
Semiempirical formulae for elastic moduli and brittleness of diamondlike
and zinc-blende covalent crystals

Sami Kamran,1 Kuiying Chen,2,* and Liang Chen1

1Department of Physics, University of Ottawa, Ottawa, Canada K1N 6N5
2Institute for Aerospace Research, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6

�Received 1 August 2007; revised manuscript received 20 November 2007; published 10 March 2008�

In the present work, semiempirical formulae for both bulk B and shear G moduli of diamondlike and
zinc-blende covalent crystals are elaborated in terms of bond length and ionicity fraction of the bonding. The
resulting expressions can be applied to a broad selection of covalent materials and their modulus predictions
are in good agreement with the experimental data and those from ab initio calculations. Furthermore, the
correlation between the ratio G /B and the aforementioned bonding parameters was investigated. The analysis
of this relationship demonstrates that compared to the ionicity fraction, the bond length is the predominant
parameter responsible for the brittle features of covalent materials.
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I. INTRODUCTION

In the past decades, numerous efforts have been made in
establishing links between macroscopic properties of solids
and their atomic-scale features. In particular, the elastic
moduli, which are of importance in assessing the competition
between the ductile and brittle failures, have been exten-
sively investigated in relation to various microscopic charac-
teristics of different sorts of materials, such as metals and
covalently bonded crystals. Currently, most elastic modulus
evaluations are carried out using the state-of-the-art ab initio
calculation techniques; however, one has to keep in mind
that the rationalization of these first-principles calculations
often requires profound understanding of the nature of the
chemical bonding and its attributes in various solid systems.
As a result, analytical and semiempirical methods need to be
elaborated in concert with computational approaches and es-
timations.

One of the earliest attempts at describing bulk modulus B
in terms of electronic parameters1 yielded a simple propor-
tionality relation between B and the product of the electron
concentration with Fermi energy. However, the resulting for-
mula is of limited utility, since it usually gives values within
a factor of 2 of the experimental values. Recently, Gilman2

derived expressions for both bulk B and shear G moduli of
metals based on simplified quantum-mechanical consider-
ations. The derived expressions also suffer from notable de-
ficiencies, as they ignore the effects induced by ionicity of
the bonds and exchange-correlation interactions amongst
others. Moreover, Gilman’s formulae for B and G give a
constant ratio G /B=3 /5, which is close to the G /B ratio of
some alkali metals such as sodium. Nonetheless, it remains
an aberrant result, as one expects the G /B ratio, which is
often used as a performance indicator to distinguish ductile
and/or brittle transition of materials,3,4 to vary from one solid
to another.

As for covalent materials, which constitute the subject
matter of the present work, it was found by Cohen5 that their
bulk modulus B �GPa� can be estimated by the following
semiempirical expression:

B =
Nc

4

�1972 − 220��
d3.5 , �1�

where Nc is the bulk coordination number, d is the bond
length, and � is an empirical ionicity parameter that takes the
values of 0, 1, and 2 for IV, III-V, and II-VI group semicon-
ductors, respectively. In this paper, we improved this formula
by replacing the ad hoc empirical ionicity parameter with a
more suitable ionicity factor. Additionally, a semiempirical
formula for shear modulus of covalent crystals is developed.
These results are then exploited to reveal the atomic-scale
origins of the brittleness of covalently bonded solids through
analysis of the dependence of the ratio G /B on the bond
length and the ionicity fraction of the bonds.

II. THEORY AND RESULTS

Both bulk B and shear G moduli can be derived from the
second derivative of the total energy E with respect to the
appropriate deformation parameter at the equilibrium state as
follows:6,7

B = �� �2E

��2�
�=�0

, �2�

G =
1

�
� �2E

��2 �
�=�0

, �3�

where � and � stand for volume and dimensionless defor-
mation parameter, respectively. From Eqs. �2� and �3�, it is
evident that the first step in establishing the formulae for
bulk and shear moduli is to approximate the energy deriva-
tives in terms of chemical bonding parameters.

