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We introduce a supercell plane wave expansion �SC-PWE� method for the calculation of elastic band
structures of two-dimensional phononic crystal plates. We compute the band structure of solid-solid and
air-solid two-dimensional phononic crystal plates. The air is modeled as a low impedance medium �LIM� with
very low density and very high velocities of sound. We investigate the influence of the constituent materials, of
the plate thickness, and of the geometry of the array on the band structure. We establish the range of validity
of the SC-PWE method in terms of the rate of convergence with respect to the number of plane waves and
contrast in physical properties of the matrix and inclusion materials. We show that for high contrast solid-solid
phononic crystal plates, our SC-PWE method, as other PWE-based methods introduced to date, suffers from
convergence difficulties. In the case of air �modeled as the LIM� holes-solid plates, we demonstrate that the
SC-PWE method leads to fast convergence for a wide range of values of solid physical properties. With these
constituent materials, we find that the largest absolute forbidden bands occur in the band structure of the
phononic crystal plate provided the thickness of the plate is of the order of magnitude of the periodicity of the
array of inclusions. We demonstrate the existence of guided modes in an air-silicon phononic crystal plate
containing a linear defect.
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I. INTRODUCTION

Phononic crystals, also named acoustic band gap �ABG�
materials are composite materials made of two- or three-
dimensional periodic distributions of inclusions embedded in
a matrix. The periodic structure of these composite materials
gives them peculiar properties, in particular, the existence,
under certain conditions, of absolute acoustic band gaps, i.e.,
forbidden bands that are independent of the direction of
propagation of the incident elastic wave.1–4 Absolute band
gaps confer to these artificial materials’ potential applications
as sound insulators or for the filtering and demultiplexing of
acoustic waves.5,6

Earlier studies of bulk phononic crystals, i.e., phononic
crystals assumed of infinite extent along the three spatial
directions, have shown that the bandwidth of the forbidden
band depends strongly on the contrast between the physical
characteristics �density and elastic moduli� of the inclusions
and the matrix, as well as the geometry of the array of inclu-
sions, the inclusion shape, and the filling factor of inclu-
sions.1–4 More recently, various authors have studied theo-
retically the existence of surface acoustic waves �SAWs� lo-
calized at the free surface of a semi-infinite two-dimensional
�2D� phononic crystal.7–10 For this geometry, the parallel in-
clusions are of cylindrical shape and the surface considered
is perpendicular to their axis. Various arrays of inclusions,7,8

crystallographic symmetries of the component materials,9

and also the piezoelectricity of one of the constituent10 were
taken into account. In these studies, the same method of
computation of the SAW band structure was applied. This
method is based on the well-known plane wave expansion
�PWE� method1–4 with SAW explicitly searched as solutions
of the Fourier-transformed equation of propagation, expo-
nentially decreasing along the cylinder direction and by im-

posing the proper boundary conditions on the free surface.
This method initially developed by Tanaka and Tamura7 for
semi-infinite 2D phononic crystals exhibiting a single free
surface was applied to compute the band structures of 2D
phononic crystal plates, with two free surfaces.11,12 For ex-
ample, the symmetric Lamb mode band structures of 2D
phononic crystal plates composed of triangular arrays of W
cylinders in a Si background were calculated.11 More re-
cently, Charles et al.12 reported on the band structure of a
slab made of a square array of Fe cylinders embedded in a
Cu matrix. Nevertheless, no absolute stop bands were re-
ported in these studies. Hsu and Wu13 combined Mindlin’s
plate theory and the plane wave expansion method for the
calculation of the lower dispersion curves in the band struc-
ture of 2D gold-epoxy phononic crystal plates. While accu-
rate, this method, however, is restricted to thin plates. More-
over, Manzanares-Martinez and Ramos-Mendieta have also
considered the propagation of acoustic waves along a surface
parallel to the cylinders in a 2D phononic crystal.14 R. Saini-
dou and Stefanou investigated with the help of the layer-
multiple scattering method, the guided elastic waves in a
glass plate coated on one side with a periodic monolayer of
polymer spheres immersed in water.15 On the experimental
point of view, Wu et al.16 observed high frequency SAW
with a pair of interdigital transducers placed on both sides of
a very thick silicon plate in which a square array of holes
was drilled. Similar experiments were conducted by Bencha-
bane et al. on a 2D square lattice piezoelectric phononic
crystal etched in lithium niobate.17 Zhang et al.18 have shown
the existence of gaps for acoustic waves propagating at the
surface of an air-aluminum 2D phononic crystal plate
through laser ultrasonic measurements.

In this paper, we use a supercell PWE �SC-PWE� method
to calculate the band structure of a 2D phononic crystal plate
of finite thickness along the axis of the cylinders. We high-
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light the differences between 2D bulk phononic crystal dis-
persion curves and the band structure of the phononic crystal
plate. We investigate the influence of the constituent materi-
als, and of the plate thickness, and of the geometry of the
array on the band structure. Furthermore we identify the con-
ditions for convergence of the SC-PWE method in terms of
the contrast in the physical properties of the constitutive ma-
terials of the phononic crystal plate. We focus on 2D
phononic crystal plates made of solid cylindrical inclusions
embedded in a solid material and on arrays of air holes
drilled in a solid matrix. In the case of air holes-solid matrix
phononic crystal plates, we characterize the optimum condi-
tions for the existence of wide absolute forbidden bands
upon variations of the thickness of the plate. Finally, we
demonstrate that removing cylinders in a phononic crystal
plate with a forbidden band to form a waveguide leads to the
existence of guided acoustic modes.

This paper is organized as follows. In Sec. II, we present
the model and, with some details, the method of calculation
of the acoustic band structure of 2D phononic crystal plates.
Several numerical results are then presented in Sec. III con-
cerning solid-solid and air-solid 2D phononic crystal plates.
Section IV contains a discussion of these results and the
main conclusions drawn from this study.

