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First-principles calculations based on the projector augmented-wave (PAW) technique have been applied to
the prediction of materials properties of a-uranium and its (001) surface. The results of the PAW calculations
are shown to be comparable in accuracy to the full-potential calculations reported elsewhere. In addition to
calculating lattice constants and elastic moduli, the vacancy formation energy (1.95 eV), (001) surface relax-
ation (=3.5% for &), and +1.2% for &,3), (001) surface energy (1.4 J/m?), and (001) work function (3.6 eV)
were also obtained. The overall agreement with experiment is satisfactory. Using an elastic model for brittle-
crack failure, a yield stress of 430 MPa was estimated. Further exploration of materials failure modes (such as
plastic deformation) awaits a larger-scale atomistic treatment. Full spin-orbit and scalar relativistic calculations
were shown to give results with similar levels of accuracy compared to experiment.
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INTRODUCTION

The first-principles modeling of materials promises to
revolutionize the way materials are designed, used, and
maintained.! In order for this ideal to be realized, simulation
techniques must be fast, accurate, and well tested. Since phe-
nomena in materials typically occur at multiple time and
length scales, the current philosophy is to develop simulation
techniques that couple together physics on multiple levels.
Hence, the term “multiscale modeling” is often used. This
may mean, for example, that results from simulations ob-
tained at an electronic-atomic scale level are then “fed into”
simulations operating at an atom-atom pair-potential level,
and from thence into continuum models.?

Clearly, when the physics of the material at the atomistic
level becomes more challenging, it is more difficult to create
such a comprehensive multiscale model. The actinide ele-
ments, for example, are among the most challenging atomic
systems known due to the requirement for considering the
effects of strong correlation in the electronic structure. Re-
cently, electronic structure calculations have appeared for
these elements with varying degrees of success in capturing
the structural and mechanical properties of these materials.
Using the full-potential linear muffin tin orbital technique,
for example, Soderlind calculated the structural and elastic
properties of orthorhombic a-uranium.? The calculated lat-
tice constants had an accuracy of approximately 1% com-
pared to the experimental values (determined at 40 K).* The
elastic constants were much harder to model and compare
with experiment, partially because unrelaxed calculations
were used during the finite distortion technique and also be-
cause uranium undergoes phonon softening as a function of
temperature.’ The qualitative trends between the elastic con-
stants were, however, in good agreement with the experi-
mental values. The root-mean-square deviation of the elastic
moduli, ¢;; through cge, was 118 GPa. An earlier study by
Crocombette et al., however, using a pseudopotential tech-
nique, in which the core electrons are replaced by an effec-
tive electron-electron interaction potential, was not so
accurate.® The lattice constant for the b vector of the ortho-
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rhombic crystal was significantly shorter by 7% and the bulk
modulus was overestimated by 58%. Calculations on the
atomic electronic structure (i.e., isolated atoms and mol-
ecules, not a solid) have also been performed and the results
were very sensitive to the level of correlation included in the
calculation.” As larger systems were studied, however, the
results were shown to be less sensitive and density functional
calculations to be of comparable accuracy to the high level
techniques. Uranium lies below the plutonium threshold for
f-electron localization, and thus, many of the strong correla-
tion effects are only observed at low temperature, such as the
charge-density wave transitions and phonon softening.>3

