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We have studied by quantum Monte Carlo simulations the low temperature phase diagram of a mixture of
isotopic, hard core bosons, described by the t-Jz-J� model, with J�=�Jz. The coexistence of superfluid
hole-rich and insulating, antiferromagnetically ordered hole-free phases is observed at sufficiently low hole
density for any ��1. A two-component checkerboard supersolid phase is not observed. The experimental
relevance and possible broader implications of these findings are discussed.
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Impressive scientific and technological advances in trap-
ping cold atoms in optical lattices1–4 �OLs� render it now
feasible to create in the laboratory remarkably close experi-
mental realizations of model many-body systems long
thought of as of mostly academic interest. An example is the
isotopic two-component Bose mixture, providing a rich play-
ground for many-body physics due to the various phases that
it is expected to display, including a number of physically
distinct superfluid phases.5,6 The ongoing experimental in-
vestigation of this system justifies the theoretical exploration
of its phase diagram not only to help in the interpretation of
experimental data but also for the more general purpose of
guiding the search for novel phases of strongly correlated
quantum many-body systems.

In this work, we model a mixture of two different species
of hard core bosons of equal masses via the two-dimensional
boson t-Jz-J� model:7

Ĥ = − t�
�ij�

�âi
†âj + b̂i

†b̂j + H.c.�

−
1

2
�Jz�n̂im̂j + m̂in̂j� + J��âi

†b̂j
†âjb̂i + H.c.�� . �1�

A square lattice of N=L�L sites is assumed, with periodic
boundary conditions. Two species �A and B� of bosons of

equal masses are defined, for which âi
†, b̂i

† are creation op-

erators, whereas n̂i= âi
†âi, m̂i= b̂i

†b̂i are number operators. The
sum in Eq. �1� runs over all pairs of nearest-neighboring
sites.

Hamiltonian �1� is defined in the subspace in which no
double occupation of sites is possible. The parameters of the
model, namely, t, Jz, and J�, are all non-negative; hence-
forth, we shall take t to be our energy scale and set it equal to
1. We set Jz=J and J�=�J, � expressing the anisotropy
between the “antiferromagnetic” coupling J, represented by
the second term in Eq. �1�, and the “ferromagnetic” exchange
coupling J�, represented by the last term in Eq. �1�. In
this work, we focus on the parameter region in which both �
and J are less than 1. The hole density is defined as
h�1− �NA+NB� /N, where NA �NB� is the number of particles
of species A �B�. All throughout, we assume NA=NB�N /2,

i.e., the system has no net “magnetization.” The isotropic
version of Eq. �1� �i.e., with �=1� can be derived from the
two-component isotopic Bose-Hubbard model in the limit of
large on-site repulsion and small hole concentration;7–9 in an
optical lattice, anisotropy could arise from additional longer-
ranged �e.g., dipolar� interactions among particles. At exactly
half-filling �i.e., no holes�, Eq. �1� can also be cast in the spin
language; for example, it is isomorphic to a spin-1 antiferro-
magnetic Heisenberg model with uniaxial single-ion aniso-
tropy, possibly relevant to some magnetic systems.10

The fermion counterpart of Eq. �1� with �=1 is known as
the t-J model11–13 and has been the subject of a wealth of
theoretical work because of its posited connection to high-
temperature superconductivity �HTS�. In spite of an enor-
mous effort now spanning almost two decades, the phase
diagram of the t-J model remains relatively poorly under-
stood. Basic questions, such as the presence of a supercon-
ducting ground state, are yet largely unanswered essentially
due to the lack of a sufficiently robust theoretical method for
strongly correlated fermions. On the other hand, the case of
Bose statistics �Eq. �1�� can be studied by quantum Monte
Carlo simulations, yielding essentially exact numerical re-
sults. For this reason, some studies have used Eq. �1� as a
starting point to investigate physical effects such as stripe
formation, also believed to be relevant to HTS.14

In this work, we study the low-temperature phase diagram

of Ĥ as a function of the hole density h for ��1 and differ-
ent values of J. Specifically, we consider the physically real-
istic region J�1 for which the isotropic version of Eq. �1�
displays no phase separation, as shown in Refs. 7 and 8. Of
particular interest is the effect of anisotropy on the phase
diagram of Eq. �1�, chiefly with regard to phase separation,
superfluidity, and the possible presence of a two-component
checkerboard supersolid phase. We use the worm algorithm
�WA� in the lattice path-integral representation15 to compute
thermal expectation values of physical operators; the calcu-
lation requires a relatively straightforward extension of the
WA to allow for the simulation of physical processes associ-
ated with the exchange term of Eq. �1�.

