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The effect of a tilted magnetic field B on the modulation of tunneling, the ballistic conductance, the ballistic
electron-diffusion thermoelectric power, and the orbital magnetization is studied for tunnel-coupled ballistic
double quantum wires. The magnetic field has a component By along the wires and a component Bx perpen-
dicular to the plane that contains both wires. We find that By alters the Bx dependence of the electronic and
transport properties drastically in the presence of interwire tunneling. The latter has been studied extensively in
the literatures in the absence of By and is known to show many interesting transport properties. The presence
of By causes the effective tunneling integral to oscillate continuously with sign changes and decay eventually
for large By. The By-induced interwire tunnel coupling between different sublevels and the quenching of it
under a large By were both observed experimentally by Thomas et al. �Phys. Rev. B 59, 12252 �1999��.
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I. INTRODUCTION

Long high-mobility semiconductor quantum wires
�QWRs� ��20 �m� are now within reach. For QWRs with
lengths comparable to the mean free path but shorter than the
localization length, it is not always clear if they are in the
ballistic or diffusive regime due to the uncertainties in the
mean free paths and frequent ambiguous features of the con-
ductance steps. It was shown previously that the field depen-
dence of the quantized conductance and the thermoelectric
power �TEP� of QWRs with the magnetic field �B� applied in
the perpendicular direction exhibits drastically different be-
haviors for the diffusive and ballistic regimes.1–5 Moreover,
the transport properties of the double quantum wires
�DQWRs� under a magnetic field �Bx� perpendicular to the
plane containing the wires were quite different from those of
single quantum wires �SQWRs�.1,6–12 The purpose of this
paper is to show that the presence of an additional compo-
nent of the magnetic field By along the wires alters many
previously known interesting Bx dependence of transport and
electronic properties sensitively.

Coupled DQWRs to be studied in this paper are stacked in
the z direction, as shown in Fig. 1. The transverse confine-
ment in the x direction is assumed to be parabolic with the
sublevels labeled by n=0,1 ,2 , . . .. The channel constrictions
in the x direction are achieved independently through top and
bottom split gates, which allow probing the 2D-2D, 2D-1D,
and 1D-1D regimes by adjusting the gate biases.13,14 The
quantum wires extend in the y direction and are separated by
a thin barrier layer allowing interwell electron tunneling in
the z direction. A current flows in the y direction between the
source and drain contacts. A magnetic field B= �Bx ,By ,0� is
applied within the xy plane perpendicular to the growth �z�
direction.

For the diffusive conductance G, a number of recent stud-
ies focused mainly on the effects of elastic scattering by
impurities and interface roughness.1,6–12 Very recently, we
assessed the relative contributions from electron-phonon3

and electron-electron5 scattering and found that they were
significant even at relatively low temperatures and densities
in multisublevel structures. In these scattering systems, inter-
sublevel electron-phonon and electron-electron scattering are
responsible, respectively, for the momentum-relaxation and
the energy-relaxation processes. We developed a formalism
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FIG. 1. A schematic illustration of the tunnel-coupled double
quantum wires stacked in the z �growth� direction. The two narrow
GaAs conducting channels confined in the x direction are formed by
applying a negative voltage to two metallic split gates with respect
to the grounded back gate �not shown�. The formed quantum wires
extend in the y direction. There exists a thin AlGaAs barrier layer
between the two wells in the z direction, which allows the electron
tunneling between two wires. The linear electron density in the
wires can be varied by applying a negative voltage to a depletion
gate �not shown� on the surface of double quantum wells. A mag-
netic field B= �Bx ,By ,0� is applied to the system within the xy plane
perpendicular to the growth direction. A current flows along the
wires between the source and drain contacts.
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which yielded diffusive G and TEP to a desired accuracy for
a general quasi-one-dimensional �1D� electronic structure
and obtained the numerical results from this formalism.2,3,5

Ballistic transport properties of quasi-1D n-doped semi-
conductor structures, on the other hand, are of particular in-
terest for a variety of novel physical phenomena and possible
new device applications. The earliest realization of SQWRs
is the quantum point contact in which the channel length is
very short, of the order of a fraction of a micrometer. The
measured conductance G is quantized and decreases in steps
of 2e2 /h in a spin-degenerate system, when the channel
width is gradually reduced,15 with e and h being the absolute
electronic charge and Planck’s constant, respectively. Similar
quantized G steps are also observed in both SQWRs and
DQWRs as a function of B applied in the growth �z� direc-
tion perpendicular to the wires.16,17 Recently, ballistic
electron-diffusion TEP, Sd, was observed in SQWRs18 and
studied theoretically at zero B.18–20 Previous studies of Sd are
relevant to simple band structures with a single minimum for
each sublevel.18–20 Quantized TEP was studied recently for
complicated band structures with two minima and one maxi-
mum for each sublevel in tunnel-coupled DQWRs in the
presence of a perpendicular magnetic field in the x
direction.4,21,22

For a two-dimensional electron gas �2DEG� in a single
quantum well �QW�, the quantization of electron kinetic en-
ergy into Landau levels occurs in the presence of a strong B
in the z direction perpendicular to the layer. For this 2DEG
system, important information about the structure of the en-
ergy spectrum can be extracted from measurements of ther-
modynamic quantities23–27 such as the entropy, the heat ca-
pacity, and the orbital magnetization at finite temperatures.
Self-consistent theories28,29 were used to explain these ther-
modynamic measurements. Recently, effects of a tilted �in
the xz plane� B on the orbital magnetization were studied for
both single 2D QWs30 �in the xy plane� and SQWRs31 �ex-
tended in the y direction�. For the latter, jumping and oscil-
lating orbital magnetizations were found for B applied, re-
spectively, in the z and x directions due to coupling of two
orthogonal harmonic oscillators.