Although the full-potential calculations are able to capture
the physics of the atomic and electronic interactions that dic-
tate many of the properties of the orthorhombic uranium
crystal, they are not yet of sufficient computational efficiency
to allow the simulation of more complex systems (i.e., larger
supercells containing crystal defects, such as vacancies,
and/or impurity atoms). In order to address these properties
of the material away from the perfect crystal behavior, which
are ultimately useful for informing an atomistic pair-
potential scheme, a method involving soft pseudopotentials
would be of use. The pseudopotentials used by Crocombette
et al.® were not soft in that high cutoff energies, greater than
2000 eV, were required for the plane-wave expansion. Fur-
thermore, it would be advantageous to use a potential that
gave better agreement with the experimental lattice constants
and bulk modulus. Recently, a projector-augmented wave
(PAW) method has been developed’ that follows a similar
derivation of Vanderbilt!®© Kresse and Joubert!! ultrasoft
pseudopotentials. A PAW for uranium has been developed by
Kresse and Furthmiiller'? and is supplied with the VASP code.
The PAWs are fitted to the full-potential electronic structure
of the uranium atom; hence, it is important to test the PAW
with respect to the structural and elastic properties of the
uranium metal. The PAW for uranium possesses a signifi-
cantly lower plane-wave energy cutoff (253 eV) than the
hard pseudopotential adopted by Crocombette et al
(2448 eV), thus making it feasible to perform large supercell
calculations designed to study materials defects, surfaces,
and impurity interactions.
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In this work, I evaluate the projector-augmented wave po-
tential developed by Kresse for the orthorhombic Ilattice
structure of a-uranium, and calculate additional properties
from the density functional formalism, such as the energy
differences between various crystalline phases, the surface
energy, vacancy formation energy, and approximations to the
phonon spectrum. In order to demonstrate current capabili-
ties for extrapolating from first-principles calculations to ma-
terials design, I have also calculated the Debye and Einstein
approximations for the specific heat using the first-principles
data and compare these data points with experimental values
in the literature.'? Furthermore, a formula derived by Hayes
et al.'* is applied to consider the elastic crack resistance of
the uranium metal, which value may be compared to the
ultimate strength behavior. The influence on choosing be-
tween the faster scalar-relativistic calculations (in which the
relativistic effect is restricted to the core electrons) and the
more time-consuming full spin-orbit calculations (in which
the wave function is represented as a spinor rather than a
scalar function) is also examined, and the impact on accuracy
is reported.

The work presented provides a basis for future investiga-
tions using the PAW method to probe the effect of impurities
on the properties of metallic uranium, the impact of lattice
defects on materials properties, surface modification due to
the environment and subsequent impact on materials perfor-
mance, and the refinement of theoretical techniques for pre-
dicting the complex magnetic and vibrational properties of
uranium and uranium compounds. Furthermore, these results
will be used to develop and verify an atomistic pair potential
to simulate larger-scale structural and transformational be-
haviors of uranium.

COMPUTATIONAL DETAILS

The electronic structure problems related to the first-
principles computation of the mechanical, structural, and ma-
terials properties described herein were solved using the ef-
ficient, parallellized electronic structure code Vienna ab
initio simulation package (VASP).'> The PAW functions for
uranium supplied with VASP Version 4.6 were used without
modification. The PW91 exchange-correlation functional
was also adopted.!> Tests of the energy convergence with
respect to the k-point mesh size and energy cutoff lead to the
choice of an energy cutoff of 500 eV and a gamma-centered
Monkhorst—Pack k-point mesh generated using a generating
length of 40 A.!® This choice of k-point mesh corresponds to
a 14 X7 X 8 mesh for the conventional four-atom orthorhom-
bic unit cell of a-uranium (Fig. 1). The resulting energies
were converged with respect to energy cutoff and k-point
mesh to within 2 meV (0.15 mRy). To perform relaxations,
the Methfessel-Paxton smearing method was used to provide
more accurate forces (width of 0.2 eV), whereas for single-
point calculations, the Bloechl tetrahedron method was
adopted.”!” Self-consistent electronic structure calculations
were iterated to within 0.1 meV, and for geometric relax-
ations, iterations over the lattice positions were performed
until forces were less than 0.05 eV/A. The relaxations were
performed using the conjugate gradient method.
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FIG. 1. a-uranium four-atom conventional unit cell.

Elastic constants were calculated according to the method
used by Soderlind,? with the modifications of the use of 2%
distortions to eliminate “noise” due to the convergence limits
used and a three-point method for evaluating the second de-
rivatives corresponding to the lattice constants. In this
method, finite distortions of various symmetries are applied
to the crystal structure of @-uranium and the accompanying
shifts in the calculated energy. All atom positions were al-
lowed to relax under the distortions. Using the relationship
between the energy of the distortion and the distortion mag-
nitude (0.02), it is possible to determine the elastic moduli
c;;- The elastic constants were then used to calculate the De-
bye temperature according to the application of Houston’s
method derived for orthorhombic crystals.'® This method can
be used to determine the Debye temperature from the speed
of sound in the lattice, which is determined by averaging the
anisotropic speed of sound over various crystallographic di-
rections which can be determined from a knowledge of the
anisotropic elastic constants. To calculate the Einstein tem-
perature, the vibrational modes of a-uranium were estimated
by performing finite-displacement calculations on a single
uranium atom in a 96-atom supercell. A finite displacement
of 0.01 A and the gamma point only method were used.'
The same supercell was used to calculate the vacancy forma-
tion energy. The specific heat of a-uranium was calculated
by combining the complementary Debye and Einstein mod-
els using the tabulated Debye function.?

