tl, it significantly deviates form the FP solution and obeys
the following scaling form:46

Rl��u� = Rl��0� − Tl�1 − �1 + �u�/Tl�2� , �54�

where �= �R*��0��. However, as was pointed in Ref. 33, the
flow equations for columnar disorder have a remarkable fea-
ture in comparison with uncorrelated disorder. Indeed, sub-
stituting the boundary layer scaling �54� in the temperature
flow equation �44�, we obtain

��Tl = − �TTl − �d�
2/2. �55�

As follows from Eq. �55�, the effective temperature Tl van-
ishes at a finite length scale Lloc=elloc /�0,

lloc =
1

�T
ln�1 +

2�TT0

�d�
2 � , �56�

so that the localization effects are settled only on scales
larger than lloc� lc.

B. Interacting disordered bosons in „1+1… dimensions

Let us discuss the special case of flux lines in �1+1� di-
mensions which the qualitative phase diagram is shown in
Fig. 1. The transverse Meissner physics for collectively
pinned weak Bose glass and small tilt angles �=B� /B� can
be explored using the results obtained in the previous section
for the RP universality class with �̃=4−2+1=3. Here, we
restore the dependence on the flux line density n0 fixing the
period of R�u� to 1 /n0. In contrast to the Bragg glass, the
weak Bose glass survives in d=2. Indeed, for uncorrelated
disorder in d=2, the temperature turns out to be marginally
relevant, so that the system has a line of FPs describing a
super-rough phase with anomalous growth of the two-point
correlation �ux−u0�2=A�T�ln2 x+O�ln x�.47 According to
Eqs. �55� and �56� for columnar disorder, the temperature
vanishes at finite, though a very large scale

lloc =
2T0

n0
2�2 . �57�

Unfortunately, the large value of �̃ makes estimation of �
extremely unreliable. Indeed, the expansion in �̃ shown in
Table I leads to a zero value of �. The exact scaling relation
�51� with  computed using the expression from Table I
gives

TABLE I. Critical exponents for elastic systems with general-
ized columnar disorder computed to two-loop order.

�  �

RP 0 1
3 �̃+ 1

9 �̃
2 1− 1

3 �̃+O��̃3�
RF 1

3 �̃
2
9 �̃+ 5

162 �̃
2 1− 2

9 �̃− 1
18 �̃

2

RB 0.208298�̃ 0.263902�̃ 1−0.263902�̃

+0.006858�̃2 +0.053615�̃2 −0.038941�̃2
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��1 + 1� =
1

2
�one loop� ,

��1 + 1� =
1

3
�two loop� . �58�

The one-loop result reproduces the estimation �=1 /2 given
by heuristic random walk arguments based on the entropy of
flux lines wandering in the presence of thermal
fluctuations.12 The model of vortices wandering in a random
array of columnar defects can be mapped onto a quantum
problem of disordered bosons.9 One can regard each vortex
as an imaginary time world line of a boson, so that the co-
lumnar pins parallel to vortices become quenched pointlike
disorder in the quantum problem. The transverse magnetic
field H� will play the role of an imaginary vector potential h
for the bosons,48 so that the bosonic Hamiltonian turns out to
be non-Hermitian:

Ĥ = −
�2

2m
� dx†�x���x − h�2�x� +� dxV�x�n̂�x�

+
1

2
� dxdx�n̂�x�U�x − x��n̂�x�� . �59�

Here, †�x�, �x� are the bosonic creation and annihilation
operators, and n̂�x�=†�x��x� is the density operator. U�x�
is a short-range repulsive interaction potential between
bosons with the strength U0=�dxU�x�. The disorder is de-
scribed by a time-independent Gaussian random potential
V�x� with zero mean V�x�=0 and short-range correlations
V�x�V�x��=V0��x−x��. We can pass to a quantum hydrody-
namic formulation of model �59� expressing everything
though the bosonic fields ��x� and ��x� which satisfy the
canonical commutation relation49

��x��x�,��x��� = − i��x − x�� . �60�

For bosons with average density n0, this gives

Ĥ =
vp�

2
� dx	 g

�
��x��x� − ih�2 +

�

g
��x��x��2


+ n0� dxV�x� 
p=−�

�

e2�ip�n0x+��x��, �61�

where in the disorder part we have retained only the leading
contributions coming from the backscattering on impurities.
The forward scattering term can be eliminated by a shift of
the phonon field ��x� which does not depend on the time t,
and thus, this term does not contribute to the current J
��t��x�. The Luttinger liquid parameter g and the phonon
velocity vp are given by

g2 =
�2n0�

2

mU0
, vp

2 =
U0n0

m
. �62�

The imaginary time ��= it� action corresponding to Hamil-
tonian �61� for a particular distribution of disorder can be
derived using the canonical transformation

