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The conductance of metallic graphene nanoribbons �GNRs� with single defects and weak disorder at their
edges is investigated in a tight-binding model. We find that a single edge defect will induce quasilocalized
states and consequently cause zero-conductance dips. The center energies and breadths of such dips are
strongly dependent on the geometry of GNRs. Armchair GNRs are more sensitive to a vacancy than zigzag
GNRs, but are less sensitive to a weak scatter. More importantly, we find that with a weak disorder, zigzag
GNRs will change from metallic to semiconducting due to Anderson localization. However, a weak disorder
only slightly affects the conductance of armchair GNRs.
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I. INTRODUCTION

Recently, graphene �a single atomic layer of graphite�
sheets were successfully isolated and demonstrated to be
stable under ambient conditions.1,2 Due to their unique
two-dimensional �2D� honeycomb structures, their mobile
electrons behave as massless Dirac fermions,2–4 making
graphene an important system for fundamental physics.5–9

Moreover, graphene sheets have the potential to be litho-
graphed to a lot of patterned graphene nanoribbons
�GNRs�10–15 to make large-scale integrated circuits.16

The electronic property of GNRs has attracted increasing
attention. Recent studies17–20 have shown that GNRs can be
either metallic or semiconducting, depending on their shapes.
This allows GNRs to be used as both connections and func-
tional elements21,22 in nanodevices, which is similar to car-
bon nanotubes �CNTs�.23,24

However, GNRs are substantially different from CNTs by
having two open edges at both sides �see Fig. 1�. These
edges not only remove the periodic boundary condition

along the circumference of CNTs, but also make GNRs more
vulnerable to defects than CNTs.25,26 In fact, nearly all ob-
served graphene edges10,27,28 contain local defects or ex-
tended disorders, while few defects are found in the bulk of
graphene sheets. These edge defects can significantly affect
the electronic properties of GNRs. Edge states with energies
about −0.1 to 0.2 eV have been observed.27,28 Recent con-
ductance measurements of GNRs also show that there are
“inactive” ribbon widths in the charge transport due to local-
ized edge states.13 Theoretical studies of GNRs have also
considered some edge corrections.19,29–31 In this paper, we
systematically study the conductance of metallic GNRs with
single defects and weak disorder at edges using a tight-
binding model.

In our calculation, external electrodes and the central part
�sample� are assumed to be made of GNRs. Moreover, the
edge defects are modeled by appropriate on-site �diagonal�
energy in the Hamiltonian of the sample. We utilize a quick
iterative scheme32,33 to calculate the surface Green’s func-
tions of electrodes and an efficient recursive algorithm32,34 to
calculate the total Green’s function of the whole system. Fi-
nally, the conductance is calculated by the Landauer
formula.35,36 The calculation time of this method is only lin-
early dependent on the length of the sample and a GNR with
disorder distributed over a length of 1 �m is tractable.

We first study the conductance of zigzag and armchair
GNRs with the simplest possible edge defects, a single va-
cancy or a weak scatter. Then we use a simple one-
dimensional �1D� model to explain the zero-conductance
dips caused by edge defects. Finally, we study some more
realistic structures, GNRs with weak scatters randomly dis-
tributed on their edges. We find that a weak disorder can
change zigzag ribbons from metallic to semiconducting, but
only changes the conductance of armchair ribbons slightly.
The paper is organized as follows: in Sec. II, we introduce
the model and method employed in this paper. Results and
discussion are presented in Sec. III. We conclude our find-
ings in Sec. IV.