When B is applied in the x direction perpendicular to
tunnel-coupled DQWRs, the B dependences of both the
quantized magnetoconductance32 and the ballistic electron-
diffusion thermoelectric power4 were extensively studied. In
this paper, we generalize our previous results4,32 for ballistic
electron transport in DQWRs to include the effects of inter-
wire electron tunneling between n�n� transverse sublevels,
as well as the resulting B dependence of ballistic conduc-
tance, ballistic electron-diffusion thermoelectric power, and
orbital magnetization, with B applied in an arbitrary orienta-
tion within the xy plane. For a tilted magnetic field, the quan-
tum transport in diffusive wires has not yet been studied
theoretically. However, some experimental33 and theoretical
�in a perturbative approach�34 studies for the effect of a tilted
magnetic field on the quantum transport in ballistic wires
were reported. In this paper, we limit ourselves only to the
case of ballistic transport.

The outline of this paper is as follows. In Sec. II, we
present expressions for the ballistic conductance, the ballistic
electron-diffusion thermoelectric power, and the orbital mag-

netization in tunnel-coupled DQWRs under B within the xy
plane in an arbitrary orientation. In Sec. III, we discuss nu-
merical results for the effect of a tilted B field on the inter-
wire tunnel coupling, sublevel repulsion, the ballistic con-
ductance, the ballistic electron-diffusion thermoelectric
power, and the orbital magnetization. A brief conclusion and
a remark are given in Sec. IV.

II. MODEL AND THEORY

For B in the xy plane, the corresponding vector potential
in the Landau gauge is written as A= �Byz ,−Bxz ,0�. As a
result, the Hamiltonian of the system in Fig. 1 takes the form

H =
�2

2m*�k −
z

�cx
2 �2

+
�2

2m*�− i
�

�x
+

z

�cy
2 �2

+
1

2
m*�x

2x2

−
�2

2m*
�2

�z2 + VDQW�z� , �1�

where VDQW�z� is a rectangular potential profile of the sym-
metric double quantum wells in the z direction, �cx
= �� /eBx�1/2 and �cy= �� /eBy�1/2 are the magnetic lengths in
the x and y directions, m* is the effective mass of electrons,
k is the wave number in the wire �y� direction, and ��x is the
uniform transverse-sublevel separation at B=0. In this paper,
we limit ourselves to the case where the thickness of the
wires in the z direction is so thin that only the ground tunnel-
split doublet is occupied.35 At the same time, the width of the
wires in the x direction is large enough to allow occupation
of multiple transverse sublevels.36

For the occupied ground doublet, electrons are strongly
confined in the z direction and the interwell electron tunnel-
ing is weak. Therefore, a tight-binding model is adequate to
describe electron tunneling between the wires.35 When a
tight-binding model is employed, we can equivalently regard
the wires with finite thickness in the z direction as separated
strips �zero thickness� containing freely moving electrons
along the strips and residing at z1 and z2 with the distance
d= �z1−z2� between them. Consequently, we find from Eq. �1�
that H=Hx+Hz for these two strips at zi �i=1,2� with

Hx =
�2

2m*�k −
zi

�cx
2 �2

+
�2

2m*�− i
�

�x
+

zi

�cy
2 �2

+
1

2
m*�x

2x2,

�2�

Hz = −
�2

2m*
�2

�z2 + VDQW�z� . �3�

By introducing a Fourier transform to the wave function ��x�
in the x direction,

��x� =
1

�2�
	

−�

�

dq��q�eiqx, �4�

we rewrite the Hamiltonian Hx in Eq. �2� in the q space as
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Hx =
�2

2m*�k −
zi

�cx
2 �2

+
1

2
m*�x

2�s +
zi�x

2

�cy
2 �2

−
�2

2m*
�2

�s2 ,

�5�

where s=�x
2q and �x=�� /m*�x represents the harmonic con-

finement width of electrons in the x direction. The electron
sublevels in the x direction are obtained from the
Schrödinger equation associated with the Fourier trans-
formed Hamiltonian in Eq. �5�,

En
x�k� =

�2

2m*�k −
zi

�cx
2 �2

+ �n +
1

2
���x, �6�

with n=0,1 ,2 , . . . for two wires at z1 and z2. The normalized
electron wave function in the xy plane for each wire is given
by

	kn
i �x,y� =

1
�Ly

eiky �x

�2�
	

−�

�

dqeiqx�n
�q +
zi

�cy
2 ��x

2�
=

1
�Ly

eikyein�/2e−izix/�cy
2

�n�x� , �7�

where 	kn
i �x ,y� acquires a phase factor exp�−izix /�cy

2 � de-
pending on the wire position, Ly is the length of the wires,
and

�n�x� =� 1

2nn!�1/2�x
e−x2/2�x

2
Hn� x

�x
� , �8�

is the harmonic-oscillator wave function with Hn�x� being
the nth-order Hermit polynomial. In Eq. �6�, En

x�k� is inde-
pendent of By and the effect of Bx is to displace the two
groups of parabolas of different wires with each other in k
space.36 However, the relative phase difference of the xy
plane wave functions in Eq. �7� between the two wires is
proportional to By. This introduces nonvanishing tunnel cou-
pling between n�n� transverse sublevels, as seen from the
Hamiltonian matrix �H j,j�� given below. For each k value,
the total electron energy Ej�k� is determined by the eigen-
value equation, i.e., det�H j,j�−Ej�k�
 j,j��=0. The Hamil-
tonian matrix elements introduced in this equation are inde-
pendent of k and given by an effective tunneling integral in
the tight-binding approximation

