
Diffuse x-ray scattering from statistically inhomogeneous distributions of threading dislocations
beyond the ergodic hypothesis

V. Holý
Faculty of Mathematics and Physics, Charles University, Prague 11636, Czech Republic

T. Baumbach, D. Lübbert, L. Helfen, and M. Ellyan
Institute of Synchrotron Radiation, Forschungszentrum Karlsruhe, Karlsruhe 76133, Germany

P. Mikulík
Institute of Condensed Matter Physics, Masaryk University, Brno 60177, Czech Republic

S. Keller, S. P. DenBaars, and J. Speck
Department of Electrical and Computer Engineering and Department of Materials, University of California at Santa Barbara, Santa

Barbara, California 93106, USA
�Received 9 December 2007; published 3 March 2008�

Diffuse x-ray scattering from threading dislocations in epitaxial structures is simulated numerically by a
Monte Carlo method. The method allows one to simulate diffraction curves for dislocation types, where
macroscopic approaches fail. That includes dislocation types for which analytical ensemble averaging is not
feasible as well as microdiffraction curves from small sample volumes. In the latter case, the degree of statistic
fluctuation of characteristic features is determined. The Monte Carlo method makes it possible to correlate
quantitatively the widths of the microdiffraction curves to the densities of various dislocation types. The
potential of the method has been demonstrated by a quantitative estimation of the density distribution of edge
and screw threading dislocations in laterally overgrown epitaxial GaN structures, which is investigated by a
full-field microdiffraction imaging technique. Measuring the asymptotic behavior of the microdiffraction
curves allows one to conclude on the prevailing type of threading dislocations.

DOI: 10.1103/PhysRevB.77.094102 PACS number�s�: 61.05.cp, 61.72.Dd, 68.55.ag, 81.05.Ea

I. INTRODUCTION

X-ray diffuse scattering from imperfect crystals is fre-
quently used for the characterization of crystal defects such
as clusters of point defects, precipitates of other crystallo-
graphic phases, dislocations, or stacking faults. The analysis
of the measured data is usually based on the assumption that
the diffracted signal is averaged over the statistical ensemble
of all possible defect configurations �so-called ergodic hy-
pothesis�. If, in addition, the scattering sample is statistically
homogeneous �i.e., the defect density is constant in the
sample volume�, the averaged scattered wave is statistically
homogeneous as well, which means that its mutual coher-
ence function �MCF�

��r,r�� = �E�r�E*�r��� �1�

is a function of r−r� only. In this case, it is suitable to
describe the scattered radiation by means of the Fourier
transformation J of the MCF, which determines the intensi-
ties of the plane components constituting the scattered wave.
If the crystal scatters kinematically, this quantity depends
only on the scattering vector Q=K−Ki, i.e., on the differ-
ence of the wave vector of the plane component of the scat-
tered wave and the wave vector Ki of the incident wave.

Many papers have dealt with the methods of the simula-
tion of J�Q� for various types of defects; these methods are
reviewed in Ref. 1. On the other hand, almost no attention
has been paid to the case when the ergodic hypothesis is not
valid, i.e., when the measured radiation cannot be assumed

averaged over the statistical ensemble of all defect configu-
rations. If, for instance, the space resolution in an x-ray im-
aging method is comparable to the mean distance between
the defects, the signal measured by a single detector pixel is
not ensemble averaged. This is the case for the imaging of
the strain field of individual dislocations,2 for the microbeam
diffraction,3 or for the full-field microdiffraction imaging
from dislocations �often called rocking-curve imaging tech-
nique �RCI��. These methods allow us to locally measure the
Q dependence of the scattered intensity, i.e., combining the
resolutions in real and reciprocal spaces.

The aim of this paper is to analyze the intensity distribu-
tion of the scattered radiation without performing the en-
semble averaging, using a recently formulated idea of the
calculation of diffuse x-ray scattering from randomly placed
dislocations.4 It will be shown that this approach makes it
possible to describe diffuse scattering from the dislocation
types, for which the scattering by an individual dislocation
can be calculated, but a direct ensemble averaging is not
feasible. Further, the method allows for the simulation of
microdiffraction data, which is taken at experimental condi-
tions that violate the assumption of ergodicity.