Surfaces were created using the optimized lattice param-
eters, with full relaxation of the internal parameters and the
interlayer spacings normal to the surface. The periodic slab
model was used to treat the uranium surfaces. In this model,
a finite number of layers of metal atoms is used to represent
the semi-infinite metal, and these “slabs” are then separated
by a region of vacuum thick enough to minimize the inter-
slab interactions. Because only a finite number of layers is
used and because this number must typically be small for the
simulation to be computationally efficient, it is important to
vary the number of layers required to obtain converged sur-
face properties. Herein, I consider the variation of a-uranium
surface properties in the (001) direction for models consist-
ing of between three and seven atomic layers. A 16X 16
X1 k-point mesh was used for the primitive 1 X1 surface
periodic unit cell [Fig. 2(a)]. In Fig. 2(b), I have provided a
schematic of the slabmodel utilized in these calculations for
a five layer slab of (001) oriented a-uranium planes sepa-
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FIG. 2. (a) a-Uranium 1 X 1 surface periodic unit cell (left) and
conventional periodic unit (right) cell in the (001) orientation. (b)
Slab model used to model (001) a-uranium surface with five (001)
planes representing the uranium metal and vacuum separating the
periodic images.

rated by a vacuum region. For calculations with the number
of atomic layers N=3-35, only the outermost layer (corre-
sponding to the distance d;, between the first and second
atomic layers) was relaxed, whereas for N=6,7, the two out-
ermost layers were allowed to relax (d;, and d,3). The inter-
slab spacing was typically of the order of three to five
equivalent atomic layers. The surface energy v is calculated
by subtracting the energy of an equivalent number of atoms
in the orthorhomic structure NE,,; from the energy of the
surface representation E,, and dividing this number by
twice the surface area 2A to account for the slab representa-
tion of the surface,

Y= (Egap = NEp)124A.

The work function ¢ is obtained by subtracting the (arbi-
trarily referenced) Fermi level from the VASP calculation
Vieermi from the potential energy of the electron in the
vacuum region V,,. obtained by a plot of the electrostatic
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potential projected in the slab normal direction,

¢ = VFermi - Vvac‘

Scalar-relativistic calculations were performed for all sys-
tems, in which case the PAW-core contribution is considered
to supply the leading relativistic correction to the electronic
structure. Additionally, in a number of cases, the complete
spin-orbit coupling treatment was also applied, and this is
stated explicitly in the tabulated data. The results are given in
the following discussion (spin orbit vs scalar relativistic).

RESULTS AND DISCUSSION

In the following sections, I present and discuss the PAW
calculated lattice parameters, elastic moduli, atomic vibra-
tional modes, Debye and Einstein temperatures, and the spe-
cific heat for the orthorhombic a-uranium single crystal,
making comparisons to the available experimental and theo-
retical data in the literature, as well as PAW calculations for
other crystalline phases of uranium (fcc and bec). The PAW
calculations are shown to have comparable accuracy with the
full-potential results obtained by Soderlind and to be a sig-
nificant improvement upon the results obtained by Crocom-
bette et al. using the hard pseudopotential. I have also calcu-
lated selected properties of the (001)-oriented single-crystal
a-uranium surface, and these computed properties are also
compared to the best available literature data. Finally, I in-
vestigate the crack resistance of the (001) plane of the ortho-
rhombic a-uranium crystal based on the relations between
the elastic modulus and the (001) surface energy.

Lattice parameters for the crystal structures of orthorhombic
a, face-centered cubic, and body-centered cubic
uranium

