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A theoretical model is suggested that describes nonplanar splitting of perfect dislocations into partials in a
newly discovered group of alloys called Gum Metal. Within the model, the partials have line cores located at
a nanoscale circle and are connected by �generalized� stacking faults. Due to the complicated nonplanar
structure of the split dislocation configuration and associated stacking faults, the split dislocation has a low
mobility. Results of the model take into account experimental data on suppression of dislocation slip in Gum
Metal reported in the literature.
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I. INTRODUCTION

Partial and split dislocations are recognized as typical de-
fects strongly influencing physical and mechanical properties
of various solids such as nanocrystalline metals,1–10 semi-
conductor quantum dots and wires,11–16 semiconductor and
metallic thin films,17–20 and high-transition-temperature
superconductors.21–25 A conventional split dislocation repre-
sents a pair of partials that move in one crystallographic
plane and are connected by a planar stacking fault. At the
same time, there are examples of nonplanar splitting at
which a preexistent perfect dislocation splits into three or
more partials whose cores are not located on the same
plane.26 Also, perfect dislocations with cores of atomic-scale
radius may spread into dislocations with large cores of
nanoscale radius. For instance, dislocations with nanoscale
disordered cores were experimentally observed in supercon-
ducting cuprates27 and irradiated silicon.28 Commonly, dislo-
cation configurations with nonplanar split and spread cores
are immobile.

Recently, a new group of alloys, called Gum Metal, with
Ti-24 at. % �Ta+Nb+V�-�Zr-Hf�-O composition and re-
markable properties has been developed.29–33 Gum Metal
shows an unusual deformation behavior supposed to be cru-
cially influenced by splitting of dislocations. In general, Gum
Metal exhibits high strength, low Young’s modulus, super-
elasticity �without martensitic transformations�, excellent
cold workability, and low resistance to shear in certain crys-
tallographic planes.29–33 Plastic deformation starts in Gum
Metal at applied stresses close to its ideal shear strength and
occurs through the formation of large planar defects called
giant faults. Each giant fault has thickness of around 1 nm
and conducts very large local plastic strain of around thou-
sands of percent or more. This special �dislocation-free� de-
formation through giant faults dominates in Gum Metal,
while the conventional dislocation slip is suppressed. In par-
ticular, high resolution electron microscopy �HRTEM� char-
acterization revealed paucity of conventional lattice disloca-
tions with cores having atomic-scale diameters in deformed
Gum Metal.29–33 A mechanism responsible for suppression of
the conventional dislocation slip in Gum Metal is under dis-
cussion. Following Refs. 29 and 34, the solute hardening

effect of oxygen perhaps in the form of ZrO clusters can pin
lattice dislocations. At the same time, if ZrO clusters are
assumed to be impenetrable by lattice dislocations,34 they
should inhibit plastic shear carried by giant faults as well.
However, following experimental data,29–33 Gum Metal is
effectively deformed through giant faults. In this context,
validity of the model29,34 is questionable, and there is moti-
vation in searching for an alternative mechanism which can
be responsible for the inhibition of dislocation mobility in
Gum Metal. We think that nonplanar splitting of perfect lat-
tice dislocations makes them immobile, in which case the
conventional dislocation slip is suppressed in Gum Metal.
The main aim of this paper is to theoretically describe the
circular splitting transformation of lattice dislocations and
discuss its effects on the dislocation mobility in Gum Metal.

II. GEOMETRY OF NONPLANAR SPLITTING OF SCREW
DISLOCATIONS IN GUM METAL: MODEL

ASSUMPTIONS

Let us consider the dislocation slip geometry in Gum
Metal that commonly has a body centered cubic �bcc� crystal
lattice structure. In general, the “pencil slip” is typical in bcc
crystals26 which occurs by screw dislocation movement in
several slip systems, such as �111��110�, �111��112�, and
�111��123�. The specific feature of bcc Gum Metal, differen-
tiating it from conventional bcc crystals, is related to the fact
that slip planes �111��110�, �111��112�, and �111��123� are
elastically softened in Gum Metal.29–33 More precisely, val-
ues of the shear modulus G in these slip planes are extremely
low �G is around 9 GPa� compared to those in other
planes.29–33,35 This specific feature is treated to be respon-
sible for the existence of experimentally observed29–33

nanodisturbances—planar nanoscopic areas of local
shear—in deformed Gum Metal. Following Ref. 31, nanodis-
turbances are effectively modeled as nanoscale dipoles of
“noncrystallographic” partial dislocations with arbitrary,
nonquantized Burgers vectors.