The theoretical method will be used for the determination
of the structural quality of epitaxial laterally overgrown
�ELO� GaN layers. In these systems, an epitaxial GaN layer
grows through windows in an oxide mask deposited onto a
GaN buffer layer. The laterally overgrown parts of the struc-
ture �“wings”� have a better structure quality than the parts of
the ELO structure directly above the mask window. In order
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to determine the structures of the wing and window parts of
an ELO structure by x-ray diffraction, it is necessary to dis-
tinguish the x-ray signals coming from the wings from those
from the windows. Two methods have been used for this
purpose. The microbeam diffraction method3 uses a narrow
primary white x-ray beam scanning across the ELO struc-
ture; the RCI technique5 is based on a broad monochromatic
parallel primary beam and a two-dimensional detector with
the pixel size much smaller than the width of an ELO stripe.
The results of both methods indicate that the ELO wings
consist of slightly rotated mosaic blocks. The main task in
the interpretation of the diffraction widths obtained by both
methods mentioned is to distinguish several factors: �i� the
mean tilts of the ELO wings, �ii� the tilts of the individual
blocks within the wings, �iii� the finite-size effect, and �iv�
the diffuse scattering from dislocations in the blocks. This
paper concerns the task �iv�. In the RCI data, each block
gives rise to a bright spot in the space distribution of the
diffracted intensity; we measure the angular widths of these
local intensity maxima, from which we determine the mean
dislocation density inside the blocks and estimate the pre-
vailing type of the dislocations in the blocks.

The paper is organized as follows. In the first part, we
review the “conventional” �ensemble-averaged� theory of
diffuse scattering based on the Krivoglaz monograph1 and
we apply it for a random set of parallel screw dislocations. In
the second part, we present the results of a Monte Carlo
simulation of a RCI measurement I�r ;Ki� for a random set
of screw and edge threading dislocations perpendicular to the
surface. For the former dislocation type, we compare the
reciprocal-space widths of the local diffraction maxima with
the widths following from the conventional theory. In the
third part, we demonstrate the applicability of the theoretical
approach in estimating the density of threading dislocations
in GaN ELO structures from RCI data.

II. CONVENTIONAL THEORY OF DIFFUSE SCATTERING

In this section, we derive the expression for an ensemble-
averaged Fourier transformation of the MCF. We assume that
the sample is statistically homogeneous and we assume the
two-beam kinematical approximation and a linearly polar-
ized primary radiation. In contrast to standard formulas in
the theory of scattering, we do not restrict ourselves to the
far-field limit. We start from the expression for the amplitude
of the scattered radiation in point r outside the crystal,6

E�r� =
K2�h

4�
�

V

d3r�
eiK�r−r��

�r − r��
e−ih·u�r��eiK̃h·r�

	
iK2�h

8�2 � d2K


Kz
eiK·r�

V

d3r�e−ih·u�r��e−i�K−K̃h�·r�.

�2�

Here, we denoted K=2� /�	�K�, h is the reciprocal-lattice
vector �diffraction vector�, �h is the hth Fourier component
of the crystal polarizability, and V is the sample volume
�assumed in the form of a layer with thickness T, x�,
y�� �−� ,��, z�� �−T ,0��. u�r�� is the random displacement

vector in point r� in the crystal, due to a random set of
dislocations. K
 denotes the component of vector K parallel
to the sample surface, Kz=�K2− �K
�2 is the vertical compo-

nent of K, and K̃h=Ki+h. Figure 1�a� explains the geometri-

cal meaning of vector K̃h.
Substituting the expression for E�r� in Eq. �1� and per-

forming the ensemble averaging, we get an explicit formula
for the MCF, which contains the Fourier transformation of
the correlation function

C�r� − r�� = �e−ih·�u�r��−u�r���� �3�

of random displacement field; this function depends only on
r�−r� due to the statistical homogeneity of the sample. It
can be easily shown that the resulting MCF depends only on
r−r�, i.e., the scattered wave field is statistically homoge-
neous as well. In Eq. �2� and all following expressions, we
assume that the amplitude of the primary radiation is unity.

The intensity J�K� of the plane component of the scat-
tered wave is proportional to the Fourier transformation of
the MCF �see Ref. 6� as follows:

J�K� =
K2Kz

2

4�2 � d2�r
 − r�
���r − r��e−iK·�r−r��. �4�

Substituting Eq. �2� into Eqs. �1� and �4�, we obtain the fol-
lowing after some algebra:

J�K� =
K6��h�2

32�3 � d�CFT�K
 − K̃h
,���S�Kz − K̃hz − ���2,

�5�

where FT denotes the three-dimensional Fourier transforma-
tion and

S�q� = �
−T

0

dze−iqz

is the one-dimensional geometrical factor of a layer with
thickness T. If the crystal is much thicker than the effective
defect size �i.e., than the size of the area, where the correla-
tion function C substantially differs from zero�, the function

Qx

Qz
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K
h

K
h

~
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FIG. 1. Sketch of the diffraction geometry �a� in reciprocal
space and �b� in real space. The meaning of the symbols is ex-
plained in the text.
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S is much narrower than CFT and we obtain the well-known
formula1

J�K� �
K6��h�2

16�2 TCFT�K − K̃h� , �6�

i.e., the reciprocal-space distribution of diffusely scattered
intensity is proportional to the Fourier transformation of the
correlation function C of the random displacement field. The
intensity J can be expressed as a function of the reduced

scattering vector q=K−K̃h=Q−h.