Due to their spherical symmetry and tight-binding charac-
ter, the core electrons are nearly unresponsive to low-energy
perturbations8 like those occurring under elastic deformation;
while the valence electrons are completely affected by such
phenomena. Consequently, the core electrons do not have a
significant contribution to the elastic response of a material
deforming within the limits of the elastic regime; whereas,
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the valence electrons are fully involved in the distortion pro-
cess. Since the involvement of core electrons in the elastic
deformation is insignificant, the variation of their energy is
also negligible. Therefore, within the limits of the elastic
regime, the second derivative of the total energy can be ap-
proximated by the variation of the valence electrons’ force.
In the case of covalently bonded materials, as discussed by
Philips,9 the band gap energy Eg provides an estimation of
the valence bond strength and it results from homopolar and
heteropolar or ionic contributions of the atoms to the bonds
as follows:

Eg
2 = Eh

2 + Ci
2. �4�

Here Eh refers to the homopolar or covalent contribution to
the bonding, while Ci corresponds to the ionic contribution
or the charge transfer to the bonds. In the case of purely
covalent group IV crystals, such as diamond, silicon, or ger-
manium, Eg is equal to Eh. Consequently, Eh characterizes
the strength of the covalent bond. Cohen was the first to
maintain6 that Philips’ homopolar band gap energy is the
dominant energy parameter in covalent solids. Recently, re-
lationships connecting inherent traits such as thermal activa-
tion energies10 and hardness11 to the homopolar band gap
energy were elaborated in the case of covalent crystals.
These works further confirm that the intrinsic properties of
covalent materials are predominantly dictated by Eh. Using a
scaling argument, Eh can be expressed in terms of d as
follows:9

Eh =
39.74

d2.5 , �5�

where the units of Eh are in eV and d is in Å. Since for small
amounts of deformation, the strain parameter is a linear func-
tion of the bond length, from Eq. �5�, it follows that

�2E

��2 �
1

d4.5 . �6�

The cylindrical-shaped charge volume of covalent crystals is
a linear function of the bond length, ����2aB�2d �aB is
Bohr radius� and it can be used in Eqs. �2� and �3�, since it
encloses the largest electron concentration.6 Thus Eqs.
�2�–�6� yield

B �
1

d3.5 �7�

and

G �
1

d5.5 . �8�

The effects induced by the ionicity of the chemical bond in
the case of binary compounds are described by the unitless
ionicity fraction f i, which is defined as:9

f i = 1 −
Eh

2

Eg
2 . �9�

It has been verified12 that elastic moduli assume a decreasing
linear trend with increasing ionicity. Therefore, based on

Eqs. �7� and �8� and the fact that B and G are linear functions
of ionicity, these elastic moduli are expected to exhibit the
following explicit dependences on d and f i:

Gj =
� j − 	 j f i

d5.5 , �10�

B =
� − 
f i

d3.5 , �11�

where � j, 	 j, �, and 
 are constants, and the subscript j
refers to the two covalent crystal groups discussed below.
These constants can be extrapolated from a selection of ex-
perimental data of covalent materials. The resulting expres-
sions are

Ga =
5954.02 − 4538.404f i

d5.5 , �12a�

Gb =
9058.22 − 6905.865f i

d5.5 , �12b�

B =
1938.72 − 506.702f i

d3.5 . �13�

In Eqs. �12a�, �12b�, and �13�, all elastic constants and
moduli are in GPa and d is in Å as before. Sixteen data
selected from the twenty-three experimental measurements
in Table I were used to interpolate coefficients � j and 	 j in
Eqs. �12a� and �12b� and the linear fitting curves together
with selected data are shown in Fig. 1. In the case of bulk
modulus B, nine experimental data plotted in Fig. 2 were
employed to determine constants � and 
 in Eq. �13�. The
calculated results from Eqs. �12a�, �12b�, and �13� are in a
good agreement with the experimental observations in Table
I. In the case of shear modulus G, our predictions for Si, Ge,
Pb, SiC, HgSe, and HgTe, which were not included in fitting
Eqs. �12a� and �12b�, are within 16% of the experimental
values. As for B, our calculations for the crystals unexploited
in the extrapolation process generally fall within 19% of the
experimental values. As regards the compounds BeS, BeSe,
BeTe, MgS, BAs, and BSb, for which there exist no mea-
surements known to the authors, the predictions are very
close to the results of ab initio calculations, which give B
=111 GPa and G=81.2 GPa for BeS,13 B=98 GPa and G
=66.6 GPa for BeSe,13 B=70 GPa and G=49.6 GPa for
BeTe,13 B=61.3 GPa and G=34.8 GPa for MgS,14 B
=152 GPa and G=149.6 GPa for BAs,15 and B=116 GPa
and G=116.2 GPa for BSb.15 In the case of 	-HgS, our es-
timations are comparable to the results obtained from
valence-force-field approach, which yields B=68.5 GPa and
G=19.6 GPa.16 As for shear moduli of compounds AlP,
AlAs, GaN, and InN whose experimental values are also
unknown to the authors, the results assessed using Eq. �12b�
agree with the outcomes of first-principles calculations testi-
fied in Ref. 17, which gives G=55.2 GPa for AlP; Ref. 18,
which gives G=46.4 GPa for AlAs; and Ref. 19, which re-
ports G=122.7 GPa for GaN and G=83.3 GPa for InN. Con-
sequently, the reliability and accuracy of our formulae are
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well verified. It is noteworthy that in most cases, the reported
ab initio values of bulk and shear moduli were extrapolated
from the elastic constants through the following relations:

B = 1/3�C11 + 2C12� , �14�

G = 1/5�C11 − C12 + 3C44� . �15�

Because of different bond-bending and bond-stretching fea-
tures, the materials under study are split into two groups as
far as their shear moduli are concerned �see Fig. 1�. This is
due to the fact that the compounds of the first-row elements

TABLE I. Experimental and calculated bulk modulus and shear modulus of diamondlike and zinc-blende covalent crystals and param-
eters related to the calculation of their elastic moduli.

Crystals d �Å� f i Bexpt �GPa� Bcalc �GPa� Gexpt �GPa� Gcalc �GPa� Group

C 1.55a 0b 442c 418.2 535.7c 534.5 a

�-Sn 2.81a 0b 53a 52.1 ¯ 20.3 a

Pb 3.17d 0d 41.7c 34.2 10.1c 10.4 a

BP 1.97a 0.006b 173e 180.4 139e 142.3 a

BN 1.57a 0.256b 369f 373 414g 400.9 a

AlN 1.90h 0.449b 201i 180.9 114.8i 114.7 a

SiC 1.88d 0.177b 211a 202.9 175.8j 160 a

BeS 2.10d 0.312b
¯ 132.7 ¯ 76.7 a

BeSe 2.20d 0.299b
¯ 113.2 ¯ 60.1 a

BeTe 2.40d 0.169b
¯ 86.5 ¯ 42 a

MgS 2.43d 0.639k
¯ 72.2 ¯ 23.1 a

ZnS 2.34a 0.623b 84.1c 82.8 31.9c 29.1 a

CdS 2.52a 0.685b 64.8l 62.6 16.9l 17.6 a

CdSe 2.62a 0.699b 55.7m 54.4 13.6m 13.9 a

CdTe 2.81a 0.675b 42.4a 42.9 10.5n 9.8 a

	-HgS 2.53o 0.77p
¯ 60.1 ¯ 15 a

HgSe 2.63o 0.62q 48.5q 55.1 16.5q 15.4 a

HgTe 2.78o 0.565q 43.7c 46.1 12.9c 12.2 a

Si 2.35a 0b 100c 97.4 70.8c 82.4 b

Ge 2.45a 0b 77.8c 84.2 56.6c 65.5 b

BAs 2.07d 0.002b
¯ 151.8 ¯ 165.4 b

BSb 2.24r 0.03s
¯ 114.3 ¯ 104.8 b

AlP 2.36a 0.307b 86a 88.3 ¯ 61.7 b

AlAs 2.43a 0.274b 77a 80.5 ¯ 54.2 b

AlSb 2.66a 0.426b 59.3c 56.1 31.1c 28.2 b

ZnSe 2.45a 0.676b 62.4a 69.3 32.9c 31.7 b

ZnTe 2.64a 0.546b 51c 55.6 24.8c 25.4 b

GaP 2.36a 0.374b 88.8c 86.6 58c 57.6 b

GaAs 2.45a 0.310b 75.6c 77.4 48.8c 50.1 b

GaSb 2.65a 0.261b 57.4c 59.6 35.4c 34.1 b

GaN 1.94o 0.5b 190t 164 ¯ 144 b

InP 2.54a 0.421b 72.5c 66.1 36.5c 36.5 b

InAs 2.61a 0.357b 60a 61.2 31.4c 33.7 b

InSb 2.81a 0.321b 46.7c 47.7 24.2c 23.3 b

InN 2.16o 0.578b 137p 111.1 ¯ 73.3 b

aReference 24.
bReference 9.
cReference 28.
dReference 25.
eReference 29.
fReference 30.
gReference 34.