II. MODELS AND METHODS OF CALCULATION

A. Plane wave expansion method for bulk phononic crystals

We first briefly recall the basic principles of the PWE
method used for the calculation of the band structures of
bulk 2D phononic crystals. These composite materials are
modeled as periodic arrays of infinite cylinders of different
shapes �circular, square, etc.� made up of a material A em-
bedded in an infinite matrix B. Elastic materials A and B may
be isotropic or of specific crystallographic symmetry. The
elastic cylinders are assumed parallel to the z axis of the
Cartesian coordinates system �O ,x ,y ,z�. The intersections of
the cylinders axis with the �xOy� transverse plane form a 2D
periodic array and the nearest neighbor distance between cyl-
inders is a. The 2D primitive unit cell may contain one cyl-
inder or more. The filling factor, f i, of each inclusion is de-
fined as the ratio between the cross-sectional area of a
cylinder and the surface of the primitive unit cell.

In absence of an external force, the equation of propaga-
tion of the elastic waves in any composite material is given
as:

��r��
�2ui�r�,t�

�t2 = �
j,m,n

�

�xj
�Cijmn�r��

�un�r�,t�
�xm

� , �1�

where ui�r� , t� is a component �i�x ,y ,z� of the elastic dis-
placement field. The elements Cijmn �i , j ,m ,n=1, . . . ,6� of
the elastic stiffness tensor and the mass density � are peri-
odic functions of the position vector, r�= �r�� ,z�= �x ,y ,z�. In
the particular case of bulk phononic crystals, i.e., assumed of
infinite extent along the three spatial directions x, y, and z,
the elastic constants and the mass density do not depend on
z. Then taking advantage of the 2D periodicity in the �xOy�
plane, they can be expanded in Fourier series in the form

Cijmn�r��� = �
G� �

Cijmn�G� ��e�G� �·r�� , �2�

��r��� = �
G� �

��G� ��e�G� �·r�� , �3�

where G� � = �Gx ,Gy� is a 2D reciprocal-lattice vector. One
writes, with the help of the Bloch theorem, the elastic dis-
placement field as

u��r�� = e���t−K� �·r��−Kzz��
G� �

u�K� �G� ��e�G� �·r�� , �4�

where K� = �K� � ,Kz�= �Kx ,Ky ,Kz� is a wave vector and � an
angular frequency. If one assumes that Kz=0 then the vibra-
tions in the �xOy� plane �called XY or mixed-polarization
modes� decouple from those parallel to the z direction de-
noted Z modes �transverse modes�.1,4 Substituting Eqs.
�2�–�4� into Eq. �1� leads to a standard eigenvalue equation
for which the size of the matrices involved depends on the

number of 2D G� � vectors taken into account in the Fourier
series. The numerical resolution of the eigenvalue equation is
performed along the principal directions of propagation of
the 2D irreducible Brillouin zone of the array of inclusions.

In this paper, phononic crystals with square lattice and
graphite array are considered �see Fig. 1�. For a square lattice
of inclusions �see Fig. 1�a�	, with one cylinder of filling fac-
tor f located at the center of the 2D primitive unit cell, the
Fourier coefficients in Eqs. �2� and �3� are given as

��G� �� =
1

Au

 
�primitive

unit cell
� ��r���e−�G� �·r��d2r��

=
 f�A + �1 − f��B if G� � = 0�

��A − �B�F�G� �� if G� � � 0� ,
� �5�

a

y

xz
O

a

y

xz
O

(a)

(b)

FIG. 1. Transverse cross section of the square �a� and of the
graphite �b� arrays. The cylinders are parallel to the z direction. The
dotted lines represent the primitive unit cell of the 2D array.

VASSEUR et al. PHYSICAL REVIEW B 77, 085415 �2008�

085415-2



where ���, Cijmn, and Au is the area of the 2D primitive unit

cell. F�G� �� is the structure factor defined as

F�G� �� =
1

Au

 


�A�
e−�G� �·r��d2r�� . �6�

In Eq. �6�, the integral is performed over the cross section of
the inclusion. For cylinders of circular cross section of radius
R, the structure factor is

F�G� �� = 2f
J1�G�R�

G�R
, �7�

where J1 is the Bessel function of the first kind, f =�R2 /a2

and 0� f �� /4. The components of the 2D reciprocal lattice

vectors G� � are Gx= 2�
a nx and Gy = 2�

a ny, where nx and ny are
integers. In the course of the numerical calculations, we con-
sider −Mx�nx� +Mx and −My �ny � +My �with Mx and

My positive integers�, i.e., that �2Mx+1��2My +1� 2D G� � vec-
tors �Gx and Gy have �2Mx+1� and �2My +1� different val-
ues, respectively	 are taken into account. This gives
3�2Mx+1��2My +1� eigenfrequencies � for a given wave

vector K� . In the graphite network �see Fig. 1�b�	, the inclu-
sions are located at the vertices of a regular hexagon and the
distance between two nearest neighbors is a. The 2D primi-
tive unit cell with a lozenge pattern of side a�3 contains two

identical cylinders of filling factors f1 and f2, located at 	i
�

�i=1,2� and the Fourier coefficients become

��G� �� = � f�A + �1 − f��B if G� � = 0�

��A − �B�F�G� ��� e−�G� �·	�1 + e−�G� �·	�2

2
� if G� � � 0� ,�

�8�

where F�G� �� has the same meaning as above; f = f1+ f2 is the
total filling factor of inclusion with f1= f2=2�R2 /3�3a2 �0
� f1 , f2�� /6�3� for cylindrical inclusions. The components

of the 2D reciprocal lattice vectors G� � are Gx= 2�

a�3
�nx−ny�

and Gy = 2�

a�3
� nx+ny

�3
�, where nx and ny are integers.4

B. Plane wave expansion method for phononic crystal plates

To calculate the elastic band structures of 2D phononic
crystal plates, one modifies the PWE method presented
above. The phononic crystal plate of thickness, h2, is as-
sumed infinite in the �xOy� plane of the Cartesian coordi-
nates system �O ,x ,y ,z�. The plate is sandwiched between
two slabs of thicknesses h1 and h3, made of elastic homoge-
neous materials C and D �see Fig. 2�a�	. In the course of the
numerical calculations, one considers the parallelepipedic su-
percell depicted in Fig. 2�b�. The basis of the supercell in the
�xOy� plane includes that of the 2D primitive unit cell
�which may contain one cylinder or more� of the array of
inclusions and its height along the z direction is �=h1+h2
+h3. This supercell is repeated periodically along the x, y,
and z directions. This triple periodicity allows one to develop
the elastic constants and the mass density of the constituent
materials as Fourier series as