III. INTENSITY OF THE DIFFRACTED WAVE BEYOND
THE ENSEMBLE AVERAGING

The MCF used in the previous section represents per defi-
nition an ensemble-averaged approach. Therefore, in this
section, we cannot use Eq. �6� and we start from the expres-
sion for the non averaged amplitude in Eq. �2�. Using a
displacement field u�r� calculated numerically for a set of
dislocations, their positions and types being defined using a
random-number generator, we obtain the amplitude of the
wave scattered from this particular dislocation distribution.
However, this “brute-force” calculation is extremely time-
consuming due to the numerical calculation of the volume
integral Vd3r� of a very rapidly oscillating function. If we
assume that the divergence of the scattered radiation is small,
the two-dimensional integral d2r
 occurring in the left-hand
expression in Eq. �2� can be calculated using the stationary
phase method7 and we obtain

E�r� =
K2�h

2Khz
eiKh·r�

−T

0

dz�e−i�Khz−K̃hz�z�e−ih·u�r0�. �7�

Here, we have denoted Kh= �Ki
 +h
 ,�K2− �Ki
 +h
�2� the

wave vector with the same in-plane component as that of K̃h,

but with the length K. The vectors K̃h and Kh coincide in the
diffraction maximum. r0= �x− �z−z��tan � ,y ,z�� is the sta-
tionary point, � is the angle between Kh and the external
surface normal, and the x axis is chosen lying in the sample
surface in the scattering plane �see Fig. 1�. Equation �7� is
better suited for a numerical evaluation; however, we have to
examine the validity of the stationary-point approach. In the
numerical simulations based on Eq. �7�, we set z=0, i.e., we
assume that the detector plane coincides with the sample
surface z=0. This simplification has two consequences: �i� In
comparison with the intensity measured by a two-
dimensional detector perpendicular to the diffracted beam,
the simulated intensity distribution is stretched in the x di-
rection by the factor of 1 /cos���, and �ii� in the simulation,
we completely neglect the influence of the divergence of the
diffracted beam on the simulated image. The latter factor
smears the measured intensity distribution, but it does not
affect the widths of local diffraction curves calculated in the
following sections. From a rough numerical estimate, it fol-
lows that the smearing of the intensity distribution I�x ,y� due
to the divergence of the scattered radiation is smaller than
10 �m for sample-detector distances smaller than 10 cm.

Referring to the previous section, there, obtained results
can be reproduced also using the amplitude in Eq. �7� calcu-

lated by the stationary-point method. Performing the en-
semble averaging, we obtain, similar to Eq. �5�, the follow-
ing:

I =
K4��h�2

32�3Khz
2 � d3qCFT�q��S�Khz − K̃hz − qx tan � − qz��2.

�8�

This formula can be used for the calculation of the diffrac-
tion curve I�	
i�, since the angular deviation 	
i of the
primary beam from the diffraction maximum determines the

deviation Khz− K̃hz. For a very thick crystal, this intensity has
the limiting value

I →
K4��h�2T

16�2Khz
2 � d2q
CFT�q
,Khz − K̃hz − qx tan � − qz� .

�9�

Comparing this expression with Eq. �6�, we find that the
diffraction curve calculated by the stationary-point approach
is an integral of the reciprocal-space distribution of the scat-
tered intensity �determined by CFT�q�� over the Ewald
sphere, the position of which is determined by the angular
deviation 	
i. In Fig. 1�a�, this Ewald sphere is denoted by
the dashed line.

In the next section, we show that, in the case of screw
dislocations perpendicular to the sample surface, the correla-
tion function C�r−r�� does not depend on the vertical coor-
dinates z, z�. Then, CFT�q��CFT�q
���qz� and the diffraction
curve calculated by the stationary-phase method is

I →
K4��h�2T

8�Khz
2 � dqyC

FT� �Khz − K̃hz�
tan �

,qy� . �10�

Therefore, the intensity calculated by the stationary-point
method is the same as the result of the conventional ap-
proach integrated over the qy coordinate perpendicular to the
scattering plane.

Summarizing, the stationary-point method and a subse-
quent ensemble averaging yield comparable results to the
conventional approach. If the ensemble averaging cannot be
performed, we can use Eq. �7� as an outgoing point for a
Monte Carlo simulation, providing the diffracted intensity
beyond the application field of the ergodic hypothesis.