H j,j� =
1

2
�SAS� n�!

2mn!
�B

me−�B
2 /4Ln�

�m���B
2

2
� , �9�

where j and j� refer to the quantum states n and n� in differ-
ent wires. The result in Eq. �9� is the product of the interwell
interaction integral ��SAS /2� in the z direction and the over-
lap integral of the wave functions in the xy plane. The
Hamiltonian matrix �H j,j�� becomes diagonal when j and j�
belong to the quantum states in the same quantum wire with
its diagonal elements being the eigenenergy given by En

x�k�
in Eq. �6� for a single quantum wire. Here, Ln

�m��x� is the
nth-order associated Laguerre polynomial and the indices j
and j� are related to the transverse-sublevel indices n and n�
of the two quantum wires with n ,n�� �0,Nt−1�. We label
the index j� �1,Nt� and j� �Nt+1,2Nt�, respectively, for the

upper and lower wires with Nt being the total number of
transverse sublevels considered in our calculations for each
wire. Moreover, �B=d�x /�cy

2 is the number of magnetic-flux
quanta through the cross section d�x spanned by two wires in
the xz plane and �SAS is the ground-state tunnel splitting at
B=0. We have defined in Eq. �9� the notations for the inte-
gers n�=min�n ,n��, n=max�n ,n��, and m=n−n�. For
By =0, Eq. �9� is H j,j�=
m,0�SAS /2, indicating interwire tun-
nel coupling only between n=n� transverse sublevels in the
two wires. However, different sublevels �m�0� become tun-
nel coupled for By �0. When �B

2 /2 is one of the roots of
Ln

�m��x� at a certain value of By, either the intrasublevel �m
=0� or the intersublevel �m�0� tunnel coupling vanishes.
The Lorentz force along the wires due to Bx and the tunnel-
ing motion introduces a relative displacement �k=deBx /� in
k space. On the other hand, the transverse Lorentz force due
to By and the tunneling motion provides a momentum shift
��q�−deBy =−��B /�x for the Fourier component q in Eq.
�4� between the initial and final tunneling states, giving rise
to a tunneling modulation for medium values �B and a
quenching of tunneling for �B

2 /4�1.
The quantized magnetoconductance G in the spin-

degenerate quasi-1D Fermi liquid at finite temperature T is
determined by the total number of pairs of Fermi points
NF�E� at electron energy E and given by1

G�Bx,By� =
2e2

h
	

0

�

dE�− f0��E��NF�E� �
2e2

h
N��c� ,

�10�

where f0�E� is the Fermi function and f0��E� is the first de-
rivative of f0�E� with respect to E. For a fixed electron en-
ergy E, NF�E� in Eq. �10� depends on B. From Eq. �10�, it is
clear that G�Bx ,By� depends on the orientation of B in addi-
tion to its magnitude dependence.

The ballistic electron-diffusion thermoelectric power Sd is
defined as the ratio of the heat current to the charge current
of electrons divided by T under a bias. For symmetric elec-
tronic structures, it is given by4,37

Sd�Bx,By� = −
kB

eF

j,�

Cj,�„��Ej�k�� − �c�T��f0�Ej�k���

+ ln�1 + exp����c�T� − Ej�k����… , �11�

where �=1 /kBT, �c�T� is the chemical potential determined
for fixed electron density n1D and T, and

F = 
j,�

Cj,� f0�Ej�k��� . �12�

In deriving Eq. �11�, the energy integration over the range
0�k�� is divided into the sum of the integrations between
the successive extremum points Ej�k�� for �=1,2 , . . .. For
each region, Ej�k� is a monotonic function of k with a fixed
sign for the group velocity v j�k�=�−1dEj�k� /dk=−v j�−k�.
The quantity Ej�k�� is the extremum energy and the last ex-
tremum point is a minimum point. For a given curve Ej�k�,
Cj,�=1 for a local energy minimum point and Cj,�=−1 for a
local energy maximum point. The quantity F in Eq. �12�
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reduces to the total number of pairs of Fermi points at T=0
and is related to the quantized conductance G by G
= �2e2 /h�F. The result in Eq. �11� is equivalent to the earlier
result obtained for the SQWR with a single minimum point
for each energy-dispersion curve.19 It can also be derived
using an energy-dependent transmission-coefficient
approach.19,38,39

The orbital magnetization �in unit of �B
*� of electrons at

T=0K is obtained from28,29

M��Bx,By� = −
1

�B
*� �uav

�B�
�

Ne

, �13�

where �=x or y, Ne refers to the total number of electrons in
the system, and ��uav /�B��Ne

represents the derivative of uav

with respect to the field component B� when Ne is remained
unchanged. In Eq. �13�, �B