SV =� dxd��H − i���x�����x�� . �63�

Here, ����x�= �i /���H ,��x��=−igc���x� / ���� and ��

=��x��x� is the momentum conjugate to ��x� which is given
by Eq. �60�. Averaging e−SV/� over disorder by means of the
replica trick and keeping only the most relevant terms, we
obtain the replicated action

S = 
a
� dxd����

2g
	 1

vp
����a�x,���2 + vp��x�a�x,���2


+ h���a�x,��� −
V0n0

2

�

ab
� dxd�d�� cos�2���a�x,��

− �b�x,����� . �64�

The imaginary time action �64� is identical to the Hamil-
tonian of periodic elastic system with columnar disorder �6�.
The imaginary time plays the role of the longitudinal coor-
dinate �↔x� which is parallel to columnar pins. The Planck
constant stands for the temperature �↔T, and the phonons
are related to the dimensionless displacements field ��x ,��
=−n0u�x�. There is the following correspondence between
quantities in the vortices and bosons problems:48

g =
�Tn0

2

�c�c�

, vp = �c�/c� . �65�

The vortex tilt angle � caused by the transverse field H�

corresponds to the boson current J= �−i��H /�h induced by
the imaginary vector potential h. For h=0, the disordered
bosons undergoes a superfluid-insulator transition at g=3 /2.
This determines the temperature TBG, such that g�TBG�
=3 /2, above which vortices form a liquid �see Fig. 1�. It is
known that in one dimension, there is no difference between
bosons and fermions, and both types of particles are de-
scribed by the Luttinger liquid �61�. In particular, the hard-
core bosons can be mapped onto free fermions that corre-
sponds to a special value of the Luttinger parameter g�T*�
=1, which defines the temperature T*. In Ref. 14, the map-
ping onto free fermions was used to study the transverse
Meissner effect in �1+1� dimensions. The free fermions on a
lattice is described by the tight-binding model,

Ĥ = 
i

�− wi�ci
†ci+1e−h + ci+1

† cie
h� + ��i − ��ci

†ci� , �66�

where c†, c are on site fermion creation and annihilation
operators, and � is the chemical potential. wi is a random
hopping matrix element and �i is a random pinning energy.
In Ref. 14, both cases, the random pinning and the random
hopping models, were studied using the exact results for the
Lloyd model and the strong-randomness real-space RG, re-
spectively. It was found in both cases that J�h−hc, i.e., �
=1, that significantly differs from the FRG prediction �58�.
The difference can be attributed to that the free fermions
analog is limited to a special point g=1 �T=T*�, while the
FRG prediction may be valid only for low temperatures since
it is controlled by the zero-temperature fixed point. The cor-
respondence between the temperature and the Planck con-
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stant in both problems reflects that the zero-temperature FRG
FP may have a counterpart in the quantum problem in the
form of an instanton solution. This may account for the con-
sistency of the exponent � computed by FRG and estimated
using heuristic arguments of kink statistics.

The high-Tc superconductor films grown by deposition
often exhibit larger critical currents than their bulk counter-
parts due to the formation of dislocations running parallel to
the crystalline axis, and thus, they are natural candidates to
verify the above results. However, as was discussed in Ref.
50, the picture may be more involved since the dislocation
lines can meander or they can be of relatively short length
that breaks up the Bose glass into pieces along the direction
of the crystalline axis.

C. Response in the presence of long-range correlated disorder

We now consider the response to tilt in the presence of
isotropic LR-correlated disorder. In contrast to the case of

generalized columnar disorder, the h̃ term is not generated
due to the analyticity of the LR part R2�u� of disorder cor-
relator. Moreover, the elasticity remains finite along the FRG
flow though it grows as a power law c�L− with �0
given by Eq. �30� and shown in Fig. 4. As a consequence,
there is no threshold transverse field: the systems is tilted for
any finite tilting force. Renormalizing the balance equation
h=c1� up to the scale �� given by Eq. �41�, we see that the
response to the tilting force h is given by a power law

��h� � h�, �67�

with the exponent ��1 defined by Eq. �51�. The response to
tilt in systems with uncorrelated, columnar and LR-
correlated disorders is shown in Fig. 7. As one can see from
the figure the response of systems with LR-correlated disor-
der interpolates between the response of systems with uncor-
related and columnar disorder. In particular, we argue that in
the presence of LR-correlated disorder, vortices can form a
new vortex glass phase which exhibits Bragg peaks and van-
ishing linear tilt modulus without transverse Meissner effect.
We will refer to this phase as the strong Bragg glass.