II. MODEL AND METHOD

The geometry of GNRs is shown in Fig. 1. A graphene
ribbon contains two unequal sublattices, denoted by A and B

(a)

(b)

FIG. 1. �Color online� Geometry of graphene ribbons. �a� A
zigzag ribbon �N=4�; �b� an armchair ribbon �N=7�. A black circle
denotes an edge carbon and a gray circle denotes a bulk carbon. A
unit cell contains 2N atoms. From the top down, atoms in a unit cell
are labeled as 1A, 1B, 2A, 2B, …, NA, NB. Atoms close to 1B are
1A and 2A, and so on.
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in this paper. We use N, the number of A�B�-site atoms in a
unit cell, to denote GNRs with different widths.18 Then the
widths of ribbons with zigzag edges and armchair edges are
Wz=�3Na0 /2 and Wa=Na0 /2, respectively, where a0
=2.49 Å is the graphene lattice constant. The length is Lz
=Ma0 for a zigzag ribbon, and La=�3Ma0 for an armchair
ribbon, where M is the number of unit cells of the ribbon.
From the top down, atoms in a unit cell will be labeled as
1A, 1B, …, NA, NB. As shown in Fig. 1, an edge atom is a
carbon atom at the edge of GNRs that is connected by only
two other carbon atoms. In this paper, we consider defects
that locate at the sites of these edge atoms only.

The system under consideration is composed of two elec-
trodes and a central part �sample�. The sample �unit cells 1,
…, M� is a finite GNR, which may contain edge defects,
while the left and right electrodes are assumed to be semi-
infinite perfect GNRs. We describe the GNR by a tight-
binding model with one �-electron per atom. The tight-
binding Hamiltonian of the system is

H = �
i

�iai
†ai − Vpp��

�i,j�
ai

†aj + c.c., �1�

where �i is the on-site energy and Vpp� is the hopping pa-
rameter. The sum in �i , j� is restricted to the nearest-neighbor
atoms. In the absence of defects, �i is taken to be zero and
Vpp�=2.66 eV.25 In the presence of defects, both the on-site
energy and the hopping parameter can change. Here, we only
consider the variation in the on-site energy. A vacancy is
simulated by setting its on-site energy to infinity.25,37 A weak
scatter caused by impurity or distortion will be simulated by
setting �i to a small value Vi. In the case of a weak disorder,
Vi is randomly selected from the interval ��Vd� for every
edge atom.

In what follows we show how to calculate the conduc-
tance of the GNRs:

First, the surface retarded Green’s functions of the left and
right leads �g0,0

L ,gM+1,M+1
R � are calculated by32,33,38

g0,0
L = �E+I − H0,0 − H−1,0

† �̃	−1, �2�

gM+1,M+1
R = �E+I − H0,0 − H−1,0�	−1, �3�

where E+=E+ i� ��→0+� �Ref. 39� and I is a unit matrix.
H0,0 is the Hamiltonian of a unit cell in the lead, and H−1,0 is
the coupling matrix between two neighbor unit cells in the

lead. Here � and �̃ are the appropriate transfer matrices,
which can be calculated from the Hamiltonian matrix ele-
ments via an iterative procedure33,40

� = t0 + t̃0t1 + t̃0t̃1t2 + ¯ + t̃0t̃1t̃2 ¯ tn, �4�

�̃ = t0 + t0t̃1 + t0t1t̃2 + ¯ + t0t1t2 ¯ t̃n, �5�

where ti and tĩ are defined via the recursion formulas

ti = �I − ti−1t̃i−1 − t̃i−1ti−1�−1ti−1
2 , �6�

t̃i = �I − ti−1t̃i−1 − t̃i−1ti−1�−1t̃i−1
2 , �7�

and

t0 = �E+I − H0,0�−1H−1,0
† , �8�

t̃0 = �E+I − H0,0�−1H−1,0. �9�

The process is repeated until tn , t̃n�	 with 	 arbitrarily
small.

Second, including the sample as a part of the right lead
layer by layer �from l=M to l=2�, the new surface Green’s
functions are found by32,34

gl,l
R = �E+I − Hl,l − Hl,l+1gl+1,l+1

R Hl,l+1
† 	−1. �10�

Third, the total Green’s function G1,1 can then be calcu-
lated by

G11 = �E+I − H1,1 − 
L − 
R	−1, �11�

where


L = H0,1
† g0,0

L H0,1, �12�


R = H1,2g2,2
R H1,2

† �13�

are the self-energy functions due to the interaction with the
left and right sides of the structure. From Green’s function,
the local density of states �LDOS� at site j can be found:

nj = −
1

�
Im�G�j,j�	 , �14�

where G�j,j� is the matrix element of Green’s function at site
j.