IV. RANDOM SET OF PARALLEL SCREW DISLOCATIONS

We will apply the above approaches for a random set of
straight screw dislocations perpendicular to the sample sur-
face. These dislocations occur, for instance, in epitaxial hex-
agonal GaN�0001� layers8 �threading dislocations�. The total
displacement field u�r� is a superposition of the displace-
ment fields v
�r� of individual dislocations

u�r� = �

=↑↓

�
R

v
�r − R� , �11�

where R are the random dislocation positions. The index 

denotes the dislocation types; in our model, we assume two
types of screw dislocations with the Burgers vectors bscrew
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pointing up or down. In the following, we restrict to sym-
metric diffractions having the diffraction vector h perpen-
dicular to the surface. Since the displacement field enters all
the formulas for the intensity only in the product h ·u, only
the vertical component of v
 matters. Theoretical consider-
ations in Refs. 9 and 10 showed that this component is not
affected by the surface relaxation of internal stresses, and the
formula for the displacement is the same as in an infinite
crystal:

h · v↑↓�r� = � n arctan�y/x� . �12�

Here, we have used the fact that the length of the Burgers
vector of a screw threading dislocation in a hexagonal GaN
is equal to the lattice parameter c and the length of the dif-
fraction vector is h	hz=2�n /c, where n is the diffraction
order �we assume the diffraction �000n��. The displacement
field does not depend on the vertical coordinate z.

In Ref. 11, the diffuse scattering from threading screw
dislocations has been dealt with using the conventional
theory and explicit formulas have been found for the corre-
lation function. Based on the theoretical approach in Ref. 12,
one obtains the following for the symmetric diffraction
�0004�:

C�r
� = exp�− T�r
�� , �13�

T�r
� = ��Rc
2 for �r
� � Rc

��r
�2�3�r
�2

Rc
2 − 2 + 8 ln

Rc

�r
�
� for �r
� � Rc, �

where  is the dislocation density and Rc is the so-called
cutoff radius, which is usually chosen as Rc=1 /�. By de-
riving Eq. �13�, no correlation in the dislocation positions
was assumed. Using this expression for C and Eq. �5�, we
have calculated the reciprocal-space intensity distribution
J�q�. Since this correlation function C does not depend on z,
the function J�q� exhibits a narrow streak in reciprocal space
parallel to the sample surface. The full width at half maxi-
mum �FWHM� of the streak along qz is inversely propor-
tional to the layer thickness T. The intensity integrated over
qy

��qx� =� dqyJ�q
,qz = 0�

is shown in Fig. 2. In Fig. 2, only the diffuse part of the
scattered intensity is plotted; the coherent part of the dif-
fracted intensity corresponds to the constant asymptotic
value of lim�r
�→�C�r
�. The diffuse part of the scattered in-
tensity is, therefore, proportional to the Fourier transforma-
tion of the difference C�r
�−lim�r
�→�C�r
�. Since the distri-
bution of the scattered intensity along qz is very narrow, the
function ��qx� is proportional to the diffraction signal mea-
sured by an open detector. In agreement with the theoretical
analysis in Ref. 13, the integrated intensity ��qx� drops as-
ymptotically as qx

−3. The FWHM along qx is proportional to
�; the shape of the curve sensitively depends on the choice
of Rc �see Ref. 11, for details�.

The simulation of the scattered intensity without perform-
ing the ensemble averaging is based on Eq. �7�. Figure 3�a�
shows the real-space intensity distribution from a single
screw dislocation lying in a layer with the thickness T
=100 �m perpendicular to the surface. The intensity was
calculated in symmetric 0004 diffraction, with the angular
deviation of 0.01° of the primary beam from the diffraction
maximum. The xy plane of the picture coincides with the
sample surface. The intensity maximum from a single screw
dislocation has a horseshoe form. Its end points are the pro-
jections of the intersection points of the dislocation line with
the upper and lower layer interface in the direction of the
diffracted beam. Figure 3�b� shows an intensity distribution
calculated for N=100 screw threading dislocations in the
square 200�200 �m2 for the angular deviation of 0.01°.

Using a random generator, we have generated a set of
screw dislocations with random positions and have randomly
chosen two directions of their Burgers vectors �bscrew↑ ↓ �.
We have assumed that the dislocation positions are com-

FIG. 2. Integrated reciprocal-space intensity distribution ��qx�
of diffuse scattering from vertical screw dislocations in a
�0001�GaN layer, with dislocation density =2.5�107 cm−2 and
symmetric diffraction 0004. In the inset, the asymptotic qx

−3 behav-
ior of the intensity is demonstrated.