The optimized lattice constants and internal parameters
are presented in Table I. By inspecting the data in this table,
it can be seen that the PAW calculations in both the scalar-
relativistic and full spin-orbit models determine a unit cell
which is somewhat smaller than that yielded by the full-
potential calculations of Soderlind (Soderlind’s values are
a=2.845 A, b=5818 A, ¢=4.996 A, and y=0.103).> The
spin-orbit coupling calculations yield lattice parameters of
a=2.197 A, b=5.867 A, c=4.893 A, and y=0.098, which do
not significantly differ from the lattice parameters deter-
mined by the scalar-relativistic method of ¢=2.800 A, b
=5.896 10\, c=4.893 A, and y=0.097. These values are
within 1% of the experimental values obtained at 40 K by
Barrett et al. (a=2.836, b=5.867, ¢c=4.936, and y=0.102).4
Experimental studies performed on thorium?! and rare-earth
metals?> both indicate that variations in impurity content
(typically ~50 ppm for high purity uranium samples)> can
cause variations in the measured lattice parameters of
~0.005 A. Using this value as a guide to the accuracy of
experiments for determining the lattice parameters of pure
uranium, we see that none of the theoretical methods pro-
duce values that reproduce the experimental result. The PAW
values underestimate the internal parameter y by about 4%.
Finally, the PAW calculations significantly improve the esti-
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TABLE I. Lattice constants (in A) and internal parameters for crystalline phases of uranium calculated in
both the spin-orbit formalism and scalar-relativistic treatment in the PAW approximation, compared to the
results of the full-potential (FP) (Ref. 3) calculations by Séderlind, the pseudopotential calculations of
Crocombette et al. (PP) (Ref. 6), and experiment (50 K) (Ref. 4). The volume per atom is given in A3.

Spin orbit Scalar relativistic FP PP Expt.

a-uranium
a 2.797 2.800 2.845 2.809 2.836
b 5.867 5.896 5.818 5.447 5.867
c 4.893 4.893 4.996 4.964 4.936
y 0.098 0.097 0.103 0.102
Volume/atom 20.074 20.194 20.674 19.026 20.535

fcc uranium
a 443 448 4.30
Volume/atom 21.73 22.48 19.88

bce y-uranium

a 3.43 3.43 3.46 3.37 3.47
Volume/atom 20.18 20.18 20.71 19.14 20.89

mate for the b parameter obtained using the pseudopotential
method of Crocombette et al. (b=5.447 A).

The lattice constant for the fcc phase (which does not
exist on the uranium phase diagram) predicted by the first-
principles calculations is larger than that predicted by the
pseudopotential calculations of Crocombette et al. The lattice
constant for the high temperature bcc phase of 3.43 A ob-
tained by both methods for including relativistic effects
(scalar-relativistic and spin-orbit couplings) is slightly lower
than that obtained by experiment®* (by ~1%) and yet not as
low as that obtained by Crocombette er al. (~3% deviation
from experiment).

Elastic moduli for a, face-centered cubic, and body-centered
cubic uranium

After optimizing the lattice constants and internal param-
eters via the conjugate gradient method, the elastic moduli
were calculated using the method of finite distortions, as out-
lined in the computational details. The resulting elastic
moduli are presented in Table II. The bulk modulus, as de-
termined from the elastic constants, is also presented in this
table, as well as the root-mean-square deviation of the elastic
moduli when compared with the room-temperature experi-
mental values.” The root-mean-square deviation is provided
as a means of evaluating the various techniques with respect
to the full-potential model given by Soderlind.

The PAW calculations of the elastic constants are gener-
ally in good agreement with those obtained from the full-
potential calculations performed by Soderlind. The spin-orbit
calculations yield a closer agreement with the experimental
numbers than the scalar-relativistic results, although overall
the full-potential calculations by Soderlind provide the best
agreement with experiment. The bulk modulus is overesti-
mated by all the density functional methods (including this
work, Soderlind’s full-potential calculations and the results

of Crocombette et al.), with the PAW method providing a
bulk modulus that falls in between the full-potential estimate
and that obtained by the hard-pseudopotential calculations
made by Crocombette er al. All theoretical methods give
higher elastic moduli than the experimental evaluations made
at 298 K,» an effect which can be rationalized by the tem-
perature dependence of the atomic force constants in
a-uranium and actinide metals in general.’ Impurity effects
on the elastic constants are unknown and may possibly play
a part in this variance also. This observation also concurs
with the deviation in Debye temperatures between the theo-
retical estimates and experiment (Table IIl and later in the
following section). From an analysis of melting tempera-
tures, the authors of Ref. 5 determine a Debye—Waller factor
for uranium of 6,=306—0.158T. Thus, at 0 K, 6, should be
approximately 300 K, which is somewhat higher than the
predictions made from density functional theory of
280-290 K given in Table III. For completeness, I have also
provided values for the elastic moduli of the bcc and fcc
phases obtained using the scalar-relativistic approximation.
In agreement with the study of Soderlind, the elastic constant
represented by C'=C;;—C), is negative, indicating that these
phases are mechanically unstable, with regards to the tet-
ragonally distorted bct structure, which is not discussed
herein.?®