The existence of several elastically softened slip planes
can also enhance the nonplanar splitting of perfect screw
dislocations into conventional and noncrystallographic par-
tials in Gum Metal. More precisely, a perfect lattice disloca-
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tion in Gum Metal is expected to split into a dislocation
configuration consisting of several partials that have different
slip planes coinciding with elastically softened planes. In
general, cores of the resultant partials are connected by a
system of generalized stacking faults that hamper the move-
ment of the partials. �A generalized stacking fault is a planar
defect resulted from a cut of a perfect crystal across a single
plane into two parts which are then subjected to a relative
displacement through an arbitrary vector s �lying in the cut
plane� and rejoined.36–38 Its partial case is a conventional
stacking fault corresponding to a displacement through a
Burgers vector of a conventional partial dislocation.� Also,
the splitting gives rise to the formation of a nanoscale region
where the crystal lattice structure is highly violated at stack-
ing faults and the chemical composition is different from that
of the surrounding material. The latter is due to the effects of
stress fields of the resultant partials on the chemical compo-
sition near their cores. According to the general theory of
diffusion in strained alloys,39 large �small� atoms of Gum
Metal tend to move to the areas where tensile �compressive�
stresses of the partials exist. In particular, oxygen-rich and
-deficient areas are formed near preexistent lattice disloca-
tions through diffusion of oxygen atoms. Elastic interaction
of the partials with ensembles of inhomogeneously distrib-
uted oxygen atoms limits the mobility of the split disloca-
tion. More than that, the discussed nanoscale region �con-
taining both violations of the crystal lattice structure and the
chemical composition inhomogeneities� can be treated as the
large nanoscale core of the split dislocation in Gum Metal.
This statement is indirectly supported by the HRTEM
observation29 of edge dislocations with nanoscale cores in
Gum Metal �see central part of Fig. 2�c� presented in Ref.
29�. Mobility of dislocations with large cores is inhibited in
Gum Metal due to the structural factor �but not only the
above factor associated with chemical inhomogeneities at the
dislocation cores�. It is because the dislocation movement
should be accompanied by transformations of the structure
within the large dislocation core, while these transformations
need to overcome energy barriers much larger than the con-
ventional Peierls barrier for movement of perfect disloca-
tions with atomic-scale cores.

Let us consider geometry of the dislocation splitting pro-
cess in the exemplary case of a screw dislocation with Bur-
gers vector B= �a /2��111� �with a being the crystal lattice
parameter� in Gum Metal. The direction �111� along which
both the Burgers vector and line of the considered screw
dislocation are oriented plays the same role for screw dislo-
cations having 12 easy slip systems �containing elastically

softened direction �111��: �11̄0�, �101̄�, �011̄�, �112̄�, �12̄1�,
�2̄11�, �123̄�, �213̄�, �3̄12�, �3̄21�, �13̄2�, �23̄1�. �For illustra-
tion, Figs. 1�a� and 1�b� show easy slip planes of the �110�
and �112� types, respectively, containing elastically softened
direction �111�.� Since a screw dislocation can move in any
plane, it can split into partials moving in any slip system
listed above. In conventional bcc metals, the dislocation
splitting commonly occurs in planes of the type �112� be-
cause the energy of stacking faults in these planes is lower
compared to that in other planes. With this aspect taken into
account, we will consider the nonplanar splitting of a screw

dislocation into �i� 3 partials moving in planes �112̄�, �12̄1�,
and �2̄11� �Fig. 2�a��, �ii� 6 partials consisting of three pairs

moving along planes �112̄�, �12̄1�, and �2̄11� with two par-
tials moving in each plane �Fig. 2�b��, and �iii� 12 noncrys-

tallographic partials moving in six planes—planes �112̄�,
�12̄1�, and �2̄11� of type �112� as well as planes �11̄0�, �101̄�,
and �011̄� of type �110�—with two partials moving in each
plane �Fig. 2�c��. Figure 2 presents the projection of the ini-
tial and split dislocation configurations on plane �111�, in
which case the dislocation lines are perpendicular to this
plane. Arrows show directions along which the partial dislo-
cations move during the corresponding splitting transforma-
tions. The partial dislocations resultant from the splitting in
planes of the �112� and �110� types move in directions �110�
and �112�, respectively.