��r�� = �
G�

��G� �e�G� ·r�, �9�

where r�= �r�� ,z�= �x ,y ,z� and G� = �G� � ,Gz�= �Gx ,Gy ,Gz� are
three-dimensional position vectors and reciprocal lattice
vectors, respectively. Moreover the elastic displacement field
can be written as

u��r�� = e���t−K� �·r��−Kzz��
G�

u�K� �G� �e�G� ·r�. �10�

The components in the �xOy� plane of the G� vectors de-
pend on the geometry of the array of inclusions �see Sec.
II A� while along the z direction, Gz= 2�

� nz where nz is an
integer. The Fourier coefficients in Eq. �10� are now given as

��G� � =
1

Vu

 
 


�super cell�
��r��e−�G� ·r�d3r� , �11�

with Vu=Au .� is the volume of the supercell.
For a square array of inclusions, the Fourier coefficients

become

(a) (b)
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FIG. 2. �a� 2D phononic crystal plate sandwiched between two
slabs of homogeneous materials, and �b� three-dimensional super-
cell considered in the course of the SC-PWE computation.
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��G� � = � f�A�h2

�
� + �1 − f��B�h2

�
� + �C�h1

�
� + �D�h3

�
� if G� = 0�

��A − �B�FI
s�G� � + ��C − �B�FII

s �G� � + ��D − �B�FIII
s �G� � if G� � 0� ,

� �12�

with

FI
s�G� � =

1

Vu

 
 


�A�
e−�G� ·r�d3r� = F�G� ��� sin�Gz

h2

2
�

�Gz
h2

2
� ��h2

�
� ,

�13a�

FII
s �G� � =

1

Vu

 
 


�C�
e−�G� ·r�d3r� = � sin�Gx

a

2
�

�Gx
a

2
� �� sin�Gy

a

2
�

�Gy
a

2
� �


� sin�Gz
h1

2
�

�Gz
h1

2
� ��h1

�
�e−�Gz��h1+h2�/2	, �13b�

FIII
s �G� � =

1

Vu

 
 


�D�
e−ıG� ·r�d3r� = � sin�Gx

a

2
�

�Gx
a

2
� �


� sin�Gy
a

2
�

�Gy
a

2
� �� sin�Gz

h3

2
�

�Gz
h3

2
� ��h3

�
�e−ıGz��h2+h3�/2	.

�13c�

In Eqs. �13a�–�13c�, the integration is performed over the
volume occupied by each material A, C, or D inside the

unit cell. In Eq. �13a�, F�G� �� is the structure factor defined by
Eq. �7� for cylindrical inclusions.

For the graphite network, the Fourier coefficients become

��G� � =� f�A�h2

�
� + �1 − f��B�h2

�
� + �C�h1

�
� + �D�h3

�
� if G� � = 0�

��A − �B�FI
g�G� �� e−ıG� �·	�1 + e−ıG� �·	�2

2
� + ��C − �B�FII

g �G� � + ��D − �B�FIII
g �G� � if G� � 0� ,� �14�

with

FI
g�G� � =

1

Vu

 
 


�A�
e−ıG� ·r�d3r� = F�G� ��� sin�Gz

h2

2
�

�Gz
h2

2
� ��h2

�
� ,

�15a�

FII
g �G� � =

1

Vu

 
 


�C�
e−ıG� ·r�d3r�

= � sin�Gx�
a�3

2
�

�Gx�
a�3

2
� �� sin�Gy�

a�3

2
�

�Gy�
a�3

2
� �� sin�Gz

h1

2
�

�Gz
h1

2
� �


�h1

�
�e−ıGz��h1+h2�/2	, �15b�

FIII
g �G� � =

1

Vu

 
 


�D�
e−ıG� ·r�d3r�

= � sin�Gx�
a�3

2
�

�Gx�
a�3

2
� �� sin�Gy�

a�3

2
�

�Gy�
a�3

2
� �� sin�Gz

h3

2
�

�Gz
h3

2
� �


�h3

�
�e−ıGz��h2+h3�/2	, �15c�

where

Gx� =
Gx + �3Gy

2
, Gy� =

− Gx + �3Gy

2
. �16�

As for the bulk phononic crystals, the equation of motion is
Fourier transformed by substituting Eqs. �9� and �10� in Eq.
�1� and one has again to resolve a standard eigenvalue equa-
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tion. The numerical resolution of this eigenvalue equation is
performed along the principal directions of propagation of
the 2D irreducible Brillouin zone of the array of inclusions
while Kz is fixed to any value lower than �

� . In the course of
the numerical calculations, Gx, Gy, and Gz take, respectively,
�2Mx+1�, �2My +1�, and �2Mz+1� discrete values and this
leads to 3�2Mx+1��2My +1��2Mz+1� eigenfrequencies for a

given wave vector K� .
The supercell method requires an interaction as low as

possible between the vibrational modes of neighboring peri-
odically repeated phononic crystal plates. Then, in order to
allow the top surface of the plate to be free of stress, medium
C should behave, for instance, like vacuum.14 However, as
already observed by various authors,14,19,20 the choice of the
physical parameters characterizing vacuum in the course of
the PWE computations is of critical importance. Indeed, in
the framework of the PWE method, taking abruptly Cijmn
=0 and �=0 for vacuum leads to numerical instabilities and
unphysical results.14,19,20 Then vacuum must be modeled as a
pseudosolid material with very low Cijmn and �. For the sake
of simplicity, this low impedance medium �LIM� is supposed
elastically isotropic and is characterized by a longitudinal
speed of sound C�, and a transversal speed of sound Ct or
equivalently by two elastic moduli expressed with the Voigt
notation as C11=�C�

2 and C44=�Ct
2. The choice of the values

of these parameters is governed by the boundary condition
between any solid material and vacuum. Indeed, one knows
that this interface must be free of stress and this requires that
C11=0 and C44=0 rigorously in vacuum.10,14 Then, using the
LIM to model vacuum in the PWE computations, the nonva-
nishing values of these parameters must be as small as pos-
sible and we consider that the ratio between the elastic
moduli of the LIM and those of any other solid material
constituting the phononic crystal must approach zero. We
choose C� and Ct to be much larger than the speeds of sound
in usual solid materials in order to limit propagation of
acoustic waves to the solid. Large speeds of sound and small
elastic moduli impose a choice of a very low mass density
for the LIM. More specifically, we choose �=10−4 kg m−3

and C�=Ct=105 m s−1, i.e., the acoustic impedances of the
LIM are equal to 10 kg m−2 s−1. With these values C11
=C44=106 N m−2 and the elastic constants of the LIM are
approximately 104 times lower than those of any usual solid
material that are typically on the order of 1010 N m−2. The
values we choose for C11 and C44 are a compromise to
achieve satisfactory convergence of the SC-PWE method
and still satisfy boundary conditions. Values of the elastic
constants of the LIM lower than 104 N m−2 can have, in
some cases, effects on the numerical convergence. We
choose C11=C44 for convenience. In the course of the PWE
calculations, these values of the LIM physical characteristics
allow one to model vacuum without numerical difficulties.
One can also note that our choice of unphysical high speeds
of sound for the LIM such as 1

C�
2 = 1

Ct
2 →0 is consistent with

the numerical condition �air

Cijmn
air →0, derived by Tanaka et al.

for computing accurately the PWE bulk band structures of
air-solid 2D phononic crystals.20

In the supercell, medium D can be either vacuum or a
homogeneous material depending on whether one wants to

model a phononic crystal plate or a structure made of a
phononic crystal plate deposited on a substrate of finite
thickness. Throughout the present paper, we restrict our-
selves to isotropic materials A, B, and D or to constituents of
cubic crystallographic symmetry. Finally, with our numerical
method, computations of dispersion curves of phononic crys-
tal plates with Kz=0 and with any other nonvanishing value
of Kz, lower than �

� , lead to nearly the same result. Indeed the
eigenvalues computed with Kz=0 and Kz�0 differ only in
their third decimal. This indicates that the homogeneous
slabs C and D made of the LIM modeling vacuum rigorously
provide appropriate decoupling of the plate modes of vibra-
tion in the z direction. Then, throughout this paper, the value
of Kz has been fixed to zero.

III. NUMERICAL RESULTS

A. Solid-solid 2D phononic crystal plates

1. Low contrast solid-solid systems

We first apply our SC-PWE method to the calculation of
the band structure of a phononic crystal plate made of a
square array �lattice parameter a� of iron cylinders, and of
circular cross section of radius R, embedded in a copper
background. Fe and Cu are materials of cubic crystallo-
graphic symmetry and their physical properties �density and
elastic constants� present a low contrast12 �see Table I�. The
filling factor �f =�R2 /a2� and the thickness of the plate are
f =0.564 and h2=0.7a, respectively. Figure 3�a� shows the
band structure of the bulk phononic crystal �hollow squares�
and of the phononic crystal plate �black filled dots�. The
band structure of the bulk phononic crystal was computed
with the classical PWE method �see Sec. II A�. Applying the
SC-PWE method, one obtains the dispersion curves of the
plate. In this case, materials C and D are made of LIM and
the thicknesses h1 and h3 were chosen equal to a. 169 and
343 �i.e., Mx=My =6 and Mx=My =Mz=3� reciprocal lattice
vectors were taken into account for the computations of the
band structures of the bulk phononic crystal and of the
phononic crystal plate, respectively. One observes the char-
acteristic nearly parabolic shape in the vicinity of the � point
of the antisymmetric Lamb mode A0. This is the slowest of
the modes starting at the � point. In this particular structure,
the symmetric Lamb mode S0 and the first transverse mode

TABLE I. Mass density � and elastic constants C11, C12, and C44

of Fe, Cu, steel, epoxy, and Si.

Material
�

�kg m−3�
C11

�1010 N m−2�
C12

�1010 N m−2�
C44

�1010 N m−2�

Fe �cubic� 7867 22.6 14.0 11.6

Cu �cubic� 8932 16.83 12.21 7.57

Steel
�isotropic�

7780 26.4 8.1

Epoxy
�isotropic�

1142 0.754 0.148

Si �cubic� 2331 16.578 6.394 7.962
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nearly overlap. These band structures are nearly the same as
those published in Ref. 12. In this reference, the dispersion
curves of the plate were derived with the help of the PWE
method, by imposing the stress free boundary conditions on
the top and bottom surfaces of the plate.12 However, this
latter method requires sampling of both wave vector and
frequency while the SC-PWE method generates the eigenval-
ues �frequencies� by sampling only over the wave vector. In
the case of the Fe /Cu system, the SC-PWE method achieves
satisfactory convergence at a lower computational cost than
the PWE method with stress free surface boundary condi-
tions. Slight differences occur between the values of the
eigenfrequencies computed with our SC-PWE method and
those obtained by Charles et al., especially for modes of
higher order. This can be attributed to a better convergence
of our method due to the larger number of reciprocal lattice
vectors taken into account �343 compared to 25�. Moreover,
Fig. 3�a� does not exhibit some pseudomodes without physi-
cal meaning which can occur when solving the Fourier trans-
form of the equations of propagation with stress free bound-
ary conditions at the surfaces.7,8 One notes also that due to
the very low contrast between the elastic constants and den-
sity of Fe and Cu, these band structures do not exhibit abso-
lute band gap. To verify the validity of the application of the
SC-PWE method to low contrast solid-solid systems, we
have also calculated the band structure of the same plate
using the finite element method �FEM�.21–23 In all FEM cal-
culations reported in this paper, we have ensured that the
FEM mesh is fine enough for complete convergence of the
FEM band structure. These FEM band structures are subse-
quently used as reference for characterizing the rate of con-
vergence of the SC-PWE method. The SC-PWE �black filled
dots� and FEM �black crosses� plate band structures are plot-
ted in Fig. 3�b�. One observes the excellent agreement be-

