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We demonstrate that there is a strong diamagnetic response of metamaterials, consisting of open or closed
split-ring resonators �SRRs�. Detailed numerical work shows that for densely packed SRRs, the magnetic
permeability ���� does not approach unity, as expected for frequencies lower and higher than the resonance
frequency �0. Below �0, ���� gives values ranging from 0.9 to 0.6 depending of the width of the metallic ring,
while above �0, ���� is close to 0.5. Closed rings have ��0.5 over a wide frequency range independently of
the width of the ring. A simple model that uses the inner and outer current loops of the SRRs can easily explain
theoretically this strong diamagnetic response, which can be used in magnetic levitation.
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Several types of regular materials exhibit diamagnetic be-
havior characterized by an induced magnetic moment oppo-
site to the external magnetic field so that their magnetic sus-
ceptibility � is negative. Most of the natural diamagnetic
materials have very low values of �, of the order of 10−6. The
largest known diamagnetic value of a natural material is that
of pyrolytic graphite which is equal to −4.5�10−4. A strong
diamagnetic response is very important, since it can be used
in magnetic levitation. There are two cases of strong diamag-
netic response. One is that of the superconducting state
which shows �=−1 �or weaker in the mixed state� practically
over all frequencies. The other is that of magnetic metama-
terials to be examined in this work.

Over the last seven years, artificial materials have been
designed and fabricated consisting of an assembly of units
�sometimes called magnetic “atoms”� which exhibit a reso-
nant response to electromagnetic field of appropriate polar-
ization driving thus the magnetic permeability �=1+� to
negative values for a narrow frequency range just above the
resonance frequency.1–3 Given the fact that the magnetic re-
sponse is, in general, a weak v2 /c2 effect,4 it is not unrea-
sonable to expect that � would approach unity away from
the resonance. However, as it can be seen from Fig. 1, this is
not the case. Unusually large values of ��� appear leading to
values of � as low as 0.5. More specifically, there is a fre-
quency regime below the resonance �Fig. 1�a�� extending
over at least 2 orders of magnitude where � stays clearly
lower than one; the larger the width w of the ring �see Fig.
1�, the smaller the value of � is and the wider this frequency
regime is. On the other side of the resonance, there is again a
plateau where � has a value of about 0.5 for the chosen
values of the parameters. This value is independent of the
width w, and it is practically equal to the value of � appear-
ing if the ring is closed �see Fig. 1�b� showing a constant �
clearly less than one over a very broad frequency range ex-
tending over 3 1

2 orders of magnitude�. We point out that the
diamagnetic strength shown in Fig. 1�a� or 1�b� is compa-
rable to that of the superconducting state.

While the resonance region has been studied extensively,
the other diamagnetic regimes have received little
attention.5–7 In this Brief Report, we focus on these regimes
and we explain their main unexpected features. We start with
the approach of Gorkunov et al.,8 according to which its

log10 (a/λ)

R
e

(µ
)

0-1-2-3-4-5

2

1.5

1

0.5

0

(a)

log10 (a/λ)
R

e
(µ

)
0-1-2-3-4-5

2

1.5

1

0.5

0

(b)

log10 (a/λ)

Im
(µ

)

0-1-2-3-4-5

2
1.5

1
0.5

0
-0.5

-1

(c)

log10 (a/λ)

Im
(µ

)

0-1-2-3-4-5

2
1.5

1
0.5

0
-0.5

-1

(d)

FIG. 1. �Color online� Re � vs log10�a /�� obtained by simula-
tions for a periodic assembly of �a� open or �b� closed square me-
tallic rings. The corresponding Im � vs log10�a /�� are shown in
panels �c� and �d�, respectively. The simulations have been done
using the commercial software packet COMSOL MULTIPHYSICS,
which is essentially a finite-element method frequency domain
solver. The complex current distribution was obtained directly from
the simulated field distributions and, averaged over the unit cell,
gave the magnetization �this averaging produces unphysical results
when the wavelength � becomes smaller than the unit cell size as
evidenced by Im ��0�. Using Eq. �4� together with the incident
field H0, we found the effective permeability shown. Unit cell
size is a�a�a�=10�10�2 �m3. Size of the ring is
���=8�8 �m2; its cross section is d�w, where the depth
d=400 nm and the width w takes the values 1 �m �red, solid
curve�, 2 �m �green, dashed curve�, and 3 �m �blue, dotted curve�.
The metal is the Drude-model gold with experimental values for the
plasma frequency, �p=2��2184 THz, and collision frequency,
�	=2��6.5 THz. �Ref. 9�.
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inductance L, its capacitance C, and its resistance R charac-
terize each open ring. For closed rings, there is no capaci-
tance; the mutual inductances Lnm among the rings �which
are periodically placed to form a lattice� are also taken into
account. The final result for � and for open rings is