In analogy with the Bose glass, one can attempt to map
the system with linear defects of random orientation corre-
sponding to LR-correlated disorder with a=d−1 to a quan-
tum system consisting of interacting bosons and heavy par-
ticles moving with random quenched velocities according to
classical mechanics.

V. KARDAR-PARISI-ZHANG EQUATION WITH
TEMPORALLY CORRELATED NOISE

In this section, we address the relevance of our results to
the Kardar-Parisi-Zhang �KPZ� equation �and closely related
Burgers equation�, which describes the dynamics of a sto-
chastically growing interface.51 The latter is characterized by
a height function h�x , t�, x�Rd� which obeys the nonlinear
stochastic equation of motion

�th = ��2h +
�

2
��h�2 + 	�x,t� . �68�

The first term in Eq. �68� represents the surface tension,
while the second term describes the tendency of the surface
to locally grow to normal itself. The stochastic noise 	�x , t�
is usually assumed to be Gaussian with short-range correla-
tions. Here, we consider the noise with long-range correla-
tions in both time and space. It is defined in Fourier by52

�	�k, �	�k�, ��� = 2D�k, ��d��k + k���� +  �� , �69�

with the noise spectral density function having power-law
singularities of the form

D�k, � = D0 + D�k
−2! −2�. �70�

Such temporal correlations can originate from impurities
which do not diffuse and impede the growth of the interface,
while the space correlations can be due to the presence of
extended defects. Since there is no intrinsic length scale in
the problem, asymptotics of various correlation functions are
given by simple power laws. For instance, the height-height
correlation function scales like

��h�x,t� − h�x�,t���2� � �x − x��2�f� �t − t��
�x − x��z

� , �71�

where � is the roughness exponent and z is the dynamic
exponent which describes the scaling of the relaxation time
with length �do not mix it with the dynamic exponent z at the
depinning transition, which is not used in this paper�.

Medina et al.52 studied the KPZ equation with the noise
spectrum �70� using the dynamical renormalization group
�DRG� approach and here we adopt the notation introduced
in their work. Let us briefly outline the results obtained in
Ref. 52 restricting ourselves mainly to the case d�=1. The
flow equations expressed in terms of dimensionless param-
eters U0=Kd��

2D0 /�3 and U�=Kd��
2D� /�3 to one loop order

read

�� ln � = z − 2 +
U0

4
+

U�

4
�1 + 2!��1 + 2��sec���� , �72�

�� ln � = � + z − 2 + U���1 + 2��sec���� , �73�

FIG. 7. �Color online� Schematic plot of the elastic object re-
sponse to a transverse field for uncorrelated disorder �dotted line�,
columnar disorder �dashed line�, and LR-correlated disorder �solid
line�.
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��U� = U��z�1 + 2�� − 2� − 1 + 2!� , �74�

��U0 = U0�z − 2� − 1� +
U0

2

4
+

U�
2

2
�1 + 4��sec�2���

+
1

2
U0U��1 + 2��sec���� . �75�

Note that the DRG calculations are uncontrolled, in the sense
that there is no small parameter. For white noise ��=0�, the
KPZ equation is invariant under tilting of the surface by a
small angle. The STS symmetry implies that the vertex �
does not get corrected by the noise to all orders. This results
in the exact identity

�SR + zSR = 2. �76�

Besides the known SR FP with U�=0, the flow equations
�72�–�75� are expected to have a different LR FP with U�

�0. It was argued that the term U� in the noise spectrum
D�k , � acquires no fluctuation corrections: the scaling of U�

is completely determined by its bare dimension so that Eq.
�74� is exact to all orders.52 This allows one to compute the
exact critical value �c=1 /6 �for !=0� at which there is a
crossover from the SR FP to the LR FP. For arbitrary !, the
crossover to the LR FP happens at

6� + 4! � 1. �77�

The term U� becomes relevant and as follows from Eq. �74�
the exact relation

zLR�1 + 2�� − 2�LR + 2! = 1 �78�

holds at the LR FP. Let us for the moment ignore the noise
correction to � in Eq. �73�. This approximation restoring the
STS is valid only for small � and yields

z*��,!� = 2 −
1 + 4� + 2!