Finally, the conductance G�E� of the graphene ribbon can
be calculated using the Landauer formula35,36

G�E� =
2e2

h
T�E�. �15�

Here T�E� is the transmission coefficient, which can be ex-
pressed as41,42

T�E� = Tr��LG11�
RG11

† 	 , �16�

where

�L,R = i�
L,R − �
L,R�†	 . �17�

In this calculation, no matrix larger than 2N�2N is in-
volved. Moreover, its cost is only linearly dependent on the
length of the GNRs. This method has been used to study the
effects of dangling ends on the conductance of side-
contacted CNTs.32 We have also calculated the band struc-
tures of perfect GNRs by diagonalizing the Hamiltonian. The
conductances of perfect GNRs agree with the band struc-
tures.

III. RESULTS AND DISCUSSION

The electronic properties of GNRs are strongly dependent
on their geometry. There are two basic shapes of regular
graphene edges, namely, zigzag and armchair edges, depend-
ing on the cutting direction of the graphene sheet �see Fig.
1�. All ribbons with zigzag edges �zigzag ribbons� are metal-

T. C. LI AND SHAO-PING LU PHYSICAL REVIEW B 77, 085408 �2008�

085408-2



lic; however, two-thirds of ribbons with armchair edges
�armchair ribbons� are semiconducting.18,19 The bands of
zigzag GNRs are partially flat around Fermi energy �EF

=0 eV�,18 which means the group velocity of mobile elec-
trons is close to zero. On the other hand, the bands of me-
tallic armchair GNRs are linear around Fermi energy.18,27 So
the group velocity of their mobile electrons around Fermi
energy should be a constant value, which is measured to be
about 106 m /s.2 Since zigzag GNRs and armchair GNRs
have so different electronic properties, the effects of edge
defects on their conductance should also be very different.

A. Single defects

In this section, we will study the conductance and LDOS
of GNRs with some single edge defects. A study of the ef-
fects of a single defect is not only realistic �e.g., a single
two-atom vacancy at an armchair edge has been observed�,27

but also can serve as a guide for us to understand the effects
of more complex edge defects.

1. Single vacancies

One of the simplest defects in a zigzag GNR is a single
vacancy caused by the loss of one or several nearest edge
atoms. In Fig. 2�a�, we plot the conductance of a zigzag
GNR �N=8� with a single one-atom vacancy �dashed line�, a
two-atom vacancy, and a three-atom vacancy as a function of
the energy. The thin solid line is for the perfect GNR. These
defects almost do not affect the conductance around the
Fermi energy. There are two conductance dips close to the
first band edges and simultaneously two peaks appear in the
LDOS of the 1B atom near the vacancy �dashed line in Fig.
2�b�	. These two peaks have energies different from Van
Hove singularities of a perfect GNR, which are extreme

points of the 1D energy bands; so they are quasilocalized
states caused by the vacancy. Moreover, the conductance
dips are due to the antiresonance of these quasilocalized
states. The relation between the conductance and quasilocal-
ized states will be discussed further in Sec. III A 3.

The conductance and LDOS of armchair GNRs are dis-
played in Fig. 3. In an armchair GNR, edge atoms appear in
pairs. A “single vacancy” can be formed by the loss of one
edge atom �one-atom vacancy� or a pair of nearest edge at-
oms �two-atom vacancy�. These two types of vacancies have
very different properties especially around the Fermi energy.
For the two-atom vacancy, the conductance is similar to that
of the single vacancy situation of the zigzag ribbon, as well
as the LDOS. However, when there is a one-atom vacancy, a
large LDOS will be formed and consequently a large con-
ductance dip will appear at the Fermi energy. In fact, it is
expected that the effect of a one-atom vacancy is much larger
than a two-atom vacancy because a one-atom vacancy breaks
the symmetry between the two sublattices, while a two-atom
vacancy keeps such symmetry. This is the same as in CNTs.