Since studies of Gum Metal are in their infancy, there is
deficit in experimentally verified information on its material
and structural parameters. Many details of its structure and
deformation behavior are still unknown. In these circum-

FIG. 1. �Color online� Crystallographic planes in bcc lattice
contain elastically softened direction �111� �bold line� and serve as
planes where the splitting of a screw dislocation with the Burgers
vector B= �a /2��111� occurs. �a� Crystallographic planes of the
�110� type. �b� Crystallographic planes of the �112� type.
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FIG. 2. Screw lattice dislocation of �111� type splits into �a� 3,
�b� 6, and �c� 12 partials belonging to various slip planes. General-
ized stacking faults �dashed segments� are formed which join the
partials of the same slip system. Arrows show directions along
which partial dislocations move during the corresponding splitting
transformations.
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stances, in order to theoretically describe the nonplanar split-
ting of screw dislocations and calculate �estimate� its critical
parameters, we have to make several simplifying assump-
tions within our model. They are briefly as follows:

�i� Cores of partials resultant from the nonplanar splitting
are located at a circle �Fig. 2�. This assumption is rather
natural because all the three split dislocation configurations
shown in Fig. 2 are axially symmetric. More than that, the
assumption is strictly correct, if values of the stacking fault
energy in all the splitting planes of a split dislocation con-
figuration are identical. The latter condition is valid, for the
split dislocation configurations shown in Figs. 2�a� and 2�b�.
Each of these configurations is resulted from the splitting
process occurring along the same set of crystallographic
planes. At the same time, the condition is approximate for
the dislocation configuration shown in Fig. 2�c� since it is
resulted from the splitting process occurring along different
crystallographic planes, namely, planes of the �112� and
�110� types.

�ii� The resultant partials in all the situations �Fig. 2� are
screw dislocations because this kind of splitting is more en-
ergetically favorable compared to other kinds.

�iii� In the calculation of energy characteristics of the non-
planar splitting �see Sec. III�, we will use a first approxima-
tion representation31 of Gum Metal as an elastically isotropic
solid characterized by the shear modulus G. In general, this
assumption is rather natural because results of the isotropic
elasticity calculations are correct enough in most problems
of the theory of defects. In the partial case under consider-
ation of this paper, we have shown that results of the isotro-
pic elasticity calculations are weakly modified by accounting
for anisotropy effects �see the Appendix�.

�iv� As with Ref. 31, the value of the shear modulus G in
isotropic elasticity calculations in Sec. III is taken as its
minimum value G=9 GPa. In these circumstances, our the-
oretical examination operates with the minimum limit of the
difference between the elastic energies �proportional to G� of
the initial perfect and resultant partial dislocations. At the
same time, the latter difference serves as the basic driving
force for the nonplanar splitting �Fig. 2�. As a corollary, our
examination will give another strict criterion for the nonpla-
nar splitting to occur.

�v� As with Ref. 31, the energy of generalized stacking
fault is taken as a simple periodic function �sin� �for details,
see Sec. III�.

Assumptions �i�–�v� simplify a mathematical analysis of
the problem under consideration but do not mask its key
aspects.

Let us specify geometric parameters �Burgers vectors and
spatial positions� of partials within our model of nonplanar
splitting. Since the resultant partials are screw dislocations,
all the splitting versions �Fig. 2� are described in terms of
Burgers vectors as the following dislocation reaction: �a /2�
��111�=N�a /2N��111�, where N is the number of the result-
ant partials. In the case of splitting into three and six partials,
their Burgers vectors are �a /6��111� �Fig. 2�a�� and �a /12�
��111� �Fig. 2�b��, respectively. Following Ref. 26, such
partials are crystallographic ones. �Note that partials with
Burgers vectors �a /12��111� �Fig. 2�b�� were observed in
computer simulations �see Ref. 26 and references therein�.

However, the authors are unaware about the experimental
observation of such partials in real bcc metals.� The third
version of the splitting of the perfect screw dislocations �Fig.
2�c�� results in the formation of 12 noncrystallographic par-
tials with Burgers vectors of type �a /24��111�, different from
Burgers vectors of conventional partials. Since Burgers vec-
tors �a /6��111� �Fig. 2�a��, �a /12��111� �Fig. 2�b��, and
�a /24��111� �Fig. 2�c�� are not perfect lattice vectors, �gen-
eralized� stacking faults are formed between the partials
composing pairs in each the splitting plane �see dashed seg-
ments in Fig. 2�.