*=e� /2m* is the effective Bohr
magnetron and uav is the average energy per electron at T
=0 K, given by

uav =
2

�Ne


j
	

0

�

dkEj�k���EF − Ej�k�� . �14�

Here, EF=�c�0� is the Fermi energy at T=0 K. M��Bx ,By� in
Eq. �13� depends on both the magnitude and orientation of B.
The By dependence discussed in this paper refers to the in-
terwire tunnel coupling between n�n� transverse sublevels
and is different from the coupling of two orthogonal har-
monic oscillators.30,31

III. NUMERICAL RESULTS AND DISCUSSIONS

In our numerical calculations below, we first study the
electron sublevel dispersions for various values of By with
fixed Bx as a function of k, as well as sublevel edges for
Bx=0 �i.e., along the wires� as a function of By. Both the
lowest-order and the first-order approximations for interwire
tunnel coupling are obtained and discussed. From these two
approximations, the physics involved in the tunneling modu-
lation, oscillations of the effective tunneling integral with
alternating signs, quenching of tunneling, and sublevel repul-
sion are elucidated. We then investigate the field dependence
of the quantized magnetoconductance G, ballistic electron-
diffusion thermoelectric power Sd at low temperatures, and
orbital magnetization M as functions of B. The contour plots
for G�Bx ,By� and Sd�Bx ,By� are presented to provide direct
visualizations of their overall anisotropic B dependence. The
parameters for the lower-density sample 1 employed in our
numerical calculations are listed in Table I. The parameters
for the higher-density sample 2 are the same as those of
sample 1 except for n1D=2�106 cm−1. For these two
samples, we use the electron effective masses m*=0.067m0
with m0 being the free-electron mass. In the following calcu-
lations, only the ground tunnel-split doublet is assumed to be
populated.

A. Wave number and magnetic-field dispersions

Figure 2 displays the sublevel dispersions Ej�k� at Bx

=8 T obtained by diagonalizing Eq. �9� with 2Nt=40 for

several values of By. In order to highlight the tunnel-induced
as well as By-induced anticrossing between n�n� sublevels,
we take large ��x=1 meV. Here, we only display lower-
energy transverse sublevels for each branch of the tunnel-
split doublet. As shown in Fig. 2�a�, when By =0, we only see
the interwire tunnel coupling between n=n� sublevels, lead-
ing to a ground �n=0� tunnel-split doublet with a tunneling
gap �SAS �indicated by two arrows� at k=0 for Bx=8 T.14,21

In addition, there exist many equally spaced higher-energy
replicas �n=1,2 ,3 , . . . � of the ground tunnel-split doublet.
The Lorentz force due to Bx and the tunneling motion intro-
duces a relative k space displacement �proportional to Bx� to
parabolas of two quantum wires. The degeneracy is lifted at
the intersecting point by interwire tunneling and the curves
near this point are deformed for large Bx by the anticrossing
gaps between the upper �minimum and electronlike� and
lower �maximum and holelike� gap edges, as shown in Fig.
2�a�. For By =4 T, we find the interwire tunnel coupling be-
tween n�n� sublevels, as shown in Fig. 2�b�. As a result,
each sublevel in the left �right� parabola experiences succes-
sive anticrossings with sublevels in the right �left� parabola
at higher and higher �k� values. When By is further increased
to 8 T in Fig. 2�c�, the interwire tunnel coupling as well as
the anticrossing between both n=n� and n�n� sublevels are
quenched for several lower sublevels, leaving many diamond
shapes seen in Fig. 2�c�.

The tunneling motion of electrons from one wire to an-
other is deflected by the transverse Lorentz force due to By.
As a result, the electrons acquire an additional transverse
momentum in the final tunneling state along the x direction.
This additional momentum ��q=−�d /�cy

2 directly contrib-
utes to a relative phase factor exp�i�qx� in Eq. �7� for the
wave function in the xy plane. For Bx=0, the minimum of
each sublevel is always at k=0 for all By. In order to high-
light the effect of the By-induced tunneling modulation of the
electron energy, we present in Fig. 3 the sublevel edges Ej�0�
�black curves� as a function of By with Bx=0 for the lower-
density sample 1. From this figure, we see a very compli-
cated oscillating pattern, resulting from the facts that the ef-
fective interwire tunneling gap oscillates with By �tunneling
modulation�, passes through zero at certain values of By, and
becomes negligible at very large By �quenching of tunnel-
ing�. Moreover, we find the sublevel repulsion, i.e.,
parallelogram-type shapes, in this figure. EF �red curve� in
the figure also oscillates with By with kinks �indicated by
blue circles� corresponding to sublevel populations or de-
populations. Because of sublevel repulsion, E3�0� �thick

TABLE I. Double quantum wires �sample 1� with barrier height
of 280 meV, well widths Lz1

/Lz2
, center-barrier thickness LB,

ground-doublet tunnel splitting �SAS at B=0, the uniform
transverse-sublevel separation ��x, and linear electron density n1D.
The center-to-center distance d between two wells is taken to be
d= �Lz1

+Lz2
� /2+LB.