FIG. 3. Real-space distribution of the intensity diffracted from a
GaN layer with a single screw dislocation perpendicular to the sur-
face: �left� the dislocation crosses the sample surface in point �0,0�
and �right� the intensity distribution from randomly displaced 100
dislocations. Symmetric diffraction 0004, layer thickness T
=100 �m, and angular deviation of the primary wave from the
diffraction position was 0.01°. The scattering plane �i.e., the com-
mon plane of the primary and scattered wave vectors� is parallel to
the x axis.
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pletely non correlated and both bscrew↑ and bscrew↓ disloca-
tions have the same density. We have used N=104 disloca-
tions distributed randomly in a square �x ,y�� �−L /2,L /2�,
L=200 �m; i.e., the density of both dislocation types to-
gether was =2.5�107 cm−2. Using this random set of dis-
locations, we have calculated the intensities I�r ;Ki�. Then,
we have simulated a RCI experiment, calculating the local
diffraction curves obtained by numerical integration over a
set of randomly placed squares �virtual pixels� with the size
D�L. We have also determined their FWHMs �
i and the
relative positions 	
i max of their maxima with respect to the
diffraction maximum of an ideal layer.

Figure 4�a� shows examples of the local diffraction
curves; by increasing D, the fluctuations of the resulting in-
tensity decrease. In Fig. 4�b�, we have plotted �
i and
	
i max for various values of D. The value of �
i obtained
for D=L is nearly equal to �qx /h, where �qx is the FWHM
of the intensity distribution J�qx� calculated by using the con-
ventional approach. Therefore, the value of L chosen is large
enough so that the scattered intensity integrated over the en-
tire L�L area is nearly ensemble averaged. By reducing the
integration area D�D, the “intrinsic” fluctuations of the ran-
dom values �
i and 	
i max obtained from various integra-
tion areas increase. However, the centroid of the points
�	
i max,�
i� still well represents the ensemble-averaged
values, unless D is comparable to or smaller than the mean
distance between the dislocations, 1 /�=2 �m in our case.
If this distance is comparable to or even larger than D, some
integration areas D�D contain no dislocations and their dif-
fraction curves are narrower. This is the reason why, for
small D, the relative amount of integration areas with nar-
rower diffraction curves increases. The distribution of the
FWHM values �
i calculated for various pixel sizes D and
various dislocation densities  follows also from Fig. 5,
where we have plotted the numbers of local diffraction
curves with the given �
i. From Fig. 5, it is obvious that the

relative width of the �
i distribution decreases with increas-
ing D and it is almost independent of the dislocation density.

In Fig. 6, we compare the diffraction curve ��qx� ob-
tained by the ensemble averaging �full line� with the diffrac-
tion curve I�qx� obtained by the Monte Carlo simulation
�points�; the latter was calculated by the integration of the
diffracted intensity over the whole L�L area. In the latter
curve, we used the formula qx=h	
i, which connects the
angular deviation with the position in reciprocal space. This
formula holds in a symmetric diffraction only. Obviously,
intensity fluctuations are still present; however, the FWHMs
of both curves coincide, which can be considered as a proof
of the applicability of the stationary-phase method.

V. RANDOM SET OF EDGE THREADING DISLOCATIONS

It is well known from literature8 that epitaxial hexagonal
GaN�0001� layers, except for the screw threading disloca-
tions, also contain edge threading dislocations with the Bur-

FIG. 4. Local diffraction curves obtained by a Monte Carlo simulation of �a� the diffracted intensity for various sizes D of the integration
area and �b� the FWHMs and positions of maxima of the diffraction curves calculated for various D’s. The dashed lines in �b� denote the
FWHM and maximum position of the ensemble-averaged diffraction curve. In both panels, the size of the definition area was L=200 �m,
the dislocation density was =2.5�107 cm−2, and we used symmetric diffraction 0004.

FIG. 5. Relative number of local diffraction curves with a given
FWHM �
i calculated for two densities  of screw threading dis-
locations and various pixel sizes D. The curves are shifted vertically
for clarity.
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gers vectors bedge= 1
3 �112̄0� parallel to the surface, and mixed

dislocations with the Burgers vectors bmixed=bscrew+bedge.
The density of mixed dislocations exceeds the density of the
screw threading dislocations by approximately one decade.
The displacement field of a mixed dislocation can be ex-
pressed as a superposition of pure edge and screw compo-
nents; in this section, we will investigate only the diffuse
scattering from the edge components.