Following the model assumption �i�, the partials are lo-
cated at a circle with both radius r and center at the line of
the initial screw dislocation �Fig. 2�. Let us numerate the
partials from 1 to N, starting from the partial at the direction

�011̄� and then moving counterclockwise, as shown in Fig. 2.
For the dislocation reaction under consideration, the Burgers
vector magnitudes of the partials �Fig. 2� are si=a	3 /2N �i
=1,2 , . . . ,N�. The position of each partial on the circle
shown in Fig. 2 is specified by its vector radius ri. The vector
ri connects the circle center and the ith partial dislocation
core. In these circumstances, we have

r1 =
r

	2
�011̄�, r2 =

r
	2

�1̄01�,

r3 =
r

	2
�11̄0� for N = 3 �Fig. 2�a�� , �1�

r1 = − r4 =
r

	2
�011̄�, r2 = − r5 =

r
	2

�1̄01�,

r3 = − r6 =
r

	2
�11̄0� for N = 6 �Fig 2�b�� , �2�

r1 = − r7 =
r

	2
�011̄�, r2 = − r8 =

r
	6

�1̄21̄�,

r3 = − r9 =
r

	2
�1̄10� ,

r4 = − r10 =
r

	6
�2̄11�, r5 = − r11 =

r
	2

�1̄01�,

r6 = − r12 =
r

	6
�1̄1̄2� for N = 12 �Fig. 2�c�� . �3�

Thus, we have all geometric parameters �in particular,
Burgers vectors and spatial positions specified by formulas
�1�–�3�� of partials to calculate energy characteristics of the
nonplanar splitting of screw dislocations in Gum Metal.
These characteristics will be examined in the next section.

III. ENERGY CHARACTERISTICS OF NONPLANAR
SPLITTING OF SCREW DISLOCATIONS IN GUM METAL

The total energy change characterizing the circular split-
ting �Fig. 2� is given in its general form as follows:
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�W = W1 − W0, �4�

where W1 and W0 are the energies of the final �split� and
initial �nonsplit� dislocation configurations, respectively. The
initial dislocation configuration represents a sole screw dis-
location with Burgers vector B= �a /2��111� �whose magni-
tude is equal to B=a	3 /2�. In the first approximation of
Gum Metal as an elastically isotropic solid,31 the energy of
the dislocation is given by the following well-known
formula:26

W0 =
GB2

4�

ln

R

B
+ Z� =

3Ga2

16�

ln

2R

a	3
+ 1� , �5�

where G denotes the shear modulus, R the screening length
for the dislocation stress field, and Z the factor describing
the energy of the dislocation core �hereinafter, we suppose
Z=1�.

The energy of the final �split� dislocation configuration is
given as follows:

W1 = �
i=1

N

Wi
el +

1

2�
i=1

N

�
j=1

j�i

N

Wij
int + W�. �6�

Here, Wi
el is the proper energy of the ith partial, Wij

int is the
energy that describes the interaction between the ith and jth
partials, and W� denotes the sum energy of generalized
stacking faults. For simplicity, as with Ref. 31, we represent
the energy of a generalized stacking fault as the following
periodic function of s �the magnitude of Burgers vector of a
partial dislocation that bounds the generalized stacking fault�
with period equal to B=a	3 /2:

W�� = �l sin
�s

B
� . �7�

Here, � denotes the energy of conventional stacking fault
and l the stacking fault length. In the cases under consider-
ation �Fig. 2�, there are N stacking faults of length l=r and N
partials whose Burgers vector magnitudes obey the following
relationship: s /B=1 /N. In this case, the sum energy W� of
generalized stacking faults is given as

W� = N�r sin
�

N
. �8�

Other terms on the right-hand side of formula �6� can be
easily found using the standard theory of dislocations.26 With
these terms as well as formulas �1�–�8�, after some algebra,
we find the total energy change �W characterizing the circu-
lar splitting �Fig. 22� to be given as follows.