Lz1
/Lz2

�Å�
LB

�Å�
�SAS

�meV�
��x

�meV�
n1D

�105 cm−1�

80 50 1.56 0.2 4
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black curve� initially decreases with By and E3�k� is popu-
lated near k=0. This directly leads to the decrease of EF with
By for By �0.3 T. When By is increased above 0.3 T but still
small, E3�0� begins to increase with By after passing through

its minimum due to the effect of tunneling modulation. This
causes the depopulation of the sublevel E3�k� and a kink in
EF at By �0.3 T by transferring electrons from E3�k� to
E2�k�. When By is further increased above 0.6 T but not
large, E3�0� switches to decrease with By for the same reason
of tunneling modulation after passing through its maximum.
Consequently, electrons on E2�k� are transferred back to
E3�k�, leading to the recovery of E3�k� population and the
second significant kink in EF at By �0.7 T. When By be-
comes even larger above 0.7 T, E1�0� begins to rise after
passing through its minimum at By �0.6 T. At the same
time, E4�0� drops after passing through its maximum at By

�1.3 T, leading to the population of E4�k� and a weak kink
in EF at By �2 T. Finally, electron tunneling is quenched for
lower sublevels when By is very large and the wires become
decoupled, leading to a twofold degeneracy for lower sub-
levels. This occurs around By =4.5 T for the lower five sub-
levels. The decoupling eventually pins EF between n=1 and
n=2 sublevels of individual quantum wire.

In order to fully understand these effects, we look into
some approximate analytic expressions. For the lowest-order
approximation, i.e., only the interwire tunnel coupling be-
tween the same sublevels �m=0� is considered, we find for
Bx=0,

En
����0� = �n +

1

2
���x + E1

z �
1

2
�SASe−�B

2 /4Ln
�0���B

2

2
� ,

�15�

where n=0,1 ,2 , . . . and E1
z is the edge of the ground subband

of a single quantum well �LB→�� at B=0. The tunnel split-
ting �last term with � sign� in Eq. �15� oscillates with �B or
By due to Ln

�0���B
2 /2�. When �B

2 /2 becomes one of the roots
of Ln

�0��x�, the tunneling gap shrinks to zero and the m=0
tunnel coupling between two wires passes through zero.
Moreover, when �B�1, the m=0 tunnel coupling is
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FIG. 2. �Color online� �a� Ej�k� with Bx=8 T as functions of k
for By =0, �b� By =4 T and �c� By =8 T. Here, we only display
lower-energy transverse sublevels. In �a�, the tunnel-split upper
�lower� branches in the absence of intersublevel tunneling between
n�n� are denoted by red �blue� curves and the anticrossing gaps at
k=0 between the upper and lower gap edges are indicated by black
arrows for the lowest tunnel-split doublet. In �b� and �c�, the higher
�lower� coupled sublevels in the presence of intersublevel tunneling
between n�n� are represented by red �blue� curves. In our calcu-
lations here, we take a large transverse-sublevel separation ��x

=1 meV for a strong confinement in the x direction.
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FIG. 3. �Color online� Ej�0� �black curves� as a function of By

for Bx=0. The red curve represents EF of the lower-density sample
1. The sublevel population and depopulation are indicated by three
blue circles. The E3�0� is displayed by a thick black curve in the
figure.
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quenched by the exponential factor exp�−�B
2 /4� in Eq. �15�,

giving rise to a constant Ej�0� as a function of By. As a result,
the splitting between sublevels En

�+��k� �dashed curves� and
En

�−��k� �solid curves� vanishes in Fig. 4�a�, forming a degen-
erated sublevel for a SQWR. All of these described features
are clearly demonstrated by Fig. 4�a� with m=0.

To study the sublevel repulsion, we go beyond the lowest-
order approximation in Eq. �15�. Under the first-order ap-
proximation, we include the interwire tunnel coupling be-
tween the nearest-neighboring sublevels with m=0,1. The
numerical results of Ej�0� as a function of By are shown in
Fig. 4�b� for Bx=0 with m=0,1, where we easily find simi-
larities between Figs. 4�a� and 4�b�. However, besides these
similarities, we also find a self-avoiding feature in Fig. 4�b�
for each of intersecting points of sublevels in Fig. 4�a�. More
important, there is an initial negative By dispersion devel-
oped for the first three sublevels close to By =0 resulting
from the sublevel repulsion. As an example, for the ground
sublevel E0

�−��0�, we obtain for Bx=0,

E0
�−��0� = E1

z +
1

2
��x −

1

2
�SASe−�B

2 /4 −
1

8
�SAS

2 �B
2e−�B

2 /2

�
�L0

�1���B
2 /2��2

��x + �SAS exp�− �B
2 /4��1 − L1

�0���B
2 /2��/2

.

�16�

In Eq. �16�, the third term, which is related to the interwire
tunnel coupling between n=n� sublevel, pushes the electron
energy up with increasing By and leads to a positive By dis-
persion. However, the last term, which is associated with the
interwire tunnel coupling between n�n� sublevels, repre-
sents the effect of sublevel repulsion and pushes down the
ground sublevel with increasing By, leading to a dominant
negative By dispersion when �B is small but nonzero. From
Fig. 4�b�, we see clearly that the effect of sublevel repulsion
greatly modifies the results of the lowest-order approxima-
tion in Fig. 4�a� and empowers the first-order approximate
calculation approaching the exact solution in Fig. 3. How-
ever, the parallelogram-type shapes seen in Fig. 3 are only
reproduced for a few of lower sublevels at large values of By
in Fig. 4�b� since we have neglected the tunnel coupling for
m�2. The analytical results in Eqs. �15� and �16� with m
=0,1 apply only to the case with a small �B �or a small By�.