tween the results derived from the two calculation methods.
This indicates the very good convergence of our SC-PWE
method for low contrast solid-solid 2D phononic crystal
plates with a reasonably small number of plane waves �i.e.,
343� taken into account. The calculations reported in Fig.
3�b� were done with h1=h3=a. We have verified the agree-
ment between the SC-PWE and the FEM band structures for
h1 and h3 varying from 0.5a to 1.5a. This range of thickness
for media C and D effectively forbid the interaction between
the vibrational modes of neighboring periodically repeated
phononic crystal plates. Subsequently we fixed h1=h3=a
throughout the paper. Finally, we also checked that our SC-
PWE method leads to similar results to those published by
Tanaka and Tamura7 for another low contrast solid-solid sys-
tem, namely, a 2D semi-infinite phononic crystal composed
of a square array of AlAs cylinders in a GaAs matrix. For
this, we increased the thickness of the plate to a value of
three times the lattice parameter and verified that the zero
order symmetric and antisymmetric plate modes fuse into the
Rayleigh wave propagating at the free surface of a 2D semi-
infinite phononic crystal. Our SC-PWE band structure in-
cludes additional bands that arise from the finite thickness of
the plate. As the thickness increases further the number of
extra bands increases. However, due to the limited number of
reciprocal vectors that can be taken into account, the conver-
gence of the numerical calculations fails when considering a
very large thickness of the plate.24

2. High contrast solid-solid systems

Here we consider the case of 2D phononic crystal plates
made of arrays of steel inclusions embedded in epoxy resin.
These solids possess very different densities and elastic con-
stants and the bulk phononic crystal exhibits very large ab-
solute band gaps provided the filling factor of inclusion is
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FIG. 3. �a� PWE elastic band structures for the bulk 2D phononic crystal �open squares� and the phononic crystal plate of thickness
h2=0.7a �black filled circles� made of a square array of Fe cylinders of cylindrical cross section embedded in a Cu background with f
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filled dots� and FEM �black crosses� band structures of the same plate. Note the excellent agreement between the band structures of the plate
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sufficiently large.4 Steel and epoxy resin are isotropic mate-
rials and their physical characteristics are reported in Table
I.25

Figure 4�a� shows the SC-PWE band structure in the �X
direction of propagation, of a phononic crystal plate com-
posed of inclusions of circular cross section placed on a
square array with thickness h2=a. The filling factor f
�=�R2 /a2� is equal to 0.564. The results are rendered in
terms of a reduced frequency �=�a /2�Ct, versus a

reduced wave vector k� =K� a /2� where Ct=�C44 / �̄

=�C44�G� =0�� /��G� =0�� is an average transverse speed of
sound. Here the calculation is done with Mx=My =6, Mz=2.
For comparison, the FEM band structure of the same plate is
reported in Fig. 4�b�. Although the shape of the dispersion
curves is quite similar in the SC-PWE and FE calculations,
the values of the eigenfrequencies differ significantly by
about 15%. This result suggests that the SC-PWE method
with Mx=My =6, Mz=2 has not converged for the high con-

trast solid-solid phononic crystal plate. In Fig. 5, we analyze
the convergence of the SC-PWE method at the X point of the
square Brillouin zone for a steel-epoxy phononic crystal
plate of thickness h2=a and f =0.564 by varying Mx, My, and
Mz, i.e., the number of plane waves. On one hand, for this
relatively small thickness of the plate, the SC-PWE eigenfre-
quencies appear to be significantly less sensitive to the
choice of Mz than Mx=My. On the other hand, comparison
with the FE method shows that even with 1575 plane waves
�i.e., Mx=My =8, Mz=2� the frequencies have not converged
and remain about 10% above the FEM results. Note that this
pathological lack of convergence for high contrast solid-solid
systems is also observed in the PWE method with stress free
boundary conditions.12,13 This problem also arises in the cal-
culation of the band structure of bulk high contrast 2D
phononic crystals.1–4 For example, in steel-epoxy bulk 2D
phononic crystals, the PWE eigenvalues start to converge
satisfactorily for Mx=My =12. It seems that all the PWE-
based methods introduced to date for computing the band
structures of high contrast solid-solid 2D phononic crystal
plates suffer from convergence difficulties and do not consti-
tute a reliable numerical tool in this case.13,24

B. Air-solid 2D phononic crystals

Since in all band structures reported previously the re-
duced frequency � scales as the inverse of the lattice param-
eter of the array of inclusions, a, the domain of frequency
where forbidden band gaps may occur also scales as 1 /a.
The design of phononic crystal plates with forbidden gaps in
the mega- or gigahertz range requires periodicity of the array
of inclusions of the order of the micro- or the nanometer.
From an experimental point of view, the realization at this
scale of 2D phononic crystals constituted of two different
solid materials is a very challenging task while actual tech-
niques based, for example, on reactive ion etching �RIE�,
focused ion beam �FIB�, or interference lithography allows
one to drill relatively easily regular network of holes in a
solid.10,26 Consequently, with the aim of designing structures
exhibiting absolute band gaps at very high frequencies that
can be fabricated experimentally, we focus our attention on
arrays of holes drilled in a solid matrix. We consider two
types of matrix materials, namely, steel and silicon.
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FIG. 4. Band structures along the �X direction of propagation of
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cylinders embedded in an epoxy matrix calculated with �a� the SC-
PWE method and �b� the FE method. The SC-PWE calculation used
Mx=My =6, Mz=2, i.e., 845 plane waves. The filling factor of in-
clusions and the thickness of the plate are f =0.564 and h2=a.
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1. Air-isotropic matrix systems