Debye, Einstein temperatures, and the specific heat

The set of nine elastic moduli was then applied to predict
the Debye temperature for a-uranium. For completeness, the
Debye temperature was calculated using the values calcu-
lated from the moduli calculated in this work (PAW with
spin-orbit and scalar-relativistic corrections), as well as the
moduli determined from the full-potential calculations and
also the experimental values.>?> To assess not only the low
temperature continuum contributions to the specific heat but
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TABLE II. Elastic constants, ¢1;—cgg, and the bulk modulus B given in gigapascals for crystalline phases
of uranium calculated using the PAW method with both spin-orbit and scalar-relativistic approaches, listed
with the results of the full-potential (FP) calculations given by Soderlind (Ref. 3), the pseudopotential
approach of Crocombette et al. (PP) (Ref. 6), and experiment (298 K) (Ref. 26). The root-mean-square
deviation summed over the elastic constants, relative to the experimental values (rmsd) is also given.

Spin orbit Scalar relativistic FP PP Expt.
a@-uranium
ci1 293 296 300 215
Ca 227 216 220 199
C33 331 367 320 267
cip 60 60 50 46
c13 30 29 5 22
€23 147 141 110 108
Ca4 149 153 150 124
Css 117 129 93 73
Cop 95 99 120 74
B 147 149 130 182 115
rmsd 125 151 118
bce y-uranium
C1 161
€12 184
Ca4 56
B 176 170
fcc uranium
cq 184
ci 267
Cu4 28
B 239 154

also the higher temperature atomic vibrational contributions,
the Einstein temperature was also calculated. Vibrational fre-
quencies were calculated for a single uranium atom in a 96-
atom supercell using a three-point finite difference method,
and the frequencies were averaged to calculate the Einstein
temperature. Together, these values are useful for the estima-
tion of the thermodynamic properties of the material, particu-
larly the specific heat and vibrational entropy of a solid.
Table III contains both the Debye and Einstein temperatures
calculated according to these methods, and in Fig. 3, the
theoretical specific heat derived as a sum of Einstein and
Debye contributions is plotted and compared to the data
given in Ref. 13.

All three of the electronic structure methods (PAW with
scalar-relativistic correction, PAW with spin-orbit calcula-
tion, and the full-potential calculations of Soderlind) overes-
timate the Debye temperature relative to that calculated from
the experimental, room-temperature elastic constants.
Clearly, the prediction of higher elastic constants from the
density functional theory based methods reduces the effec-
tive Debye temperature of the simulated crystal. The Debye
temperature is in fact a function of the temperature of the
material, as the phonon spectrum also changes with tempera-
ture. This phenomena is called phonon softening and is be-
lieved to relate to the interaction between electrons and
phonons in the solid material.’ Modeling this behavior is

TABLE III. Einstein temperatures 6 and Debye temperatures 6p calculated using Houston’s methods
(Ref. 18). The frequencies of vibrational modes for U atoms in the lattice calculated from the electronic

structure and PAW theory are also provided, v.

Op
g
Spin orbit Scalar relativistic FpP? Expt. Scalar relativistic
a-U 281 K 287 K 288 K 251 K 138 K

v=79, 104, 106 cm™!

4Reference 3.
bReference 25.
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FIG. 3. Specific heat C, (J/mol K) calculated using the Einstein
and/or Debye models for a-uranium and the data given in Table III
(solid line), compared to the data compiled in Ref. 13 (open
diamonds).

currently outside the reach of modern electronic structure
theory.

In order to consider the Einstein contribution to the ther-
modynamic properties of solid a-uranium, the local vibra-
tional properties of the uranium atoms must be considered.
The local vibrational modes obtained for a-uranium under
the constraint that only one uranium atom in the 96 atom
supercell is allowed to vibrate (coupled atomic vibrations are
not considered) have frequencies of 79, 104, and 106 cm™!
(Table III). In terms of vibrational energy, the modes are
found at 9, 12.5, and 12.7 meV. Inspection of the phonon
DOS presented in Ref. 27 shows peaks at these values for the
spectra obtained at 433 and 655 K, with a stronger contribu-
tion near 12.5 eV occurring due to overlap between the two
latter modes. At lower temperatures, these modes are not as
noticeable, and this may be a result of the phonon softening
and influence of the charge-density wave transitions occur-
ring in a-uranium (this transition leads to a modification of
the lattice positions, and therefore, a somewhat different unit
cell). As noted in Ref. 27 significant progress is still required
in first-principles techniques to understand the electronic
contribution to the variation in atomic force constants with
temperature, and the resulting impact upon phase entropies
and phase transitions. This is reflected by the discrepancy
between the specific heat curves calculated based on com-
piled experimental data,'’ and those determined using the
current model, as displayed in Fig. 3. It can be seen that the
density functional model presented here leads to underesti-
mated specific heats at low temperature and overestimated
specific heats at higher temperatures with the crossover point
occurring at about 80 K.