The conductance around the Fermi energy is a very im-
portant parameter for the application of GNRs. It is affected
by edge defects shown above. Also it depends on the width
of the ribbon. For example, a one-atom vacancy at the edge
of an armchair GNR will always cause a zero-conductance
dip at the Fermi energy. However, the breadth of the dip will
change when the width of GNR changes. In order to describe
the effect of a defect on the conductance quantitatively, we
introduce the decreasing rate of the average conductance,
which is

FIG. 2. �Color online� �a� Conductance of a zigzag ribbon �N
=8, W=17.3 Å� without vacancy �thin solid line�, and when one
atom �1A�, a pair of atoms �1A and 1B�, and nearest three atoms
�1A, 1B, and 1A� at its edge are removed. �b� LDOS of a 1B atom
when there is no vacancy �thin solid line� and when there is a
vacancy near it, corresponding to �a�.

FIG. 3. �Color online� �a� Conductance of an armchair ribbon
�N=14, W=17.4 Å� without vacancy �solid line�, with a two-atom
vacancy �dashed line�, and with a one-atom vacancy �dash dot line�
at its edge. �b� LDOS of a 2B atom when there is no vacancy �solid
line� and when its nearest �1A and 1B� pair atoms are removed
�dashed line�. �c� LDOS of a 1B atom when there is no vacancy
�solid line� and when its nearest 1A atom is removed �dashed line�.
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G/G0 =



−E

E

�G0�E� − G�E�	dE



−E

E

G0�E�dE

, �18�

where G0�E� is the conductance of a GNR without defects
and G�E� is the conductance of the GNR with a defect. The
decreasing rate of the average conductance �between
�0.5 eV� as a function of the ribbon width is plotted in Fig.
4. From the figure, we know that edge vacancies affect arm-
chair GNRs much more strongly than zigzag GNRs. More-
over, the effect of edge vacancies decreases when the width
of GNRs increases. This is because there are more atoms in
the cross section of a wider GNR, so electrons are easier to
go around the defect. Thus we can use wide GNRs as con-
nections in a nanodevice to avoid the change of conductance
due to edge vacancies. There is a small bump in G /G0 of
armchair GNRs with a two-atom vacancy at 40 Å. It is be-
cause the conductance dips at band edges �Fig. 3� enter into
the energy range of �0.5 eV as the width of GNRs in-
creases. This does not change the overall decreasing ten-
dency of G /G0 when the width of GNRs increases.

2. Single weak scatters

Another kind of single defect is a weak scatter, which can
be caused by a local lattice distortion, an absorption of an
impurity atom at the edge, or a substitution of a carbon atom
by an impurity atom. A weak scatter will modify the local
distribution of charges, which changes the on-site energy; so
we can simulate a single weak scatter by changing the on-site
energy of an edge atom to a small defect potential V.

The conductances and LDOS of zigzag GNRs under the
influences of single weak edge scatters with different
strengths are presented in Figs. 5�a� and 5�b�. It can be seen
that even a very weak edge scatter �V=0.5 eV� can produce
a quasilocalized state around Fermi energy �0.1 eV� and
cause a zero-conductance dip. Moreover, the energy level
and breadth of the dip increase when the defect potential
increases. This is because the kinetic energy of mobile elec-
trons in a zigzag GNR is nearly zero around Fermi energy.

Moreover, these mobile electrons are localized to ribbon
edges �edge states�,18 so they can be easily reflected by a
weak scatter at the edge. The edge state at a zigzag edge
has a nonbonding character.18 The bulk site 1B is a node
site of the wave function, so a weak scatter at site 1B
has few effects on the conductance �see Figs. 5�c� and 5�d�	.
Edge states with energies about −0.1 to 0.2 eV have been
observed.27,28 These correspond to weak scatters with defect
potential from −0.52 to 0.98 eV for a N=8 zigzag ribbon, or
from −0.46 to 0.93 eV for a N=22 zigzag ribbon. The en-
ergy level of a quasilocalized state does not depend very
much on the width of the GNR, but the breadth of the state is
much smaller for a wider GNR.