In the absence of holes �i.e., h=0�, Hamiltonian �1� does
not differentiate between Bose and Fermi statistics; for
��1, the system features a transition �at finite temperature
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TN� to an antiferromagnetically ordered state, in which a par-
ticle of type A�B� is preferentially surrounded by particles of
type B�A�.16 At �=1, it is TN=0, but the ground state is still
ordered.17 For ��1, the system is superfluid �SF� below the
Berezinskii-Kosterlitz-Thouless �BKT� transition tempera-
ture TBKT but with no net flow of matter as the flow of one
component is exactly compensated by the counterflow of the
other.18

The presence of mobile holes is generally expected to
result in a reduction of the antiferromagnetic order as holes
scramble it with their motion, as well as to give rise to a SF
phase of holes at low temperature; of interest is the possible
existence of a supersolid phase, in which both types of or-
ders may coexist in a single homogeneous phase.

The occurrence of checkerboard or antiferromagnetic or-
der can be ascertained by numerical simulations of the stag-
gered density order parameter ��h�=	S�� ,��, where S�q�
= �	̂q	̂−q�, with

	̂q =
1

N
�

i

eiq·ri�n̂i − m̂i� , �2�

and where ri is the position of the ith lattice site, and �¯�
stands for thermal expectation value. The SF density 	S�h� of
the fluid of holes is computed using the usual “winding num-
ber” estimator.

We discuss the isotropic ��=1� case first. As shown in
Refs. 7 and 8, the system features a homogeneous ground
state for any hole concentration for J
1.5. The AF order
that exists in the undoped system at T=0 is suppressed by an
arbitrarily small hole concentration. The underlying mecha-
nism is simple: holes break the SU�2� symmetry of the un-
doped state in favor of the XY plane. We have explicitly
verified this conclusion by performing finite-size scaling
analysis of ��h�. This physical result is analogous to that
observed for a system of lattice hard core bosons with a
nearest-neighbor repulsive interaction potential of strength
V=2t, for which doping away from half-filling destroys the
checkerboard order.20 This points to a significant difference
between model �1� with Fermi and Bose statistics. In the case
of the fermion t-J model, the AF is reduced but not com-
pletely eliminated by hole doping21 since the SU�2� spin
symmetry is preserved.

The ensuing, uniform hole gas is SF at T=0 and features
a BKT transition to a normal fluid �NF� at finite temperature.
The transition temperature Tc can be obtained using the well
known renormalization flow and the universal jump of the
superfluid density 	s at Tc.

22 Results for the case J=0.4 are
shown in Fig. 1.

A richer phase diagram occurs in the anisotropic
���1 case�. The ground state energy per hole is defined
as23,24

e�h� =
E�h� − E�0�

Nh
, �3�

where E�h� is the total energy of the system in the presence
of Nh holes. A minimum of e�h� at a finite hole density hcr

signals the separation of the system into two phases at

h�hcr, one with no holes and the other with hole density hcr.
Figure 2 shows e�h� as a function of hole density and for

different values of the anisotropy parameter �. The value of
J is 0.4. Our numerical results show a minimum for e�h� at a
finite hole concentration hcr��� for any ��1; that is, the
system separates into hole-rich and hole-free phases for hole
doping below hcr��� �with hcr���→0 as �→1�.