� = 1 −
B�2

�2 − 
m
2 + i��m

, �1�

where B=�0nA2Q2 /L, n is the concentration of rings, n
=1 / �a2a��, A is the area of each ring, A���−w�2, Q2 /L
= �Leff+

1
3�0nA2�−1, Leff=L+�mLnm, 
m

2 =Q2�0
2, �m=Q2�0,

�0=1 /�LC, and �0=R /L. For closed rings, 
m=0. Notice
that �0nA2= ��0A /a��f1, where �0A /a� is Leff in the sole-
noid limit and f1=A /a2 is the two dimensional filling factor.
Thus, in the limit of close-packed rings,

B �
f1

f2 + f1/3
, �2�

where f2 is smaller than but close to one.
In Fig. 2, we plot � vs log10�a /�� according to Eq. �1�.

We have taken into account that R and L �to a lesser degree�
depend on � because of the skin effect.4 We see that the
resonance region as well as the plateau above are reproduced
fairly well, although the resonance is stronger and sharper
than in Fig. 1�a�. Similarly, the closed ring result is in good
agreement with the simulations data of Fig. 1�b� except of
the final high frequency rise toward one, which we attribute
to the fact that at this high frequency, the wavelength �m in
the medium is comparable to twice the unit cell size; then,
the uniform field assumption, on which the retrieval of �
from the simulation and Eq. �1� is based, breaks down.10

On the other hand, Eq. �1� fails to reproduce the diamag-
netic response below the resonance for the open ring case. To
understand the reason behind this failure, we return to the
simulations and we analyze the current distribution, as
shown in Fig. 3. In case �a�, below the resonance, the oppo-
site flowing currents at the two edges induce a magnetic field

which cancels the external magnetic field inside the metallic
wire. The wider the wire, the more extensive the diamagnetic
volume is and the lower � is. At resonance �case �b��, the
strong clockwise current at the inner edge induces a strong
field which in the inner area of the ring cancels or dominates
over the external field producing thus the possibility of nega-
tive �. Finally, in the plateau above the resonance, the cur-
rent flows clockwise near the outer edge inducing a field
which cancels the external field over the area enclosed by the
outer edge of the ring; this is the reason that the value of � in
this regime is independent of the metallic width w �assuming
constant �� and equal to the closed ring value, since in the
latter case, the current flow is as in case �c� over the entire
diamagnetic regime. The asymmetry of the circular current
in case �c� is due to the superposition of growing linear cur-
rents caused by a electric cut-wire resonance at higher fre-
quency.

To model this more complicated behavior of the open
ring, we introduce a two-loop representation of it sharing the
single capacitance of the gap as in Fig. 4. By defining the

effective inductances L̃1=L1+�mL1,nm, L̃2=L2+�mL2,nm, and

L̃12= L̃21=L12+�mL12,nm, we find using Kirchhoff’s circuit
equations the following matrix relation connecting the cur-
rents I1 and I2 in each loop to the external magnetic field H0,
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FIG. 2. �Color online� Re � vs log10�a /�� according to Eq. �1�
for �a� open rings for the values of the width w=1 �m �red, solid
curve�, 2 �m �green, dashed curve�, and 3 �m �blue, dotted curve�
and for �b� closed rings of any width. The corresponding Im � vs
log10�a /�� is shown in �c� and �d�, respectively. All parameters are
as in Fig. 1.
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FIG. 3. �Color online� Current distribution in the split-ring-
resonator ring �the color or gray level is the azimuthal current den-
sity, the arrows indicate current direction at the edges� for the three
regimes shown in Fig. 1 when the external magnetic field is normal
to the plane of the rings and pointing out of it: �a� In the diamag-
netic regime below resonance, the current is confined near the outer
and the inner edges flowing in the opposite directions enclosing the
metal filled area of the ring trace; �b� at resonance, the current is
mainly confined near the inner surface; �c� above resonance, the
current flows clockwise and essentially at the outer edges of the
metallic ring.
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FIG. 4. Equivalent circuit for an open ring. Loop 1 �2� repre-
sents the current path roughly one skin depth wide along the outer
�inner� edge of the ring. The two loops have a mutual inductance
L12=L21.
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	Z11 Z12