3 + 2�
, �79�

�*��,!� =
1 + 4� + 2!

3 + 2�
. �80�

For large �, one can expect a significant deviation of expo-
nents z and � from z* and �*. To gain insight into the prob-
lem the authors of Ref. 52 solved the flow equations
�72�–�75� for finite � and !=0 numerically. They found that
the physical LR FP exists only for ��1 /4, while nothing
special is physically expected at �=1 /4. It was argued that
the problem is originated from infrared divergences of inte-
grals and that infinite number of additional terms generated
in the noise spectral density under DRG:

D� � = 
n=1

�

Dn 
−2�−�n−1�. �81�

Keeping track of renormalization of all Dn, the authors of
Ref. 52 solved the truncated system of flow equations nu-
merically and found that the critical exponents for !=0 can
be fitted to

���� = 1.69� + 0.22, �82�

z��� =
2���� + 1

1 + 2�
. �83�

We now revise the problem in the light of what has been
learned in the previous sections. Using the well-known Cole-
Hopf transformation Z=exp��� /2��h�, one can eliminate the
nonlinear term in Eq. �68� and obtain a diffusion equation in
time-dependent random potential

�tZ�x,t� = ��2Z�x,t� +
�

2�
	�x,t�Z�x,t� . �84�

The solution of Eq. �84� can be regarded as the partition
function of a directed polymer �DP� of length t in �d�+1�
dimensions with ends fixed at �0,0� and �x , t�:

Z�x,t� = �
x�0�=0

x�t�=x

Dx�t�exp�−
1

T
�

0

t

dt	 c

2
��x�t��2

+ 	�x�t�,t�
� , �85�

with �=T /2c and �=1 /c. The DP is a one-dimensional �d
=1, �=3� elastic object with d�=N-dimensional target space.
Thus, the time-dependent noise 	�x , t� in the KPZ equation is
mapped to the quenched disorder V in the DP picture. This
gives the exact relation between the dynamic exponent of
KPZ problem and the DP roughness exponent which reads

z�d�� = 1/��d = 1,N = d�� . �86�

Spatial correlations in 	�x , t� corresponds to correlations of
quenched disorder V in the directions transverse to the DP.
As the exponent ! varies from 0 to 1, the quenched disorder
interpolates between RB and RF universality classes. For
example, the exponent z changes from 3 /2 to 1 for d�=1 and
white random noise ��=0�. The stability criterion assures
that the LR FP in the FRG picture is stable if �LR��SR. This
implies that the noise temporal correlations in surface growth
problem are relevant only if the corresponding dynamic ex-
ponents fulfill the condition zLR�zSR. Note that this criterion
is purely based on the mapping between the DP and KPZ
problems. Since zSR�d�=1,!=0�=3 /2 the exponent �83�
computed using the modified DRG violates the criterion of
the LR FP stability, and thus is ruled out. Substituting the
roughness exponents computed using FRG for the RB �!
=0� and RF �!=1� universality classes into Eq. �86� and
relating �=3+2�, we obtain the exact �for !=0,1 and pre-
sumably for any !� identity

zLR =
5 − 2!

3 + 2� + 
. �87�

To one-loop order in FRG, i.e., for =0, exponent �87�
coincides with the estimation given by DRG �79� for small �.
Though the exponent  has been computed in Sec. III C for
the RB �!=0� and RF �!=1� universality classes to two-loop
order in a controllable way, the large value �=3 of the ex-
pansion parameter describing the DP problem makes the es-
timation of  highly unreliable. Nevertheless, since =0 is
zero on the crossover line between the LR and SR FPs, we
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can determine this line exactly for !=0,1 from equation
zLR�zSR=3 /2 that leads back to Eq. �77�. Taking into ac-
count that  is nonpositive for columnar disorder, we obtain
the lower and upper bounds on z��� for !=0 and ��� 1

6 , 1
2
�

as

5

3 + 2�
� z����

3

2
. �88�

The critical exponent z computed using FRG, DRG, and
measured in numerical simulations of Ref. 53 is shown in
Fig. 8. The KPZ equation with temporally correlated noise
was also studied using a self-consistent approximation
�SCA�.54 The SCA equations have two strong-coupling solu-
tions. The first one exhibits a crossoverlike behavior at �
= 1

6 and corresponds to the one-loop FRG prediction. The
second solution, which is considered to be dominant, leads to
a smooth dependence of z on � shown in Fig. 8. Both the
SCA solutions are in agreement with the FRG prediction that
the exponent z is a decreasing function of �, while the modi-
fied DRG suggests that z increases with �. However, the
second SCA solution considered to be dominant does not
satisfy bounds �88�, and thus is ruled out.