Since, in an infinite medium, the displacement field of a
straight edge dislocation is perpendicular to the dislocation
line, no diffuse x-ray scattering would occur in an infinite
crystal. One can expect that the edge threading dislocations
will affect the diffracted intensity in a symmetric diffraction
only due to the surface relaxation of internal stresses, which
gives rise to a small but nonzero component of the displace-
ment field parallel to the dislocation line,

vz�r� =
x�bedge

2��1 − ��
z + 2r�� − 1�

r�r − z�
, �14�

where � is the Poisson ratio �we neglect the elastic aniso-
tropy� and x is the coordinate parallel to bedge.

9,10 Diffuse
scattering from threading edge dislocations in a symmetrical
diffraction is much weaker than the diffuse scattering from
screw dislocations, even for a much larger density of the
edge threading dislocations.

It is practically impossible to calculate the reciprocal-
space distribution J�q� of the scattered intensity for edge
threading dislocations using the conventional approach, since
such a calculation would be extremely time-consuming. To
our knowledge, such a calculation has not been performed
yet. In order to assess the contribution of the edge disloca-
tions to the intensity diffracted from an epitaxial GaN layer,
we have performed a Monte Carlo simulation analogous to
that used for the screw dislocations, for a random set of 104

edge dislocations in the square L�L �L=200 �m�. In the
calculation, we have assumed three possible azimuthal direc-
tions of bedge occurring with the same probability. Figure
7�a� shows the resulting diffraction curve I�	
i� in the sym-

metrical 0004 diffraction averaged over the whole square; for
the same dislocation density, the curve is approximately
three times narrower as that for the screw threading disloca-
tions. In Fig. 7�b�, the tails of both diffraction curves are
compared. The intensity diffusely scattered from edge
threading dislocations drops approximately as qx

−2, while for
the screw threading dislocation, the intensity decreases
roughly as qx

−3. This difference in the slopes of the
asymptotic parts of the diffraction curves makes it possible
to asses the prevailing influence of the screw and edge com-
ponents of the threading dislocations.

The FWHMs �
i of the diffraction curves I�	
i� for
screw or edge threading dislocations are proportional to �
as follows:

�
i = �� .

From the conventional method �for the screw dislocations�
and from the Monte Carlo simulations �for the edge disloca-
tions�, we determined the coefficient � to be �screw=2.2
�10−6 deg cm and �edge= �7.8�0.2��10−7 deg cm. The lat-
ter numerical value was determined from a set of simulations
with various microscopic distributions of the edge disloca-
tions.

VI. EXPERIMENTS

We have used the theory above for the microdiffraction
imaging �RCI� of ELO structures on a c-plane GaN sample.
The sample was grown as follows. First, a GaN seed layer of
two 2 �m thickness has been grown by a standard metal-
organic vapor deposition �MOCVD� method. Then, a mask
was deposited by a plasma-enhanced chemical vapor depo-
sition of SiO2, followed by a conventional photolithographic
patterning. The periodic stripe pattern of 40 �m periodicity
contained stripes of 5 �m broad windows oriented along the

�11̄00� direction. The lateral overgrowth has been performed
by MOCVD at 1270 °C growth temperature in a two step
process, changing the NH3 flow f�NH3� in order to influence
the lateral growth velocity �900 s with f�NH3�=1 l /min and
2700 s with f�NH3�=3.6 l /min�. We achieved the wing
width of 5.9 �m. The ELO structure is schematically
sketched in Fig. 8.

FIG. 6. The ensemble-averaged diffraction curve ��qx� �full
line� and the diffraction curve obtained by the Monte Carlo simu-
lation I�qx� �points� using D=L. All the other parameters are the
same as in Fig. 4. The inset shows the diffraction curve in a log-log
representation.

FIG. 7. �a� The diffraction curve of a random set of screw
threading dislocations �full points� and edge threading dislocations
�empty points� obtained by a Monte Carlo simulation, with 104

dislocations randomly distributed in a square 200�200 �m2. In
�b�, the tails of the curves are compared.
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X-ray RCI experiments have been performed at the ID19
beamline for imaging and high resolution diffraction at the
ESRF in Grenoble, France. A wide x-ray beam with photon
energy of 10.07 keV illuminated a macroscopic part of the
sample. The diffracted beam was recorded by a charge
coupled device camera with an array of 2048�2048 pixels
of 1.4 �m size. By rotating the sample through its 0004
Bragg position, a sequence of digital topographs has been
recorded providing simultaneously about 4�106 local rock-
ing curves, each corresponding to the diffraction profile from
an individual microsized sample surface area. The measured
intensity I�x ,y ,�� is a function of two coordinates—x
�across the ELO stripes� and y �along the ELO stripes� and of
the angular position � of the sample �	�		
i�.