B. Quantized conductance

Now, we turn to the discussions of numerical results on
the field dependence of quantized magnetoconductance G
calculated from Eq. �10�. We first demonstrate the effects of
By for Bx=0, as well as the thermal effects on G by taking
various electron temperatures T. Then, the contour plot of
G�Bx ,By� is presented to provide a direct visualization for its
overall anisotropic B dependence. Finally, we present G as a
function of Bx for a set of fixed values of By.

We display in Fig. 5 the thermal effect1 on G �left axis� at
T=0 K �solid curve�, 0.3 K �dashed curve�, and 3 K �dash-
dot-dotted curve� for the lower-density sample 1 as a func-
tion of By for Bx=0. The features on EF �red curve and right
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FIG. 4. Ej�0� as a function of By for Bx=0. In �a�, only the
interwire tunnel coupling between n=n� sublevels �m=0� is in-
cluded in the calculation. In �b�, the interwire tunnel coupling be-
tween the same sublevels and the nearest-neighboring sublevels
�m=0,1� is included in the calculation. The solid and dashed curves
in �a� correspond to the sublevel edges En

�−��0� and En
�+��0� in Eq.

�15�, respectively, with different quantum numbers n=0,1 ,2 ,3 , . . ..
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FIG. 5. �Color online� G �left axis� of the lower-density sample
1 as a function of By for Bx=0 at T=0 K �solid curve�, 0.3 K
�dashed curve�, and 3 K �dash-dot-dotted curve�. For the sake of
comparison, EF �red curve and right axis� is also shown.
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axis� in this figure have already been explained in detail in
Fig. 3 and are used here as a guidance. Compared with Fig.
3, we find for T=0 K that the first downward step of G at
By �0.3 T results from the depopulation of E3�k�, while the
successive first and second upward steps of G are associated
with the populations of E3�k� and E4�k� at By �0.7 T and
2 T, respectively. The constant G for By �2 T is a result of
the pinning of EF between n=1 and n=2 sublevels in decou-
pled wires. We also see that when T is raised to 3 K, all the
G steps at T=0 K, which are related to population �depopu-
lation� of sublevels, are completely washed out except for a
minimum at By �0.5 T �dash-dot-dotted curve� after a ther-
mal average is performed to the total number of pairs of
Fermi points NF�E� within the energy range ��c−kBT ,�c

+kBT� to to get N��c� in Eq. �10�. Moreover, G at T=3 K is
greatly reduced compared to that at T=0 K due to the de-
creased N��c� by reduction of the chemical potential �c�T�
with increasing T �d�c /dT�0� from 0 to 3 K. When T
=0.3 K, the sharp corner of the upward �downward� step
�dashed curve� is rounded off, and there is always a dip right
after the peak for each upward step.

In Fig. 6�a�, we present the contour plot of G�Bx ,By� for
the higher-density sample 2 to display its overall anisotropic
B dependence. The By evolution is best visualized from Fig.
6�a� by a vertical narrow slit scanning for successive increas-
ing values of By. The yellow and orange regions in this con-
tour plot represent the “mountains” for higher values of
G�Bx ,By� when Bx�6 T, while the purple �blue� regions
represent the “valleys” for lower values of G�Bx ,By� when
By �4 T. In addition, the green �cyan� regions correspond to
the “plains” for intermediate values of G�Bx ,By�. In order to
explain the physics involved in the anisotropic B dependence
of G�Bx ,By� in Fig. 6�a�, we display G in Fig. 6�b� for the
same sample as a function of Bx for a set of fixed values of
By. G in Fig. 6�b� starts with a deep V shape36 for By =0
�bottom black curve�, evolving to a nearly constant as a func-
tion of Bx except for two major downward spikes when By
=7 T �top orange curve�. For this V-shaped G at By =0, each
downward step corresponds to a depopulation of one sub-
level in upper tunnel-split branches �one pair of Fermi points
to none�, while each upward step corresponds to a depopu-
lation of one lower gap edge �LGE� point at k=0 in lower
tunnel-split branches �one pair of Fermi points to two pairs�.
When Bx is small, the relative displacement of the parabolas
of two wires in k space is too small to form any LGE points
at k=0. When Bx is large, on the other hand, the energy of
the LGE points at k=0 is so high that two wires become
decoupled. The flat G for large values of Bx, i.e., the orange
region in Fig. 6�a�, is associated with the rise of the lowest
LGE point above the Fermi energy. The degradation of V
shape with increasing By in Fig. 6�b� indicates the close of
anticrossing gaps at some lower energy LGE points and the
increased energy of the lowest crossing point at k=0 for
large By, as shown in Fig. 2�c�.

C. Ballistic electron-diffusion thermoelectric power

In this subsection, we discuss the field dependence of the
ballistic electron-diffusion thermoelectric power Sd calcu-

lated from Eqs. �11� and �12�. First, we find the correspon-
dence between the peaks of Sd and the steps of G at low
temperatures. We then present the contour plot of Sd�Bx ,By�
to provide a complete visualization for its complicated aniso-
tropic field dependence. Finally, we present Sd as a function
of Bx for a set of fixed values of By.