Let us generalize identity �76� to the case of temporally
correlated noise. Note that the solution of the KPZ equation
h�x , t� gives the free energy of DP �85�. The free energy per
unit length f��� of the DP tilted by the transverse field H� to
the angle � can be written as f���= f�0�+ c̃��−H��. The
naive elastic approximation suggests �=2. In order to take
into account the renormalization of elasticity, we determine
the exponent � from the condition that at equilibrium the
response to the field H� is ��H�

� . This fixes �=1+1 /�
with � given by Eq. �51�. Then the total free energy of the

DP of length t can be written as a function of the free end
coordinate x as follows:

h�x� = tf�0� + tc�x/t�� − x�. �89�

The last term in Eq. �89� describes the typical fluctuation of
the free energy due to the disorder and is given by Eq. �71�.
Balancing the last two terms of Eq. �89� and using Eq. �51�,
we obtain the exact scaling relation

� + z = 2 − z , �90�

which holds at the LR FP as well as at the SR FP. At the SR
FP =0, so that Eq. �90� reduces to the STS identity �76�.
Excluding  from Eqs. �90� and �87�, we arrive at the rela-
tion �78� valid at the LR FP.

VI. SUMMARY

We have studied the large-scale behavior of elastic sys-
tems such as interfaces and lattices pinned by correlated dis-
order using the functional renormalization group. We con-
sider two types of disorder correlations: columnar disorder
generalized to extended defects and LR-correlated disorder.
Both types of disorder correlations can be produced in real
systems, for example, by subjecting them to either static or
rotating ion beam irradiation. We have computed the critical
exponents to second order in �=4−d and �=4−a for LR-
correlated disorder and to second order in �̃=4−�+�d for
�d-dimensional extended defects. The correlation of disorder
violates the statistical tilt symmetry and results in a highly
nonlinear response to a tilt. In the presence of generalized
columnar disorder, elastic systems exhibit a transverse
Meissner effect: disorder generates the critical field hc below
which there is no response to a tilt and above which the tilt
angle behaves as ���h−hc�� with a universal exponent �
�1. The periodic case describes a weak Bose glass which is
expected in type-II superconductors with columnar disorder
at small temperatures and at high vortex density which ex-
ceeds the density of columnar pins. The weak Bose glass is
pinned collectively and shares features of the Bragg glass,
such as a power-law decay of translational order, and fea-
tures of the strong Bose glass, such as a transverse Meissner
effect. For isotropic LR-correlated disorder, the linear tilt
modulus vanishes at small fields leading to a power-law re-
sponse ��h� with ��1. The response of systems with LR-
correlated disorder interpolates between the response of sys-
tems with uncorrelated and columnar disorder. We argued
that in the presence of LR-correlated disorder vortices can
form a strong Bragg glass which exhibits Bragg peaks and a
vanishing linear tilt modulus without transverse Meissner ef-
fect. The elastic one-dimensional interface, i.e., the directed
polymer, in the presence of LR-correlated disorder can be
mapped to the Kardar-Parisi-Zhang equation with temporally
correlated noise. Using this mapping, we have computed the
critical exponents describing the surface growth and com-
pared with the exponents obtained using dynamical renor-
malization group, self-consistent approximation, and numeri-
cal simulations.

FIG. 8. �Color online� Dynamic exponent z for the KPZ equa-
tion �d�=1� with temporally correlated noise �!=0� computed using
different technique: one-loop FRG/DRG is given by Eq. �79�; two-
loop FRG is given by Eq. �87� �note that large value �=3 does not
allow for accurate computation of  and z at large ��; modified
DRG is given by Eq. �83�; self-consistent approximation of Ref. 54
and simulations of Ref. 53.
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APPENDIX: CORRECTION TO ELASTICITY: TWO-LOOP
DIAGRAMS

In this appendix, we calculate diagrams shown in Fig. 3
keeping only the terms which correct the elasticity. Here, we
set g1�x�ª�d�x� and g2�x�ªg�x�. Diagram a yields

�a��
 = −
1

2T
�

y1,y2,y3

R���ux − ux−y1−y2−y3
�R


�4��ux−y1

− ux−y1−y2
�g��y1 + y2 + y3�g
�y2��

l=1

3

C�yl� , �A1�

where � ,
=1,2 and C�x� is given by Eq. �9�. Using the
short distance expansion �23�, we obtain