In Fig. 9, we show an individual rocking curve I�x
=const,y=const,�� of a single pixel of an ELO wing. The
wing volume gives rise to a strong and narrow Bragg peak
shifted by its tilt angle with respect to a second lower peak,
which stems from the diffraction from the underlying GaN
nucleation layer below the oxide mask. In comparison, we
show in the same figure the rocking curve averaged over the
entire sample surface. Here, we observe the central peak cor-
responding to both the window region and the nucleation
layer, at two side maxima corresponding to the wing areas.
The profile of the wing peaks integrated over the sample
surface is affected by the tilt variation of the wings and by
contributions of possibly several individual grains in the
wings �consisting of the local tilt, size broadening, and by
diffuse scattering from dislocations�. This averaged rocking
curve corresponds to the conventional double-crystal rocking
curve of this sample region.

The mosaic structure of the ELO pattern follows from
Fig. 10, where we have plotted the diffracted intensity

I�x ,y=const,��. Because of the angular tilt of the wing re-
gions with respect to the central window part, the corre-
sponding wing maxima are shifted along the angular � axis.
In the enlarged part of the I�x ,y=const,�� intensity distribu-
tion �the right panel of Fig. 10�, the stripes of the ELO struc-
ture are clearly visible.

VII. ANALYSIS OF THE EXPERIMENTAL DATA

In order to conclude on the dislocation density individu-
ally from the wings and the window regions in a representa-
tive way for the macroscopic sample, we carried out a statis-
tical analysis of the full set of the rocking curves by drawing
the two-dimensional histogram of the local rocking-curve
width �
i versus their local maximum positions 	
i in Fig.
11. In Fig. 11, the contributions from the window and both
wings can be easily separated by its different mean Bragg
positions. Further, the contributions of two different main
grains within the wings can be identified. Also here, the tilt
between the grains, as far as possible, prevents the mixing of
influences of small angle grain boundaries and peak distor-
tion due to dislocations on the peak broadening by this pro-
cedure.

Let us consider the histogram in Fig. 11 in more detail.
The central maximum in Fig. 11 corresponds to the window
regions that are not misoriented with respect to the GaN

GaN

oxide maskwindow ELO wings

x

y

FIG. 8. Sketch of a GaN-ELO structure.

FIG. 9. The rocking curve of an individual pixel of an ELO
structure �the pixel position corresponds to the ELO wing �points��
and the rocking curve of the whole sample obtained by the averag-
ing of the rocking curves of individual pixels �full line�.

FIG. 10. The intensity distribution I�x ,y=const,�� measured by
the RCI method. One central and four side intensity maxima belong
to each ELO stripe. In the enlarged part of the distribution �right
panel�, the stripes of the ELO structure are clearly visible.

FIG. 11. Two-dimensional histogram of the angular positions
	
i max and FWHMs �
i of the local diffraction curves of indi-
vidual pixels.
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nucleation layer �	
i=0�. The two maxima on each side of
the main peak in Fig. 11 indicate that, in this sample, the
ELO wing in a given y position contains, in average, two
grains with the misorientations of 	
i=0.25° and 0.36°, re-
spectively. These two grains correspond to two side maxima
on each side of the averaged rocking curve in Fig. 9�b�.

The broadening of the central window peak along the ab-
scissa indicates the macroscopic sample curvature in the il-
luminated area. The additional broadening of the wing peaks
can be ascribed to the statistical distribution of the grain tilts,
as can be seen in the I�x=const,y=const,�� intensity map in
Fig. 10. The tilt fluctuation is smaller for the grain at smaller
tilt angles than at larger tilts. The width of the peaks in the
histogram along the ordinate �i.e., along the �
i axis� is
mainly caused by fluctuations of the local dislocation den-
sity; the influence of the intrinsic FWHM fluctuations as
shown in Figs. 4�b� and 5 is at least ten times smaller. How-
ever, undisputed, we observe a remarkable difference in the
mean half-widths of the wings compared to the window re-
gion.

From the averaged FWHMs �
i of the rocking curves
�i.e., on the position of the maximum in Fig. 11 on the �
i
axis�, we can determine the mean dislocation density  in the
window and wing regions. In the previous section, we have
shown that the width of the rocking curve is proportional to
�. However, the proportionality coefficient � is about three
times larger for the screw than for the edge components of
the threading dislocations. From the histogram in Fig. 11
alone, it is not possible to distinguish between the two com-
ponents, but we can determine the upper limits of their den-
sities. In the window region, the maximum possible disloca-
tion densities would be smaller than screw

window=1.0
�109 cm−2 and edge

window=1.0�1010 cm−2, while in the wings,
the measurements give evidence of the reduction of the
maximum dislocation densities to screw

wing =8.1�107 cm−2 and
edge

wing=8.2�108 cm−2.
The prevailing dislocation type can be estimated from the

asymptotic part of the rocking curve; in the case of screw
threadings, the intensity drops as 	
i