There is also no conductance dip near Fermi energy for
armchair GNRs with a weak scatter. Moreover, the conduc-
tance dip at the band edge only becomes visible when the
defect potential is larger than 2.0 eV �see Fig. 6�. This is
because the group velocity of mobile electrons in armchair
GNRs around Fermi energy is in the order of 106 m /s, which
gives a large kinetic energy; so these mobile electrons will
not be sensitive to a weak edge scatter as those in zigzag
GNRs.

3. Simple one-dimensional model

There are some common characters in the conductance
curves and LDOS curves shown above �Figs. 2, 3, 5, and 6�.
First, there are sharp peaks in LDOS curves of perfect GNRs,
which are Van Hove singularities �VHSs� corresponding to
extreme points in the energy bands. VHSs are characteristic
of the dimension of a system. In three-dimensional systems,
VHSs are kinks due to the change in the degeneracy of the
available phase space, while in 2D systems, the VHSs appear

FIG. 4. �Color online� The decreasing rate of the average con-
ductance �between �0.5 eV� due to a single vacancy at the edge.
As the width of a zigzag ribbon increases, its conductance becomes
immune from a vacancy at its edge.

FIG. 5. �Color online� �a� Conductance of a zigzag ribbon �N
=8� for various strengths of defect potential when the ribbon has a
weak scatter at its edge. �b� The LDOS of an edge atom for V
=0 eV �no defect� and V=2.0 eV at that site. �c� Conductance of a
zigzag ribbon �N=8� when there is a weak scatter at its 1B site �not
an edge atom�. �d� The LDOS of a 1B atom for V=0 eV and V
=2.0 eV at that site.
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as stepwise discontinuities with increasing energy.43 Unique
to 1D systems, the VHSs display as peaks; so GNRs are
expected to exhibit sharp peaks in the LDOS due to the 1D
nature of their band structures. Second, besides these VHSs,
there are new peaks in the LDOS of GNRs with an edge
defect. Moreover, zero-conductance dips occur at the same
energy of these new peaks simultaneously. These new peaks
in LDOS only occur near the defect, but have effects on the
conductance of GNRs; so they correspond to quasilocalized
states. Moreover, the zero-conductance dips are due to the
antiresonance of these quasilocalized states. The relation be-
tween quasilocalized states and zero-conductance dips can be
understood by a simple 1D model.

A GNR with an edge defect which induces a quasilocal-
ized state �QLS� can be modeled as a 1D quantum wire
�QW� with a side quantum dot �see Fig. 7�. The quantum
wire has one conducting band with dispersion relation E
=2� cos�kd�, where E is the energy of electrons, � the hop-
ping coefficient in the QW, and d the lattice spacing. The
energy level of the quasilocalized state �side quantum dot� is
�L. Moreover, the coupling between the quasilocalized state
and the QW is tLC. If tLC=0, the state is completely localized
and has no effect on the conductance of the QW. When tLC
�0, the electrons not only can transport in the QW, but also
can transport through “QW→QLS→QW,” “QW→QLS
→QW→QLS→QW,” and so on. These different channels
will interfere with each other and can cause resonance or
antiresonance. It is easy to show that they will always cause
antiresonance.44

To calculate the conductance of this simple system, we
assume that the electrons are described by a plane wave in-
cident from the far left with unity amplitude and a reflection
amplitude r and at the far right by a transmission amplitude
t; so the probability amplitude to find the electron in the site
j of the QW in the state k can be written as

aj
k = eikdj + re−ikdj, j � 0, �19�

aj
k = teikdj, j � 0. �20�

Then the transmission amplitude t and thus the conductance
of the system can be easily calculated by its tight-binding
Hamiltonian.44 The conductance is

G�E� =
2e2

h

1

1 +
tLC
4

4�2 sin2�kd��E − �L�2

. �21�

From Eq. �21�, we can see that when E=�L, the conduc-
tance G will be zero and a dip will appear in the conductance
curve. In other words, the incident electrons will be totally
reflected when their energy is equal to the energy level of the
quasilocalized state; so the quasilocalized state causes an an-
tiresonance. This analytical result agrees with our numerical
results of GNRs. This relation between the conductance dips
and localized states is very useful in experiments. It is not
easy to measure the conductance of GNRs directly because
of their small size. However, the quasilocalized states can be
found in the scanning tunneling spectroscopy �STS� images
or low bias scanning tunneling microscopy �STM� images.27

Then with a STS image or a low bias STM image, the con-
ductance dips can be predicted.