Energies of vacancy formation and phase transformations

Next, I consider the calculation of some materials defect
properties and phase change energies. In Table IV, I pre-
sented the vacancy formation energy and fcc and/or bce en-
ergies relative to the a-uranium phase. The vacancy forma-
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TABLE IV. Theoretically calculated values for the vacancy for-
mation energy in a-uranium (unrelaxed in parentheses) E{) and the
fcc/bee/ a-uranium energy differences, Eq.—E, and E,..—E,, re-
spectively, given in eV, calculated using the scalar-relativistc and
spin-orbit PAW methods, the full-potential (all-electron) technique
of Soderlind (Ref. 3), and the pseudopotential method of Crocom-
bette e al. (Ref. 6).

E Epee—E, Epee—E,
SR 1.95 (2.20) 0.39 0.27
SOC 0.35 0.24
FP 0.26 0.22
PP 0.22 0.16

tion energy as calculated in the scalar-relativistic
approximation using the gamma point only calculation and a
96-atom unit cell is 2.20 eV without atomic relaxation and
1.95 eV with atomic relaxation. This value is significantly
higher than the vacancy formation energies reported for other
metals and higher than literature estimates for this parameter.
The positron annihilation experiments described in Ref. 28,
for example, yield a minimum for the vacancy formation
energy of 1 eV and estimate the energy to be 1.20*=0.25 eV.
The authors furthermore state that a value larger than 1.3 eV
is unlikely. The energy obtained from the PAW calculations
is therefore significantly higher than the estimates obtained
from the positron-annihilation experiments. In general, how-
ever, the literature for vacancy energies in uranium is scarce.

Comparison to the calculated value for a neighboring el-
ement, plutonium in the & phase, also indicates that the cal-
culated vacancy energy for uranium is particularly high: E}
for S-plutonium ranges between 1.4 and 1.6 eV.> Calcula-
tions using larger supercells, a more refined k-point mesh or
spin-orbit coupling may lead to refinements of this energy;
however, they are unlikely to be on the order of several
tenths of an eV. Due to the apparent ambiguities of the inter-
pretation of the positron annihilation experiment,? it is sug-
gested that more experimental work is required to comple-
ment further efforts to refine this value using theoretical
means.

The phase transition energies are overestimated in the
scalar-relativistic approximation by 0.04 and 0.03 eV for fcc
and bcc, respectively. Both sets of values are larger than
those obtained in previous calculations (full potential and
hard pseudopotential) and more particularly so for the fcc
energy. It is not immediately clear which set of energy dif-
ferences is more accurate, as there are no experimental num-
bers to compare to for this (unphysical) transformation (al-
though it will be important for multiscale method
development). From a theoretical viewpoint, the full-
potential results should be considered to provide the most
accurate energy differences currently available, and hence,
the PAW method appears to be overestimating the energy of
the bee and fcc phases, relative to the orthorhombic alpha
phase (calculations made at higher k-point meshes and en-
ergy cutoffs did not change the results).
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TABLE V. Surface energy y (J/m?) and surface relaxation given in absolute interlayer distances (A) as well as percent expansion for
model N-layer a-uranium (001) oriented slabs. d,, is the outermost interlayer distance and d,5 the second-outermost interlayer distance in the
(001) direction. The distances given in parentheses were fixed at the bulk constants for N=3-5. The difference in energy —AE,,,, between
magnetic and nonmagnetic calculations is also given per surface atom (meV), as well as the magnetization per surface atom (u/ up), for this

work and Ref. 33. The work function @ is also given in eV.