For N = 3 �Fig. 2�a�� ,

�W = −
Ga2

16�

ln

4r2

3a2 + 2� +
3	3

2
�r . �9�

For N = 6 �Fig. 2�b�� ,

�W = −
5Ga2

32�

ln

2r

a	3
+ 1� + 3�r . �10�

For N = 12 �Fig. 2�c�� ,

�W = −
11Ga2

128�

ln

4r2

3a2 + 2� + 12�r sin
�

12
. �11�

In accordance with formulas �9�–�11�, the total energy
change �W essentially depends on the stacking fault energy
�. As to our knowledge, there are no data on experimental
measurements of � in Gum Metal. In this case, we will esti-
mate the energy � of conventional nanoscale stacking faults,
using characteristics of Gum Metal specimens deformed by
macroscale giant faults. As shown in experiments,29–33 plas-
tic deformation starts in Gum Metal through the formation of
macroscale giant faults at applied stress � f 1 GPa corre-
sponding to the shear stress � f =� f /20.5 GPa. Following a
theoretical model,40 macroscale giant faults are nucleated
and developed from nanoscale generalized stacking faults
bounded by noncrystallographic partials. That is, both struc-
tures and energies of conventional nanoscale stacking faults
and macroscale giant faults are similar at least at the first
stage of plastic flow in Gum Metal.40 With these similarities
taken into account, formation of a giant fault with plastic
shear s under the shear stress � is characterized by the energy
change �WGF �per unit area of the giant fault� approximately
given as

�WGF  − �s + � sin��s/B� . �12�

Here, the first term �−�s� specifies the shear stress work
spent to plastic shear s and the second term �� sin��s /B�� is
the specific energy �per unit area� of the giant fault treated as
a generalized stacking fault. Plastic flow is energetically fa-
vorable, if d�WGF /ds�0 and unfavorable otherwise. In the
case of a quasiequilibrium plastic deformation, we have
d�WGF /ds=0. With this equality and formula �12�, we find
the shear stress � f �measured in experiments29–33 as the shear
stress causing plastic flow in Gum Metal� as the maximum
value of �. Since the generalized stacking fault structure pe-
riodically changes with period B, we have

� f  max
d�� sin��s/B��

ds
for 0 	 s 	 B . �13�

Equation �13� yields �� fB /�. As a corollary, we have the
following estimate of the stacking fault energy in Gum
Metal: �45 mJ /m2, for � f 0.5 GPa, and B=a	3 /2
0.29 nm �a=0.33 nm, see Ref. 34�.

Also, note that, for the circular splitting �Fig. 2� in Gum
Metal, the ideal crystal structure is violated within the circu-
lar region and its chemical composition can be different from
that of the nondefect areas. Therefore, values of � that char-
acterize generalized stacking faults within the circular region
can vary rather widely. In this context, in our further calcu-
lations, we will use various values of � being in the wide
range from 10 to 100 mJ /m2.
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With formulas �9�–�11�, we have calculated the depen-
dences �W�r�, for the three splitting versions shown in Fig.
3, various values of �=10, 30, 50, and 100 mJ /m2 �see
curves in Figs. 3�a�–3�d�, respectively�, and the following
typical values of other parameters of Gum Metal:32,34 G
=9 GPa and a=0.33 nm. Figure 3 shows that the depen-
dences �W�r� are negative �the circular splitting is energeti-
cally favorable� at �	30 mJ /m2, for all the three splitting
versions, and the splitting slightly enhances with increasing
the number of resultant partials. Also, for comparison, Fig. 3
shows the dashed curve corresponding to the following pla-
nar splitting of a lattice screw dislocation into two screw
partials:

a

2
�111� =

a

3
�111� +

a

6
�111� . �14�

This curve was calculated by formulas �4�–�8�, with N=2,

s1=a	3 /3, s2=a	3 /6, and r1=−r2= �r /2��011̄�. �Planar
splitting reactions for dislocations in bcc metals, discussed in
Ref. 26, can be described in a first approximation by expres-
sion �14�. Also, this reaction was mentioned in Ref. 41.� As it
follows from Fig. 3, the planar splitting �Eq. �14�� is ener-
getically unfavorable compared to nonplanar splitting ver-
sions shown in Fig. 2.

IV. CONCLUDING REMARKS

Thus, the nonplanar splitting of a perfect screw disloca-
tion of the �111� type into three or more partials �Fig. 2� is
energetically favorable in the reasonable range of parameters
of Gum Metal. In doing so, each perfect dislocation splits
into several partials having different slip planes �Fig. 2� co-
inciding with elastically softened planes. Cores of the result-
ant partials are connected by a system of �generalized� stack-
ing faults that hamper the movement of the partials. In