In Fig. 7�a�, we display a blown-up view of the sublevel
edges Ej�0� �black curves� close to EF �red curve� for the
higher-density sample 2 as a function of By. The sublevel
populations �depopulations� are clearly seen. These sublevel
populations and depopulations are directly reflected in the
upward and downward steps in G �left axis and dashed
curve� in Fig. 7�b� for the same sample. Two upward sharp
peaks at By =1.5 and 2.2 T �indicated by two blue arrows�
result from successive population-depopulation processes
close to the two sharp minima of sublevel edges �indicated
by blue circles in �a�� induced by tunneling modulation. In
addition, G becomes independent of By, once the interwire
tunneling is quenched at By �7 T. For kBT /��x=0.02, Sd
�0 �right axis and solid curve� in Fig. 7�b� shows a series of
upward sharp peaks superposed on the Sd=0 background
when By �4 T. However, as By 4 T, the interwire tunnel
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FIG. 6. �Color online� Contour plot of G�Bx ,By� in �a� and G in
�b� as a function of Bx with a set of fixed values of By for the
higher-density sample 2. We set T=0 K for our calculations here.
For the sake of clarity, the successive curves from the bottom black
curve in �b� are vertically shifted by an amount of 2�2e2 /h�. The
curves from the bottom to the top in �b� correspond to By

=0,1 ,2 , . . . ,7 T, respectively.

FIELD-INDUCED MODULATION OF THE CONDUCTANCE,… PHYSICAL REVIEW B 77, 085320 �2008�

085320-7



coupling is gradually reduced, leading to an increasing Sd
background with By. Each peak of Sd corresponds to a jump
in G at the same value of By. Two sharp peaks of G only lead
to two relatively weak peaks in Sd because Sd is inversely
proportional to G.

In Fig. 8�a�, we present the contour plot of Sd�Bx ,By� at
kBT /��x=0.02 for the higher-density sample 2 in order to
demonstrate its overall anisotropic B dependence. The By
evolution is very well observed from Fig. 8�a� by taking a
snapshot through a narrow slit moving upward for each suc-
cessive increasing value of By. The yellow region in this
contour plot represents the “mountain range” for higher posi-
tive values of −Sd�Bx ,By� when By �5 T, while the green
�cyan� regions represent the “lands” for lower positive values
of −Sd�Bx ,By� when By �5 T. Furthermore, the isolated blue
�purple� regions correspond to the “lakes” for negative val-
ues of −Sd�Bx ,By�. The blue �purple� lakes mostly exist for
3�By �5 T and 2�Bx�5 T, while the yellow mountain
range is easily found for Bx�4 T within the range of 5
�By �7 T. This mountain range expands itself into the re-

gion of Bx�4 T with many “mountain peaks” �unconnected
yellow regions� for 5�By �7 T. In order to explain the
physics involved in the anisotropic B dependence of
Sd�Bx ,By� in Fig. 8�a�, we display Sd in Fig. 8�b� for the same
sample as a function of Bx for a set of fixed values of By. −Sd
in Fig. 8�b� starts with one dominant peak for By =0 with
positive �negative� peaks on the left �right� side of it �bottom
black curve�, evolving into multiple peaks sandwiched by
lower �higher� plateaus on the left �right� side for By =7 T
�top orange curve�. For By =0, whenever a sublevel in upper
tunnel-split branches is depopulated, −Sd displays a positive
peak in Fig. 8�b� since the dispersion for a subband edge
�minimum� is electronlike. On the other hand, −Sd displays a
negative peak whenever a LGE point in lower tunnel-split
branches is depopulated since the dispersion for a LGE point
�maximum� is holelike. The positive peak of −Sd near the
minimum of G at Bx=3.4 T is large because Sd is inversely
proportional to G. For large By, the peaks and dips of Sd
occur only for intermediate values of Bx, in which there exist
many LGE points with significant anticrossing gaps below
and above the Fermi energy. The flat Sd for large values of
Bx, i.e., the yellow region in Fig. 8�a�, corresponds to the rise
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z �black

curves� close to EF in �a� as a function of By and Sd �right axis and
solid curve� in �b� as a function of By for the higher-density sample
2. For the sake of comparison, EF �red curve� in �a� as well as G
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of the lowest LGE point above the Fermi energy in decou-
pled wires.

D. Orbital magnetization

In this subsection, we briefly discuss the numerical results
on orbital magnetization calculated according to Eqs. �13�
and �14�. We present in Fig. 9 My as a function of By for
Bx=0 �in �a�� and Mx as a function of Bx for By =0 and 2 T
�in �b�� for the lower-density sample 1 at T=0 K. As ex-
plained in Fig. 3, EF �left axis and dashed curve� decreases
with By initially for small By in Fig. 9�a� due to the sublevel
repulsion, oscillates with By due to the tunneling modulation,
and then produces few kinks at the same time due to the
population or depopulation of sublevels. For large By, all the
sublevel edges Ej�0� eventually become independent of By