_AEmag (/J“/ /*LB)

N dis d,% dy; dy3% y This work Ref. 33 This work Ref. 33 )

3 2.337 -4.5 (2.447) 0.0 1.427 3 11 0.88 0.66 3.58
4 2.360 =35 (2.447) 0.0 1.408 2 0.67 3.59
5 2.361 =35 (2.447) 0.0 1.396 5 16 0.63 0.65 3.64
6 2.364 -34 2.480 1.4 1.388 4 0.48 3.82
7 2.358 -3.6 2472 1.0 1.383 2 20 0.55 0.65 3.63

Properties of the (001)-oriented a-uranium
single-crystal surface

Very often, material transformations begin with the alter-
ation of the material at its interface with some environment.
As a precursor to studying surface phenomena on uranium
surfaces and specifically single-crystal surfaces, the proper-
ties of the (001) surface have been calculated in the scalar
relativistic approximation using the projector-augmented
wave treatment. To the best of the author’s knowledge, there
are no estimates of the structural and thermodynamic prop-
erties of the (001) surface of a-uranium available in the lit-
erature. Hence, much of the data presented in Table V is
currently without validation, with the exception of some es-
timates available based on the properties of polycrystalline
a-uranium surfaces, and the validation provided already in
the form of successful modeling of the properties of the bulk
crystalline material.

Estimates of the surface energy of polycrystalline uranium
range between 1.000 and 1.490 J/m based on theoretical cor-
relations between physical parameters such as the heat of
sublimation and atomic volume.>3° An investigation of fis-
sion bubbles in a-uranium yielded an approximate surface
energy of 1.0=0.5 J/m.>3! The surface energy arising from
the present PAW calculations of 1.4 J/m? clearly falls within
this range.

Thermionic experiments described in Ref. 32 report a
work function for polycrystalline uranium of 3.47*0.03 eV,
which is close to the 3.6 eV obtained for the (001) single-
crystal surface examined in this work. The higher value of
3.8 eV obtained for the six-layer slab is likely an anomaly
arising from the fact that the six-layer simulation contained
only 2.5 equivalent layers of vacuum, compared to the ap-
proximately five equivalent layers used in the other simula-
tions.

The energy difference between the ferromagnetic and
nonferromagnetic surfaces (AE,,,,) obtained in the scalar
relativistic calculations reported in Table V are significantly
smaller (by an order of magnitude) than the energy differ-
ences calculated using the spin-orbit, full-potential calcula-
tions obtained by Stoji¢ et al.3* While this may arise from the
difference in computational method applied [spin-orbit cou-
pling and all-electron (full-potential) treatment versus scalar

relativistic and/or projector-augmented wave], there is no ex-
perimental evidence for strongly magnetic properties of the
a-uranium surface. Furthermore, the results reported in Ref.
33 were obtained by calculations performed on the unrelaxed
(100) surfaces. Surface relaxation is likely to reduce the
magnetic moment as bonding between the outermost ura-
nium atoms is enhanced via the contraction (see next para-
graph). The calculated spin moments on the surface atoms
are qualitatively similar, but again, not in quantitative agree-
ment. Further theoretical and experimental investigations of
the magnetic surface properties of uranium are required to
elucidate this issue, which includes fully relaxed, spin-orbit,
and full-potential calculations. Either way, the energy differ-
ences are small, and hence, any magnetic properties would
exist only at temperatures below ~250 K (calculated using
the larger energy difference reported for the seven-layer slab
in Ref. 33). For the purposes of engineering systems and
materials, design effects at temperatures significantly below
room temperature are typically not of great concern.

The surface relaxations obtained by PAW density func-
tional theory are consistent with the typical behaviors of met-
als. In general, the outermost layer of a metallic surface con-
tracts by an amount <10% and the subsurface (second
outermost) layer will expand according to bond-order con-
servation ideas’* (stronger bonding to the outer layer will
lead to weakened bonding with the third outermost layer).
The PAW calculations determine an external relaxation for
the (001) surface of a-uranium of ~-3.5% and a subsurface
relaxation of ~+1%. Experiments such as low-energy elec-
tron diffraction performed on the (001) single-crystal ura-
nium surface would be useful for validating the use of the
scalar-relativistic PAW calculations for determining these re-
laxation parameters. However, to our knowledge, no such
experiments have been reported in the literature.