B. Weak disorders

Experimental observed graphene edges10,27,28 have a lot of
defects due to imperfect cutting. Most of these defects are
likely to be avoided in the future with improvements in the
processing of GNRs. However, as all materials have defects,
real GNRs will always have some randomly distributed scat-
ters at their edges due to lattice distortion or impurity. In this
section, we will consider the properties of GNRs under the
influence of weak uniform disorders at their edges. An edge
disorder distributed over a length L will be simulated by
setting the on-site energies of all edge atoms within a length
L to energies randomly selected from the interval ��Vd�,
where �Vd� is the disorder strength.

The conductances of zigzag GNRs with different disorder
strengths and distribution lengths are displayed in Fig. 8. The
most important feature of the conductance curves is that
there are gaps around the Fermi energy. For a N=8 zigzag
GNR with a very weak disorder �Vd=0.25 eV� distributed
over a length 1000 Å, the conductance has a 0.25 eV gap,
within which its maximum is less than 10−3 of �2e2 /h�. If the
disorder strength is 1.0 eV, the conductance gap is 1.04 eV.
This is enormous because a semiconducting perfect GNR
with a similar width only has a gap less than 0.7 eV.19,20

The conductance gaps around the Fermi energy come
from the Anderson localization of electrons.45–47 In a perfect

FIG. 6. �Color online� �a� Conductance of an armchair ribbon
�N=14� for various strengths of defect potential when the ribbon
has a weak scatter at its edge. �b� The LDOS of an edge atom for
V=0 eV �no defect� and V=2.0 eV at that site.

FIG. 7. A one-dimensional model of a system including con-
ducting bands and a quasilocalized state �QLS�. The bulk of the
system is represented by a quantum wire �QW�, which has one
conducting band.
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GNR or a GNR with periodic defects, the constructive inter-
ference of tunneling allows that electrons within certain en-
ergy bands can propagate through an infinite GNR �Bloch
tunneling�. However, the disorder can disturb the construc-
tive interference sufficiently to localize electrons. In an infi-
nite 1D system, even weak disorder localizes all states, yield-
ing zero conductance. If the disorder is only distributed
within a finite length L, the conductance is expected to de-
crease exponentially with length, G=G0 exp�−L /L0�, when L
is much larger than localization length L0.48,49 We observe
this is true in our simulations �see Fig. 9�a�	. Each point in
Fig. 9 is an average over several thousand disorder configu-
rations. The localization length of electrons with energy
close to zero is very small in the zigzag ribbons. From the
top down, the fitted localization lengths are L0=59 Å, L0

=51 Å, L0=53 Å, and L0=45 Å for curves in Fig. 9�a�, re-
spectively; so the wider the ribbon, the longer the localiza-
tion length. Moreover, the stronger the disorder strength, the
shorter the localization length.

The conductance of the armchair GNRs with weak disor-
ders is plotted in Fig. 10. Unlike the conductance of zigzag
ribbons, there is no gap around the Fermi energy. We also
calculate the conductance versus disorder length, which is
shown in Fig. 11�a�. The conductance also decreases expo-
nentially but much slower. The N=14 armchair GNRs �W
=17.4 Å� have nearly the same width of N=8 zigzag GNRs
�W=17.3 Å�. However, their localization lengths are very
different. When the disorder strength is Vd=0.25 eV, the lo-
calization length of N=14 armchair GNRs is larger than
2 �m, while L0=59 Å for N=8 zigzag GNRs. So the local-
ization is much weaker in armchair GNRs than in zigzag
GNRs. As discussed in Sec. III A, this is because the kinetic
energy of mobile electrons around Fermi energy in armchair
GNRs is larger than in zigzag GNRs, and also because these
mobile electrons in zigzag GNRs are localized to edges,
while they distribute in the whole cross section of armchair
GNRs; so when compared to zigzag GNRs, armchair GNRs
are more like 2D systems where electrons are easier to travel
around defects. There is no such difference between zigzag

FIG. 8. �Color online� Conductance versus energy for zigzag
ribbons �N=8,16� with disorder distributed at both edges over
lengths of 100 and 1000 Å. With a weak disorder, zigzag GNRs
change from metallic to semiconducting.