−3, while for edge
threadings, it drops as 	
i

−2. We have averaged the measured
local diffraction curves in several 10�10 �m−2 areas. The
size of such an area is large enough in order to include a
sufficient number of dislocations, but this area contains only
one or few individual grains; the diffraction maxima of indi-
vidual grains can be easily identified. In Fig. 12, we have
plotted the outermost tails of several averaged curves from
the wing region �i.e., the diffraction curves of single grains in
the wing region with the largest tilt�. In Fig. 12, the back-
ground has been subtracted from the measured intensity and
the zero of the 	
i axis has been shifted to the position
	
i max of the outermost maximum. From Fig. 12, it follows
that, in our sample, the slopes of the diffraction curves are
different in different grains and they lie approximately be-
tween 2 and 3, so that both screw and edge components of
threading dislocations are present in the sample. The avail-
able experimental data does not make it possible to deter-
mine reliably the densities of individual dislocation types.
Since the coefficient �screw is approximately three times
larger than �edge and the slopes of the intensity tails of vari-
ous wing regions vary from −2 to −3, we can conclude that

in some wing regions, the density of edge threading disloca-
tions can exceed that of screw dislocations by approximately
a decade.

VIII. DISCUSSION

In contrast to common x-ray diffractometry, the RCI tech-
nique allows us to distinguish the signals coming from indi-
vidual grains of a mosaic structure. Since the irradiated
sample area is very large compared to the grain size, the RCI
data allow us to obtain statistically averaged parameters of
the mosaic grains. Such a statistical averaging is hard to
achieve by means of a scanning microdiffraction, since a
successive measurement of many grains by a very narrow
primary beam would be very time-consuming and practically
impossible.

The RCI technique makes it possible to determine the
FWHMs of the rocking curves of individual grains and the
positions of the intensity maxima, from which we can deter-
mine the averaged FWHM and the corresponding dislocation
density in the grains, as well as the statistical distribution of
the grain tilts. In a conventional x-ray diffractometry tech-
nique, the diffracted intensity �not the FWHMs� is averaged
over the statistical ensemble so that this value of the FWHM
depends mainly on the misorientations of individual grains.

The interpretation of the angular width of a diffraction
maximum of a single grain is based on the assumption that
its FWHM is caused by the diffuse scattering from disloca-
tions and that it is not affected by the grain form factor �the
size-broadening effect�. If we denote the FWHM due to the
dislocations as ��, this assumption is valid if

�� �
2�

hs
=

c

ns
, �15�

where h=2�n /c is the diffraction vector, s is the mean grain
size, c is the c-lattice parameter, and n is the diffraction
order. The mean grain size of the larger, more misoriented
grains, which we have taken for our calculations, can be
estimated to be larger than s=4 �m so that the additional
broadening of the peaks is less than 10%. Correcting the
peak widths to this effect, we obtain the dislocation densities
reduced by approximately 20%, i.e., does not affect the order

FIG. 12. Diffraction curves of several wing regions in a log-log
representation, averaged over 10�10 �m2 areas.
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of magnitude of our estimations. In order to analyze this
broadening in more detail, a series of measurements with
longer diffraction vectors would be necessary, but this was
not achievable within our experimental setup.

IX. CONCLUSION

The paper relates the microscopic and macroscopic theo-
retical and experimental approaches to x-ray diffraction from
randomly distorted single crystals. Therefore, we have devel-
oped a theoretical approach describing diffuse x-ray scatter-
ing from single crystals containing randomly distributed dis-
locations without performing the averaging over a statistical
ensemble of the dislocation positions. This approach, which
is based on a numerical Monte Carlo simulation, allows us to
analyze the results of microdiffraction imaging methods, in
which the pixel size is smaller or comparable to the mean
defect distance. In this case, the data evaluation based on
ensemble averaging cannot be simply supposed to be suc-
cessful to represent the true experimental situation.

By combining the Monte Carlo simulation method with
the rocking-curve imaging, we obtain a detailed characteriza-
tion method of the crystalline perfection in the micrometer
scale, which allows us to link the experimental microdiffrac-
tion results to the results of conventional x-ray diffractom-
etry.

In the case of laterally structured samples, such as ELO
structures it seems to be the only method that allows us to
distinguish the influence of the local ELO wing tilts, the
grain splitting in the wings, and the dislocations in the
grains. Further, a statistical analysis of measured data en-
ables us to independently determine the average misorienta-
tion of the grains and their fluctuations, and the estimation of
the prevailing dislocation types �screw and edge threading
dislocations� and their average densities within the grains.
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