Figure 6 shows the elastic band structure of a phononic
crystal plate made of a square array of cylindrical holes in
steel calculated with the SC-PWE method with Mx=My =4,
Mz=2 and the FE method. With these constituent materials,
the choice of the filling factor is of particular importance.
Indeed, most of the theoretical and experimental studies con-
ducted on bulk 2D phononic crystals have shown that larger
gaps are obtained when the inclusions are made of the stiffer
material.1,4 Nevertheless, a very compact array of holes, for
example, a square array of holes drilled in a solid with a
filling factor near the closed packed value �i.e., f =� /4 or
R /a=0.5�, can be visualized as a square array of singular
shape solid inclusions embedded in air. Consequently one
may expect large gaps for high filling factor of holes.27 This
is indeed observed in Fig. 6 where f =0.7, i.e., R /a=0.472.
In the course of the SC-PWE numerical calculations, the
material inside the holes, i.e., air, was modeled by the LIM
depicted in Sec. II B. With these very large contrast material

constituents the SC-PWE band structure has converged to the
FEM results with 405 plane waves. It is worth noting that the
air inclusions are not included in the FEM mesh and their
effect is accounted for through stress free boundary condi-
tions at the surface of the holes. We further analyze the rate
of convergence of the SC-PWE method as a function of the
number of plane waves taken into account in the Fourier
series expansion in Fig. 7 at the X point of the Brillouin
zone. This figure shows that good convergence is achieved
for the lower 20 bands with the number of plane waves
greater or equal to 405. In the case of Fig. 6, where 405 plane
waves were taken into account, the worst convergence in
reduced frequency is less than 2% of the fully converged
FEM eigenfrequency. We also observed an overall agreement
between the band structures obtained by Langlet on arrays of
cylindrical holes drilled in poly-vinyl-chloride plates apply-
ing the finite element method21 and that calculated with the
SC-PWE method using LIM as the inclusion material. This
agreement is achieved with Mx=My =Mz=3. All our numeri-
cal results using the LIM as the inclusion material suggest
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FIG. 6. Band structure of a 2D phononic crystal plate composed of a square array of holes drilled in a steel plate calculated with �a� the
SC-PWE method and �b� the FE method. The SC-PWE calculation used Mx=My =4, Mz=2, i.e., 405 plane waves and the air holes were
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that the SC-PWE method provides a mean of calculating the
band structure of air-solid 2D phononic crystal plates reliably
with a reasonably small number of plane waves in the Fou-
rier series expansion and this over a wide range of matrix
material.

2. Air-cubic matrix systems

With a reasonably fast converging SC-PWE method for
air-solid systems, we now investigate a 2D phononic crystal
plate constituted of a material commonly used in microfab-
rication, namely, silicon. The first plate is composed of a
square array of air holes. Figure 8 reports the elastic band
structures of the bulk phononic crystal and of phononic crys-
tal plates with varying thicknesses for a filling factor fixed to
0.7. The plate modes differ significantly from the bulk band
structures. The thin �h2=0.1a� and thick plates �h2=2a� of
Figs. 8�a� and 8�c� do no exhibit band gap. An absolute band
gap occurs in Fig. 8�b� for a plate thickness of 0.55a. The
complete evolution of the gap width with the ratio h2 /a is
presented in Fig. 9 showing closing of the gap for thick-
nesses below 0.2a and above 0.9a. One may search for larger
band gaps with the same constituent materials by changing
the geometry of the array of inclusions. Indeed, it is well
known that bulk phononic crystal geometry plays a funda-
mental role in designing large elastic band gaps. Subse-
quently we investigated the dispersion curves of 2D
phononic crystal plates with the graphite structure. Figure 10
shows the bulk band structure �hollow squares� and the dis-
persion curves of a phononic crystal plate �black filled
circles� for a graphite array of holes in silicon with f1= f2

=0.25, i.e., a total filling factor f of inclusions equals to 0.5,
smaller than the close-packing value of 0.604. We consider
plates of varying thickness. The characteristic “lattice” pa-
rameter of the graphite array is not a but rather a�3, i.e., the
length of the sides of the 2D primitive unit cell of the graph-
ite array �see Fig. 1�b�	. Then we study the evolution of the
band structure of the plate as a function of the ratio between
the plate thickness h2 and a�3. As in the previous cases, the
band structure of the plate differs from that of the infinite
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phononic crystal. On the other hand, the width of the full
band gap centered around ��0.6 in Fig. 10�b� is markedly
larger than the gaps reported in the case of the square array.
As previously, the existence of this absolute stop band de-
pends on the thickness h2 of the plate and the optimum value
of h2 is of the order of magnitude of 0.58a�3. In Fig. 10�c�,
absolute band gap remains for a thickness of 2a�3. In Fig.
11, we present the position and width of the first band gap as
a function of the ratio h2 /a�3. Figure 11 shows that absolute
band gap vanishes for h2 /a�3
0.2. For the graphite struc-
ture, the band gap does not close before the ratio h2 /a�3
exceeds 1.15. One observes that the larger gap appears for
h2 /a�3�0.58. Then the variation of the gap width with the
ratio between the thickness of the plate and the characteristic
“lattice” parameter for both square and graphite networks of
holes scales in a similar way. Moreover, while for the square
array of holes, absolute band gaps were obtained for filling
factors approaching the close-packed value for which cylin-
ders are in contact with one another, the graphite network
shows wide gaps for noncontacting cylinders. Consequently,
the technical realization of phononic crystals made of holes
in a solid matrix exhibiting absolute stop bands at very high
frequencies is probably much easier when the holes are ar-
ranged upon a graphite array than a square network espe-
cially at the scale of a thin plate. Moreover, we have verified
that the effect of the geometry of the inclusion �square rather

than cylindrical inclusion� in that case of air-solid 2D
phononic crystal plate is minimal as already observed in bulk
phononic crystals.3
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C. Waveguide in air-silicon 2D phononic crystal plate