�e.g., see Fig. 7�a��, giving rise to a By-independent EF. From
Fig. 9�a�, we find that the average energy per electron uav
�left axis and dash-dotted curve� follows EF accordingly.
Therefore, uav oscillates with small By, becomes nearly pro-
portional to By due to pinning of EF when 3�By �5 T, and
approaches a constant when By �6 T �not shown�. Conse-
quently, a profound oscillation in My �right axis and solid

curve� is observed for small By with a sign change, followed
by a small negative and nearly constant My for large By, and
eventually approaches zero for By �6 T. For Mx as a func-
tion of Bx in Fig. 9�b�, we see a V-shaped Mx�0. For By
=0 �solid curve�, the initial linear drop of Mx within the
range of 0�Bx�2 T is associated with the diamagnetic shift
of sublevels with Bx. For 2�Bx�3 T, Mx continuously de-
creases with Bx after passing the kink at Bx=2 T due to de-
population of a sublevel edge from the upper tunnel-spilt
branches. For 3�Bx�4 T, Mx begins to increase with Bx
with two kinks at Bx=3 T and 4 T, respectively, due to the
depopulation of two LGE points from the lower tunnel-split
branches. Finally, Mx increasingly approaches zero as Bx
4 T. As By is increased from zero to 2 T �dashed curve�,
the depopulations of the sublevel edge and the second LGE
point shift down from Bx=2 to 1.5 T and from Bx
=4 to 3.5 T, respectively. In addition, Mx approaches zero
with small Bx after the last LGE point is depopulated at Bx
=3.5 T.

IV. CONCLUSIONS

In conclusion, we have studied the effect of the modula-
tion of interwire tunneling due to a parallel magnetic field By
along the wire on the ballistic conductance, the thermoelec-
tric power, and the orbital magnetization in the presence of a
perpendicular field component Bx. The parallel component
By introduces tunnel coupling between the sublevels n�n�
of the two wires and modifies tunneling between n=n� sub-
levels, resulting in oscillations of the effective tunneling in-
tegral with alternating signs and quenching of tunneling for
large By. The role of Bx is to displace the tunnel-free energy-
dispersion curves associated with each of the wires relative
to each other in k space. The physics of the effect of the
interplay between Bx and By on the field-induced distortion
of the crossing and the anticrossing between the sublevels of
the wires was explored.

The anisotropic B dependence of the quantized G has
been fully demonstrated by its contour plot. For By =0, we
see a V-shaped G as a function of Bx. In this case, the down-
ward and upward steps are related to the depopulations of
sublevel edges in the upper tunnel-split branches and the
depopulations of LGE points in the lower tunnel-split
branches. For high By, on the other hand, we find a nearly
constant G as a function of Bx except for two major down-
ward spikes. In this case, the interwire tunnel coupling is
quenched and two quantum wires become decoupled.

The anisotropic B dependence of Sd has also been dis-
played by using a contour plot. For By =0, we find one domi-
nant peak in Sd sandwiched by positive and negative peaks
on both sides. In this case, the positive peaks on the lower-Bx
side come from the depopulations of sublevel edges �elec-
tronlike� in the upper tunnel-split branches, while the nega-
tive peaks on the higher-Bx side come from the depopula-
tions of LGE points �holelike� in the lower tunnel-split
branches. For high By, on the other hand, we find multiple
peaks in Sd sandwiched by lower and higher plateaus on the
lower- and higher-Bx sides, respectively. In this case, the in-
terwire electron tunnel coupling between n�n� sublevels is
quenched.

0 1 2 3 4 5
44.8

45.0

45.2

45.4

45.6

45.8

46.0

(a)

Bx = 0, T = 0K
E
ne
rg
ie
s
(m
eV

)

By ( T )

EF
uav

-1.0

-0.5

0.0

0.5

1.0

My

M
y
(�

* B
)

0 1 2 3 4 5
-0.3

-0.2

-0.1

0.0

(b)

T = 0K

M
x
(�

* B
)

Bx ( T )

By=0T
By=2T
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The B dependence of M at T=0 K has been studied. For
B along the wires, we have found that the By dependence of
uav follows closely the change of EF: with increasing By, it
decreases initially due to the sublevel repulsion, oscillates
due to the tunneling modulation, and changes linearly with
By due to the pinning of EF, eventually becoming indepen-
dent of By due to the quenching of tunneling. As a result, we
find a profound oscillation in My with a sign reversal for
small By because of sublevel repulsion. For intermediate By,
My becomes negative and nearly constant and vanishes for
large By. For fixed values of By, a V-shaped Mx is seen as a
function of Bx due to the diamagnetic shift of sublevels, de-
population of sublevel edges, and LGE points.

Through our numerical calculations, we have demon-
strated the existence of interwire tunnel coupling between
n�n� sublevels by comparing Figs. 2�a� and 2�b� for By =0
and 4 T, respectively. With a finite By, each sublevel in the

left �right� parabola goes through successive anticrossings
with sublevels in the right �left� parabola. The unique k dis-
persion of energy levels has been observed experimentally
by Thomas et al., as shown in Figs. 3�a� and 3�b� of Ref. 40.
With further increase of By, the quenching of both interwire
tunnel coupling and the anticrossing between n=n� and n
�n� sublevels develops gradually, as can be found from Fig.
2�c�. This quenching behavior has been observed previously
by Thomas et al., as shown in Fig. 2�b� of Ref. 40.
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