By utilizing the model of Hayes et al.,'* it is possible to
relate the (001) surface energy (y=1.41J/m?), the bulk-
interlayer distance (d=2.447 A), and the c; elastic constant
(c33=331 GPa, this work) to the cohesive properties of the
(001) planes. Succinctly, this model imposes the crack for-
mation criterion that the elastic strain energy imposed upon
an elongated crystal must exceed the surface energy of the
crystal. Thus, at some elongation, surface formation via
crack development must become more favorable than con-
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tinuously straining the crystal. Two parameters arise from
this model: the critical elongation and the stress required to
achieve that elongation (critical peak traction). Although
a-uranium is a metal and will fail via plastic deformation
(movement of dislocations) the brittle fracture value provides
a guide to the “yield stress” of the material, at which point
the elastic limit is reached and plastic modes will take over.
The important modes of failure via plastic deformation
modes and/or intergranular cracking could be modeled at a
later stage using interatomic pair-potential techniques. The
simple elastic model presented by Hayes et al.'* determines
the critical crack opening displacement by equalizing the
elastic energy density imposed by a critical strain value to
the surface energy yielded upon complete fracture. The pro-
cedure is analogous to the Griffith equation for crack
propagation.®> The resulting critical opening displacement is

8,=2\yw/cy;, where w is the sample width. As such, the
critical crack opening is dependent on the sample width, as
the elastic strain energy is a volume property, compared to
the surface energy, which is a two-dimensional surface quan-
titiy. For a 10 wm single crystal, therefore, in the absence of
dislocations, brittle failure would occur at a critical displace-
ment of 130 A. The related critical peak traction is &,

=c336,/w or 431 MPa for a 10 um single-crystal. The com-
puted value is closer to the value determined by Hayes et al.
for the a-Al,O5 single crystal than that for Al(111), consis-
tent with the semiplasticity (rather than total plasticity) of
a-uranium as it indicates that the metal is more similar to the
aluminum oxide than the aluminum metal.'*!* Reference 13
cites a reported yield stress of 345 MPa for polycrystalline
a-uranium, comparable with the 387 MPa obtained using the
measured room temperature ¢33 and the above equation.

CONCLUSIONS

After considering a number of materials and surface prop-
erties for a-uranium, it can be seen that the projector-
augmented wave formalism is able to predict properties that
are in reasonable agreement with experiment, comparable to
the results from full-potential calculations. The calculated
vacancy formation energy is higher than expected, and this
points to a need for further theoretical and experimental scru-
tiny. The PAW methodology allows calculation simulation
cells consisting of at least 100 atoms, and therefore, allows
investigation of phenomena such as impurities and vacan-
cies, with an accuracy that has been demonstrated to be com-
parable to that obtained by all-electron, full-potential meth-
ods. Furthermore, the PAWs used in this work have been
demonstrated to have greater accuracy and a lower required
energy cutoff than pseudopotentials used in previous work,
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providing both accuracy and computational gains.

The temperature dependence of the force constants, and
hence the moduli and Debye temperature, remains a case for
further theoretical investigation. These problems are not
unique to the PAW method employed in this work. The re-
sults of the PAW calculations are indeed very close to those
obtained by full-potential methods; however, both ap-
proaches are limited to 0 K predictions and do not capture
the electronic thermal-excitation contributions to the force
constants. Hence, a major advancement in the application of
basic electronic structure theory is still required to investi-
gate this problem, and the related problems of phase dia-
grams and equations of state.

The surface energies and work functions calculated using
this approach are in good agreement with estimates from the
literature. Furthermore, a slight preference for surface mag-
netization is observed, consistent with the results of unre-
laxed full-potential calculations, although this is at the limits
of the calculation’s self-consistency. Experimental validation
of the predicted surface-relaxation constants obtained in this
work would be useful.

The choice of spin-orbit versus scalar-relativistic model-
ing of the relativistic effects in a-uranium is seen to cause
only slight differences in the quantitative results obtained
using the PAW formalism. However, as it is not known in
which cases the spin-orbit coupling component will be most
important, theoretical investigations should still be per-
formed using both techniques, where possible, until a con-
sensus is reached.

Finally, it should be emphasized that the evaluation of
uranium materials properties using density functional theory
is of sufficient accuracy to begin to probe many materials
and chemical interactions for the purpose of understanding
the fundamental atomic contribution to transitions occurring
under service conditions of this material and to be used as a
basis for the construction of multiscale models capable of
modeling transformations involving lower symmetry materi-
als features such as grain boundaries, dislocations, and sur-
faces.
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