general, the splitting results in the formation of a nanoscale
circlelike region where the crystal lattice structure is highly
violated at the stacking faults �Fig. 2� and the chemical com-
position is different from that of the surrounding material.
The latter is due to the effects of stress fields of the resultant
partials, producing compositional inhomogeneities near their
cores. The elastic interaction of the partial dislocations with
the compositional inhomogeneities in their vicinities limits
the dislocation mobility. Also, the split dislocation movement
is suppressed because it should be accompanied by high en-
ergy transformations of the structure within its large nanos-
cale core. Thus, split dislocation configurations become im-
mobile and hardly contribute to plastic flow in Gum Metal.
In this context, the nonplanar splitting of screw dislocations
�Fig. 2� is capable of causing the experimentally
observed29–33 inhibition of the conventional dislocation slip
in Gum Metal. References 29 and 34 suggest an alternative
explanation of low dislocation mobility through the solute
hardening effect in Gum Metal. This effect is also capable of
contributing to the experimentally observed29–33 inhibition of
the conventional dislocation slip in Gum Metal. To identify
the nature of the dislocation slip suppression and, in general,
physical mechanisms responsible for the remarkable defor-
mation behavior of Gum Metal, further experimental and
theoretical studies in this area should be carried out.

ACKNOWLEDGMENT

The work was supported in part �for S.V.B and I.A.O�
by a Research Agreement with Toyota Central R&D
Laboratories.

APPENDIX

Let us estimate the anisotropy effect on results of our
calculations of energies characterizing partial dislocations
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FIG. 3. �Color online� Dependences �W�r�, for �a� �=10 mJ /m2, �b� �=30 mJ /m2, �c� �=50 mJ /m2, �d� �=100 mJ /m2, characterize
the circular splitting of a screw dislocation of �111� type into N=3, 6, and 12 partials and planar splitting into N=2 partials.
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�Fig. 2� in Gum Metal. In the context of this paper, we will
focus our consideration on screw dislocations of �111� type
in bcc lattice. In the case of such dislocations, an analysis of
the anisotropy effect is not complicated. Let us consider a
screw dislocation of �111� type in bcc lattice. The stress field
of a screw dislocation of �111� type in bcc lattice in the
cylindrical coordinate system �r ,
 ,z� �associated with the
straight dislocation line coinciding with axis z and oriented
along �111�� is given as follows:26

�
z = Ks
b

2�r
, �A1�

�rz = −
Ks�M2 − 1�

cot 3
 + M2 tan 3


b

2�r
. �A2�

Here, b is the magnitude of the dislocation Burgers vector
and Ks and M are the constant coefficients. These coeffi-
cients are in complicated relationships with elastic moduli
C11, C12, and C44 �for details, see Ref. 26�. The polar angle 


in formula �A2� has its zero at the �1̄21̄� direction. Other
components of the stress tensor are equal to zero.

A screw dislocation in an isotropic solid creates only the
component �
z of the stress tensor.26 As a corollary, with the
isotropic elasticity theory, the force of the interaction be-
tween two screw dislocations is strictly oriented along the
line that connects the dislocation cores and is perpendicular
to them. In accordance with formulas �A1� and �A2�, in the
cubic anisotropy approximation, an additional component �rz
occurs which causes the force of the interaction between two
screw dislocations to have a component perpendicular to the

line connecting the dislocation cores. In general, the energy
of the elastic interaction between two screw dislocations
changes, if the additional component �rz is taken into ac-
count. However, formula �A2� shows that �rz=0 at 

=m30°, where m is an integer. Actually, for the dislocation
configurations presented in Figs. 2�a�–2�c�, any pair of the
screw dislocations is located in either the �110� or �112�
plane. Each of the �110� or �112� planes makes angle 


=m30° with the �1̄21̄� direction.
Now, let us consider the proper elastic energy of disloca-

tions. The proper energy depends on the only component �
z.
From formula �A1�, it follows that the component �
z taking
into account anisotropy is given by the expression26 for �
z
in the isotropic situation, with the shear modulus G replaced
by the coefficient Ks. That is, Ks serves as an effective shear
modulus in the �111� direction.

To summarize, all the expressions exploited in this paper
in examination of the isotropic case are valid in the situation
with a cubic anisotropy as well, if the shear modulus G is
replaced by the coefficient Ks. The effect of the elastic soft-
ening is well pronounced in materials having an extremely
low difference C11−C12.

35 Calculation of Ks, with data35 of
computer modeling of elastic moduli characterizing binary
alloys taken into consideration, shows the value of Ks to be
close to the value of C11−C12. In particular, for binary alloy
Ti0.75Ta0.25, Ref. 35 has reported the following values of
elastic constants �in units of GPa�: C11=129.9, C12=121.6,
C44=38.6, and C11−C12=8.2. In doing so, one finds Ks
=9.1 GPa. This value is very close to that �9 GPa� of the
shear modulus G used in our calculations within the isotropic
elasticity theory.
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