Bulk phononic crystals containing rectilinear defects have
been shown to guide elastic waves efficiently.5,28–30 More-
over surface acoustic waves can also be guided in defective
semi-infinite 2D phononic crystals.31 In a very recent paper,
Sun and Wu used the finite difference time domain method
for investigating the propagation of elastic waves through

waveguides in a 2D phononic crystal plate made of solid
constituents.32 In addition to the calculation of band struc-
tures of perfect 2D phononic crystal plates, the SC-PWE
method can also be extended to study wave propagation in
defective plate structures. More specifically, we consider a
phononic crystal constituted of a square array of LIM holes
in a Si plate with a filling fraction f =0.7. Here we extend the
SC-PWE method to the calculation of the band structure of
2D phononic crystal plates with a linear defect of variable
width. The guide is obtained by removing a row of holes
along the x direction and varying the distance between the
two neighboring rows of holes. This is done numerically by
considering a rectangular supercell of width along the x di-
rection equals to a and a length along the y direction, Ly
�a. The thickness of the supercell along the z direction re-
mains equal to �=h1+h2+h3. The structure of the defected
supercell is illustrated in Fig. 12. In this figure, �a represents
the separation distance between the edges of the two unit
cells adjacent to the waveguide. �a is an adjustable geo-
metrical parameter. For �=0, the structure is that of a super-
cell containing Ncyl holes arranged on a perfect square lattice,
namely a supercell of the perfect phononic crystal plate. If
�=1 the structure is that of a 2D phononic crystal plate with
one row of holes filled with the matrix material. One can
vary the width of the waveguide by setting ��0. The width
W of the guide defined as the closest distance between the
surface of the holes on either sides of the guide is given by
W= �1+��a−2R. This supercell is repeated periodically in
the x, y, and z directions. We choose the thickness h2 of the
slab equals to 0.55a for ensuring the existence of the largest
gap in the perfect phononic crystal plate. The thicknesses h1
and h3 of the LIM slabs are equal to a. Due to the periodicity
in the y direction, the expression of the Fourier coefficients
defined by Eq. �12� must be modified as
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In order to follow the evolution of the dispersion curves
of the defective phononic crystal plate as a function of the
waveguide width, we have investigated seven systems. The
first system corresponds to a perfect phononic crystal plate
with a supercell containing Ncyl=5 with �=0. For the sev-
enth system, we have chosen �=1 and Ncyl=4. This structure
is equivalent to filling with silicon, one of the five holes in
the first system effectively resulting in a linear defect along
the x direction. The other systems with Ncyl=4 and � ranging
from 0.25 to 0.85 by step of 0.15 are similar to the seventh
system but with a narrower waveguide. Because of the peri-
odicity, the waveguide is repeated in the y direction leading
to a stack of waveguides separated by four air holes. This
separation is sufficient to avoid significant coupling between
neighboring guides.

The band structures, computed along the �X direction
�i.e., the direction of propagation of a wave along the linear
waveguide� of the seven systems, are reported in Fig. 13.

Since the supercell is longer in the y direction, a larger num-
ber of reciprocal vectors is required along the y direction for
satisfactory convergence. �2Mx+1��2My .My�+1��2Mz+1�
=1845 �with Mx=My =4, Mz=2, and My�=5� reciprocal lat-
tice vectors were taken into account for computing these dis-
persion curves. Figure 13�a� exhibits numerous additional
branches than that of Fig. 8�b� �i.e., the band structure cal-
culated with a single unit cell along the y direction� as the
result of the folding of the bands in the y direction due to the
five unit cell periodicity in that direction. This system still
shows the forbidden band. Formation of a waveguide in that
structure inserts guided modes inside the band gap of the
perfect phononic crystal as illustrated in Figs. 13�b�–13�g�.
Figure 13 shows that when the width of the waveguide in-
creases, the number of guided modes in the band gap in-
creases. This is the standard behavior observed in waveguide
theory. One considers now a specific waveguide mode that
falls inside the band gap of the perfect phononic crystal
plate. This mode is represented with red dots in Figs.
13�b�–13�e�. One observes that the location of this mode
inside the stop band of the perfect phononic crystal plate
depends strongly on the width of the waveguide. This mode
evolves from a location near the top of the gap to near the
bottom of the gap as the width of the waveguide increases.
This mode merges with the passband below the band gap for
� larger than 0.7. We characterize this guided mode further
by calculating the modulus of the complex components of
the displacement field for different values of �. For example,
Fig. 14 shows the maps of the modulus of these components
for this specific mode for a fixed value of the wave vector,
i.e., Kx=0.14�2� /a� �blue square in Figs. 13�b�–13�e�	. Fig-
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FIG. 13. �Color online� Band structures along the �X direction of �a� the perfect phononic crystal plate ��=0 and Ncyl=5�, �b� the
phononic crystal plate containing a waveguide with �=0.25 and Ncyl=4, �c� the same as in �b� but with �=0.4, �d� the same as in �b� but
with �=0.55, �e� the same as in �b� but with �=0.7, �f� the same as in �b� but with �=0.85, and �g� the same as in �b� but with �=1.0. �a
represents the separation distance between the edges of the two unit cells adjacent to the waveguide. The SC-PWE calculation used Mx

=4, My �My�=4�5=20, Mz=2, i.e., 1845 plane waves. The dashed area in �a� shows the absolute band gap for the plate. In �b�, �c�, �d�, and
�e� ��g�	, the blue �green� square indicates the location of the guided modes analyzed in Fig. 14 �Fig. 15�.
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FIG. 14. �Color online� Maps of the modulus �in arbitrary units� of the complex components of the elastic displacement field in �a1�, �b1�,
�c1� the xOy �z=0.2a� plane and �d�, �e�, �f� the xOz plane at the center of the waveguide for the waveguide mode with �=0.5001 at the
Kx=0.14. � 2�

a
� point for the narrowest waveguide �see blue square in Fig. 13�b�	. �a2�, �b2�, and �c2�: the same as in �a1�, �b1�, and �c1� but

for the mode represented with a blue square in Fig. 13�c�; �a3�, �b3�, and �c3�: the same as in �a1�, �b1�, and �c1� but for the mode represented
with a blue square in Fig. 13�d�; �a4�, �b4�, and �c4�: the same as in �a1�, �b1�, and �c1� but for the mode represented with a blue square in
Fig. 13�e�.
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ures 14�a1�–14�c4� correspond to cuts of the three-
dimensional displacement field in the �xOy� plane at a posi-
tion z=0.2a, which is near the top surface of the plate. One
observes that for �=0.25, the guided mode which appears
approximately at the center of the stop band �see Fig. 13�b�	
is confined within or in the close vicinity of the waveguide
�see top panel of Fig. 14�. The displacement field penetrates
the interspace between the adjacent cylinders but becomes
negligible once one leaves the close vicinity of the guide.33