FIG. 9. �Color online� �a� Conductance versus ribbon length for
two zigzag ribbons �N=8,12� with different disorder strengths
�Vd=0.25, 1.0 eV�. The straight lines are exponential fits to the
simulated data with the ribbon length larger than 50 Å. �b� Conduc-
tance versus disorder strength for zigzag ribbons with disorder dis-
tributed at both edges over a length of 100 Å.

FIG. 10. �Color online� Conductance versus energy for an arm-
chair ribbon �N=14� with disorder distributed at its both edges over
a length of 1000 Å.

FIG. 11. �Color online� �a� Conductance versus ribbon length
for two armchair ribbons �N=8,14� with different disorder
strengths. �b� Conductance versus disorder strength for armchair
ribbons with disorder distributed at both edges over a length of
1000 Å.
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and armchair CNTs. The conductances of both zigzag CNTs
and armchair CNTs are not significantly affected by
disorder.26 Figure 11�b� shows the conductance versus disor-
der strength for armchair GNRs. The conductance of narrow
GNRs decreases very fast when the disorder strength in-
creases.

Recent studies of perfect GNRs have found that, with
edge corrections which keep the translational symmetry of
GNRs, all zigzag GNRs will be still metallic.19 Here we
show that with a weak disorder at edges, zigzag GNRs will
change from metallic to semiconducting due to Anderson
localization; so narrow zigzag GNRs with a weak disorder
can be used as functional elements in a nanodevice. This
result is important because nearly all realistic GNRs contain
some edge disorder.

IV. CONCLUSION

Using a tight-binding model, we have investigated the
conductance of the zigzag and armchair graphene nanorib-
bons with single defects or weak disorder at their edges. We
first study the simplest possible edge defects, a single va-
cancy or a weak scatter. We find that even these simplest
defects have highly nontrivial effects. A single edge defect
will induce quasilocalized states and consequently cause
zero-conductance dips. Moreover, the center energies and
breadths of such dips are strongly dependent on the geometry
of GNRs. A one-atom edge vacancy will completely reflect
electrons at Fermi energy in an armchair GNR, while only
slightly affecting the transport of electrons in a zigzag GNR.

The effect of a two-atom vacancy in an armchair GNR is
similar to the effect of a one-atom vacancy in a zigzag GNR.
A weak scatter can cause a quasilocalized state and conse-
quently a zero-conductance dip near Fermi energy in a zig-
zag GNR. However, its effect on the conductance of arm-
chair ribbons near Fermi energy is negligible. The influence
of edge defects on the conductance will decrease when the
widths of GNRs increase. Then we use a simple one-
dimensional model to discuss the relation between quasilo-
calized states and zero-conductance dips of GNRs. We find
that a quasilocalized state caused by a defect will cause an-
tiresonance and corresponds to a zero-conductance dip.

Finally, we study some more realistic structures, GNRs
with weak scatters randomly distributed on their edges. We
find that with a weak disorder distributed in a finite length,
zigzag GNRs will change from metallic to semiconducting
due to Anderson localization. However, a weak disorder only
slightly affects the conductance of armchair GNRs. The ef-
fect of edge disorder decreases as the width of GNRs in-
creases; so narrow zigzag GNRs with a weak disorder can be
used as field-effect transistors in a nanodevice. Moreover,
GNRs used as connections should be wider than GNRs used
as functional elements. These results are useful for better
understanding the property of realistic graphene nanorib-
bons, and will be helpful for designing nanodevices based on
graphene in the future.
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