�a��

�1� = −

1

4dT
��ux�2R�

�4��0�R

�4��0��

�y�
�
l=1

3

C�yl��y1 + y2

+ y3�2g��y1 + y2 + y3�g
�y2� �A2�

and

�a��

�2� = −

1

4dT
��ux�2R���0�R


�6��0��
�y�

�
l=1

3

C�yl�y2
2g��y1 + y2

+ y3�g
�y2� . �A3�

Note that the term R���0�R
��0� does not contribute since LR
disorder R2�u� remains an analytic function along the FRG
flow, while all diagrams with �=
=1 are zero due to the
STS. We will neglect similar terms in what follows. For dia-
gram b, we have

�b��
 =
1

2T
�

y1,y2,y3

R���ux−y1
− ux−y2

�R

�4��ux − ux−y3

�g��y2

− y1�g
�y3��
l=1

3

C�yl� . �A4�

Applying the short distance expansion �23�, we arrive at

�b��

�1� =

1

4dT
��ux�2R�

�4��0�R

�4��0��

�y�
�
l=1

3

C�yl��y1 + y2�2g��y1

+ y2�g
�y3� �A5�

and

�b��

�2� =

1

4dT
��ux�2R���0�R


�6��0��
�y�

�
l=1

3

C�yl�y3
2g��y1

+ y2�g
�y3� . �A6�

Diagram �c� gives

�c��
 = −
1

2T
�

y1,y2,y3

R���ux − ux−y1−y2
�R
��ux−y1

− ux−y1−y2−y3
�g��y1 + y2�g
�y2 + y3��

l=1

3

C�yl� .

�A7�

After short distance expansion, we find that diagrams �c�
give rise to elasticity correction only for �=
=2 which
reads

�c��
 = −
1

2dT
��ux�2R�

�4��0�R

�4��0��

�y�
�
l=1

3

C�yl���y1 + y2� · �y2

+ y3��g��y1 + y2�g
�y2 + y3� . �A8�

Straightforward analysis shows that

�a�1�
�1� = �a��1

�2� = �b�1�
�1� = �b��1

�2� = 0, �� = 1,2� ,

�a�21
�1� + �b�21

�1� = 0,

�c�11 = �c�12 = �c�21 = 0. �A9�

We now compute the integrals combining them in pairs:

�a�22
�1� + �b�22

�1� =
�a − d��a − 2�c

4dTm̂2� R2
�4��0�2��ux�2

��
�q�
	 1

�q1 + q2�2 + 1
−

1

q2
2 + 1


q1
a−d−2q2

a−d

�q1
2 + 1�2 ,

�A10�

where we have included 1 /c2 in redefinition of Ri�u�. The
integral over qi in Eq. �10� is of order O�1 /�� so that �a�22

�1�

+ �b�22
�1� is finite and does not correct elasticity at two-loop

order. Other diagrams give

�a�12
�2� + �b�12

�2� =
c��ux�2

2T

�a − d��a − 2�
2d

m̂−��+���J1 − J2�

�R1��0�R2
�6��0� , �A11�

�a�22
�2� + �b�22

�2� =
c��ux�2

2T

�a − d��a − 2�
2d

m̂−2��J3 − J4�

�R2��0�R2
�6��0� , �A12�

where we have defined the following two-loop integrals:

J1 = �
q

q2
a−d−2

�1 + q1
2�2�1 + �q1 + q2�2�

=
K4

2

��� + ��
+ O��−1,�−1� ,
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J2 = �
q

q2
a−d−2

�1 + q1
2�2�1 + q2

2�
=

K4
2

��
+ O��−1,�−1� ,

J3 = �
q

q1
a−dq2

a−d−2

�1 + q1
2�2�1 + �q1 + q2�2�

=
K4

2

2�2 + O��−1,�−1� ,

J4 = �
q

q1
a−dq2

a−d−2

�1 + q1
2�2�1 + q2

2�
=

K4
2

�2 + O��−1,�−1� . �A13�

The last diagram

�c�22 = −
�a − d�2c

2dTm̂2� R2
�4��0�2��ux�2

��
�q�

�q1 · q2�q1
a−d−2q2

a−d−2

��q1 + q2�2 + 1��q1
2 + 1��q2

2 + 1�
�A14�

is finite in the limit � ,�→0, and thus does not correct elas-
ticity at two-loop order.
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