The hole-free phase features AF order �and obviously no
hole-based superfluidity�, whereas the hole-rich phase is SF
but not antiferromagnetically ordered. The occurrence of PS
in the anisotropic model can be understood based on the
“string” picture.25 In the anisotropic model, a hole leaves
behind in its motion a string of bosons of either species
displaced by one lattice site. Thus, separation of the system
in hole-rich and hole-free phases becomes energetically ad-
vantageous at low hole density as a way to limit the damage
caused by the holes to the antiferromagnetic order. In the
�→1 limit, however, quantum fluctuations associated with
the J� term of Eq. �1� “mend” the damage due the hole
motion, restoring local order.26 These considerations are
clearly independent of quantum statistics, i.e., they ought to
apply to the fermion models as well.
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FIG. 1. �Color online� Superfluid transition temperature of the
uniform hole gas in model �1� with �=1 �i.e., isotropic� as a func-
tion of hole density h. The filled circles show numerical estimates
of Tc �in units of t� determined as explained in the text. The dotted
line at high h is the theoretical behavior predicted by the theory of
the dilute Bose gas �Ref. 19�. Here, J=0.4.
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FIG. 2. �Color online� Ground state energy per hole e�h� �de-
fined in Eq. �3�� for Hamiltonian �1� as a function of the hole
density h for different values of the anisotropy parameter � �dia-
monds�. The boxes show estimates of e�h� for the isotropic ��=1�
case. The dotted lines are polynomial fits to the data. Numerical
calculations were carried out on a 12�12 lattice. Here, the tem-
perature T=0.025t and J=0.4.
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The separation of the two phases can be visually observed
by examining configurations generated at low T by our algo-
rithm on lattices of sufficiently large size, e.g., N=4096 sites
�see Fig. 3�. We have consistently observed this effect for
J�1 and for as little as 1% anisotropy. Based on this nu-
merical evidence, we argue that PS will occur in the T→0
limit at sufficiently low hole concentration for arbitrarily
weak anisotropy.

At finite temperature, entropy favors mixing of the two
phases and the occurrence of a homogeneous phase. Because
both SF and AF transition temperatures are finite, an obvious
question is whether a homogeneous phase featuring both
types of order, namely, a “two-component checkerboard su-
persolid” �i.e., a superfluid gas of holes inside a checker-
board quantum antiferromagnet formed by the two compo-
nents�, may exist at finite temperature.

Our simulations have not yielded any evidence of such a
checkerboard supersolid phase. On raising the temperature,
the system evolves into either a nonsuperfluid antiferromag-
net �NF� or into a SF with no antiferromagnetic order. We
find that the region where all transition lines come close to
each other is extremely hard to study since all standard finite
scaling techniques fail. In Fig. 4, we sketch the simplest
phase diagram consistent with our data, also the one which
we find most plausible; in this scenario, NF-SF and NF-AF
lines meet the coexistence dome at one point, close to its
maximum. However, at this time, we cannot exclude other
scenarios. For example, the AF line may feature a tricritical
point, and the BKT transition may be terminated at the first-
order AFM line. The possible crossing of the second order

AF and BKT lines, giving rise to a small region of existence
of a two-component checkerboard supersolid sitting over the
phase separation dome, has been thoroughly investigated but
not observed in any of our simulations.

There are obviously interesting similarities between the
phase diagram schematically represented in Fig. 4 and the
basic phase diagram of HTS. In the case of the model inves-
tigated here, anisotropy is crucial in stabilizing the AF phase,
which disappears upon doping in the fully isotropic model,
as shown above. Anisotropy might also play a role in shaping
the phase diagram of the fermion counterpart of Eq. �1�,
deemed relevant to HTS, as assuming a stronger AF coupling
in the z direction may be physically justified by consider-
ations of interplane exchange coupling.27 As mentioned
above, however, in the case of Fermi statistics, AF order is
not completely destroyed by the injection of mobile holes.

The interesting interplay of phases shown in the phase
diagram of Fig. 4 suggests that an experimental system de-
scribed by Eq. �1� may be worth investigating in OLs.
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FIG. 3. �Color� Snapshot of an instantaneous ��-averaged� con-
figuration of the system of a 642-site lattice. Color coding is as
follows: sites that are drawn in red �blue� are occupied by a particle
of type A; the greater the probability, the bigger the size of the
circle; sites that are drawn in black are occupied by holes and both
types of particles with similar probability; the smaller the circle, the
more likely for the site to be empty. Here, J=0.4, J�=0.3, and
h=0.0586 at T=0.025t.

FIG. 4. �Color online� Computed phase diagram of the boson
t-Jz-J� model on the square lattice. The horizontal axis shows hole
concentration and the vertical the temperature. The figure shows
actual Monte Carlo data obtained for J�=0.75, Jz=0.3, but the
same schematic phase diagram is obtained for all values of the
model parameters considered here. The circles represent the
normal-to-antiferromagnetic transition, the triangles show the nor-
mal to superfluid, whereas the boxes show the boundary of the
region in which the coexistence of superfluid and antiferromagnetic
phases is observed. The dashed lines are only meant as a guide to
the eye. Statistical errors are comparable to the sizes of the
symbols.
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