For a larger waveguide, while the z component of this mode
remains well confined into the waveguide, the other compo-
nents leak out into the phononic crystal structure. The mode
becomes less and less confined to the waveguide as the width
of the waveguide increases. In Figs. 13�c� and 13�d�, one
notes that the mode we consider crosses another mode for
this value of Kx. These two modes may interact strongly
together and this has probably a detrimental effect on the
waveguide mode confinement. For �=0.7, the mode is very
close to the bottom of the stop band �see Fig. 13�e�	 and this
may explain the very weak confinement of the mode. The
bottom panel of Fig. 14 shows cuts of the displacement field
in the �xOz� plane located at a position along the y direction
corresponding to the center of the guide for the waveguide
mode considered in Fig. 13�b� for �=0.25 and Kx
=0.14· �2� /a�. We use these figures to define the polariza-
tion of the mode in the �xOz� plane. At the center of the
waveguide, due to the symmetry of the mode, the y compo-
nent of the displacement field is negligible while the x com-
ponent is fairly localized near the surfaces of the plate. The z
component varies slowly along the x direction. We checked
that the modes depicted by a blue square in Figs. 13�b�–13�e�
possess the same polarization in the �xOz� plane than that
described in the bottom panel of Fig. 14. Figure 15 presents
the maps of the displacement field for the waveguide mode
with �=0.4834 at the X point for the wider guide. This mode

is represented with a green square in Fig. 13�g�. In this case,
the wave vector corresponds to one of the highest symmetry

point in the square Brillouin zone. Notes that at this K� point
another mode appears at a slightly higher reduced frequency,
i.e., �=0.4836. One observes in the top panel of Fig. 15 that
the confinement of the waveguide mode with �=0.4834 is
very good in this large waveguide and does not suffer from
the possible interaction between these two modes. The bot-
tom panel of Fig. 15 shows that in that case, the z component
of the displacement field is localized to the vicinity of the
surfaces of the plate. The polarization of this mode differs
from that depicted in Figs. 14�d�–14�f� for the guided mode
of the narrowest waveguide. A comparison between the bot-
tom panels of Figs. 14 and 15 indicates that depending upon
the polarization of the mode, the x or z component of the
displacement field of the guided mode may be localized on
the surfaces of the plate. Moreover the thickness of the plate
governs the width of the absolute band gap of the perfect
phononic crystal plate. As observed in these results �see Figs.
14 and 15� and also in the case of guided modes in bulk
phononic crystals,33 a guided mode is confined more effec-
tively inside the waveguide if it appears in the band structure
far away from the edges of the stop band. One may suppose
that due to the narrower stop band, a guided mode will be
less confined inside the waveguide when considering a thin-
ner or thicker phononic crystal plate.

IV. CONCLUSION

We introduce a supercell plane wave expansion method to
calculate the elastic band structures of perfect and defected
2D phononic crystal plates. Compared with previous works
on waves propagating in 2D phononic crystals with free sur-
faces, our method does not require writing explicitly the
boundary conditions on the free surfaces. This alleviates

(b)(b)(b)(b) (c)(c)(c)(c)(a)(a)(a)(a)

(d)(d)(d)(d) (e)(e)(e)(e) (f)(f)(f)(f)
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FIG. 15. �Color online� Maps of the modulus �in arbitrary units� of the complex components of the elastic displacement field in �a�, �b�,
�c� the xOy �z=0.2a� plane and �d�, �e�, �f� the xOz plane at the center of the waveguide for the waveguide mode with �=0.4834 at the X
point for the widest waveguide �see green square in Fig. 13�g�	.
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some numerical difficulties such as the computation of
pseudomodes without physical meaning.7,8,12 We establish
the range of validity of this method with respect to the con-
trast in material properties and phononic crystal plate geom-
etry. We demonstrate for solid-solid phononic crystals with
low contrast materials that the method converges with a rea-
sonably small number of reciprocal space vectors in all di-
rections. High contrast solid-solid phononic crystal plates
have been shown to lead to convergence difficulties for most
of the PWE-based methods introduced to date. The SC-PWE
method suffers the same problem. We propose a low imped-
ance medium �LIM� to serve as decoupling medium between
periodically repeated plates. We also show that the LIM can
be used effectively as an inclusion medium to model 2D
phononic crystal plates composed of air inclusions and solid
matrices. We establish that this approach leads to fast con-
vergence for a wide range of values of solid physical prop-
erties. We show the existence of band gaps in air-steel and
air-silicon 2D phononic crystal plates composed of square
arrays of holes. We also observe wider band gaps for a
graphite lattice of air holes in silicon plates. We characterize
the effect of the thickness of the plate on the location and the
width of the absolute band gaps and find optimum conditions

for achieving the widest absolute band gap. Finally, we apply
the SC-PWE method with LIM inclusions to a study of air-
silicon phononic crystal plates containing a guide of variable
width. The defected system is composed of two phononic
crystal plates separated by a homogeneous solid plate made
of silicon. We demonstrate the existence of waveguide
modes inside the absolute forbidden bands. The number of
waveguide modes decreases with a decreasing width of the
guide. Characterization of the displacement fields associated
with the waveguide modes demonstrates, in some cases, their
localization inside this structural defect. These defect modes
could then be used to realize acoustic devices such as
waveguides, specific frequency filters, or wavelength demul-
tiplexers. In particular, these functionalities are of interest in
radio-frequency devices for telecommunication applica-
tions.34
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