Z21 Z22

	I1

I2

 = i��0H0	A1

A2

 , �3�

where Zii=−i�L̃i− �i�C�−1+Ri, i=1,2, Z12=Z21

=−i�L̃12− �i�C�−1, and A1�A2� is the area enclosed by the
outer �inner� edge of the ring. The permeability � is given,
following Ref. 6, by

� =

1 +
2

3

M

H0

1 −
1

3

M

H0

, �4�

where the average magnetization M is equal to
n�A1I1+A2I2�. In what follows, we shall employ the solenoid
approximation �which is good for close-packed rings, i.e.,
small a�� in order to avoid the tedious lattice sums involved

in the definition of L̃1, L̃1, and L̃12, which just renormalize
parameters but do not qualitatively alter the physical

behavior. According to this approximation, we have L̃1

��0A1 /a�, L̃2��0A2 /a�, and, L̃12= L̃21, L̃12��0A2 /a�.
In Figs. 5�a� and 5�b�, we plot ���� together with the

corresponding contributions from the outer and inner loops,
while in Figs. 5�c� and 5�d�, we plot ���� for the three cases
shown in Fig. 1�a� according to Eqs. �3� and �4�. We see from
Fig. 5�a� that the diamagnetic contribution below resonance
is coming from the outer loop, which prevails over the con-
tribution of the inner loop, which is paramagnetic. At reso-
nance, the inner loop dominates, while the outer loop gives a
negative peak there. Finally, above resonance, the outer loop
gives a constant diamagnetic contribution, while the inner

loop contribution approaches smoothly the value �=1. The
Im ���� �Fig. 5�b�� confirms the predominance of the inner
loop at the resonance frequency. The contribution of the in-
ner loop to Im ���� in the diamagnetic region below reso-
nance is negative, while the total Im ���� is, of course, posi-
tive. This indicates that the outer loop feeds the inner loop
with energy there. For comparison, we calculated the total
���� within the two-loop model for open rings and for the
three cases shown in Fig. 1�a�. The result is shown in Fig.
5�c�, and it is in good agreement with the simulations pre-
sented in Fig. 1�a�. We calculated also, within the two-loop
model, ���� for closed rings, and we found that it is constant
and negative and equal to the high frequency asymptotic
value for open rings; this result is not plotted, since it prac-
tically coincides with those in Figs. 1�b� and 2�b�. Thus, the
two-loop model reproduces the � vs � dependence, as deter-
mined by FEMLAB simulation, as well as all the features of
the current distributions in the various regimes, and provides
a clear explanation for the complicated diamagnetic behavior
of the open rings.

In conclusion, the present work shows that there are five
frequency regions in the magnetic response of open rings.
This behavior can be understood in terms of the outer and the
inner current loops of each ring proposed here: The low fre-
quency regime, ��R /L, exhibits practically no magnetic
response, �=1, because of the resistive damping as expected
for most materials. The second frequency regime,
R /L���1 /�LC, exhibits an unusually strong diamagnetic
behavior �even for metal volume filling ratios as low as 10%�
which is due to the outer current loop, while the inner one
makes a paramagnetic contribution �the two currents are con-
nected along the gap�; the net result depends on the differ-
ence A1−A2 of the areas enclosed by these two loops. The
third regime, ��1 /�LC, is the resonance region, which is
dominated by the inner loop; this presents a design chal-
lenge, since what creates a strong diamagnetic background
below the resonance frequency, namely, a small area inner
loop, makes the resonance weak. The fourth regime,
1 /�LC����c /a, shows again a very strong diamagnetic
response and depends only on the outer loop, being propor-
tional to A1. Finally, in the regime �c /a��, the assumption
of the wavelength �m in the medium being much larger than
the lattice constant a breaks down and both the averaging
procedure employed in the simulations and the description in
terms of a simple effective electric circuit fail.
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FIG. 5. �Color online� �a� Re � vs log10�a /�� for the open SRR
rings with w=1 �m �red, solid curve� together with the contribution
of inner �blue, dotted curve� and the outer �green, dashed curve�
edges; �b� shows the corresponding Im � vs log10�a /�� �red, solid
curve� together with the contribution of inner �blue, dotted curve�
and the outer �green, dashed curve� edges. �c� and �d� show Re � vs
log10�a /�� and Im � vs log10�a /��, respectively, for the three cases
discussed in Fig. 1�a� with ring widths of 1 �m �red, solid curve�,
2 �m �green, dashed curve�, and 3 �m �blue, dotted curve�. These
results were obtained according to Eqs. �3� and �4�.
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