hReference 11.
iReference 31.
jReference 35.
kReference 14.
lReference 32.
mReference 33.
nReference 36.

oReference 37.
pReference 16.
qReference 38.
rReference 26.
sReference 27.
tReference 39.
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are not always directly comparable to those with heavier el-
ements. This behavior stems from the differences in the
bonding that are related to the s-p hybridization.12 Thus, C,
�-Sn, and Pb together with compounds formed of first-row
elements �e.g., BP and BN� or elements of first and second
rows such as SiC and AlN belong to group a; whereas Si, Ge,
and compounds consisting of first-row elements and heavier
ones such as BAs, BSb, GaN, and InN fit in group b. Fur-
thermore, group a contains compounds of II-VI family �BeS,
CdS, ZnS, HgTe, etc.�, while all the III-V semiconductors
without any first-row elements �e.g., GaP, AlSb, InAs etc.�
constitute the rest of group b. The only exceptions to these
general criteria of classification are ZnSe and ZnTe, which
fall in group b as shown in Fig. 1. This reflects the existing
difference between the band gaps of these crystals and that of
ZnS.20 In contrast to shear modulus, bulk modulus is not
affected by the above mentioned angular properties of the
chemical bond, and hence a universal linear relation between
B and f i can be obtained as displayed in Fig. 2. This results
from the fact that bulk modulus quantifies the response of a
crystal to a uniform volumetric tension. In this case, the solid
suffers a symmetric deformation along the three main axes,
and as a result no angular effects are created.

The developed G and B can be used to assess the brittle
and/or ductile characteristics of covalent crystals. Pugh21

proposed that the resistance to plastic deformation is related
to the product Gb, where b is the Burgers vector, and that the

fracture strength is proportional to the product Ba, where a
corresponds to the lattice parameter. If Gb /Ba is high for a
given material, the materials will behave in a brittle manner.
Consequently, the Gb /Ba reflects the competition between
the shear and cohesive strengths at the crack tip of fracture.
As b and a are constants for specific materials, the Gb /Ba
can be simplified into G /B. This formula was recently ex-
ploited in the study of brittle versus ductile transition in in-
termetallic compounds from first-principles calculations.22,23

Using Eqs. �12a�, �12b�, and �13�, we obtain the following
expression for the G /B ratio for three groups of covalent
crystals:
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Gj

B
=

Rj�f i�
d2 , j = a,b , �16�

where a and b represent two groups of covalent crystals. In
Eq. �16�, Rj�f i� is an ionicity-related function given by

Rj�f i� =
� j − 	 j f i

1938.72 − 506.702f i
, �17�

where � j and 	 j refer to the corresponding constants in ex-
pressions �12a� and �12b�. From Fig. 3, it can be observed
that as expected all the three Rj decrease with increasing
ionicity and that they exhibit the same trend evinced by the
corresponding curves in Fig. 1. Note that both curves display
a nearly linear behavior, which suggests that the effects of
ionicity are less significant than those induced by the bond
lengths.40 From expression �16�, it is also evident that the
ratio G /B assumes small values for large bond lengths.
Three-dimensional surface plots displayed in Fig. 4 clearly
demonstrate that the bond length plays a predominant role in
the brittle behavior of covalent materials, since even for rela-

tively high ionicities, small values of d still yield G /B ratios
larger or equal to 0.5, which is typical of brittle materials.3,4

III. CONCLUSION

In summary, we developed a semiempirical formula for
shear modulus of covalent materials and obtained an im-
proved universal formula for their bulk modulus. The inves-
tigation of the ratio of these formulae, whose accuracy is
comparable to that of the first-principles calculations, clearly
demonstrated the predominance of the bond length in assess-
ing brittle characteristics of covalent materials.
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