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We report on a theoretical study of quantum charge transport in atomistic models of silicon nanowires with
surface roughness disorder, using an efficient real-space, order N Kubo-Greenwood approach and a Landauer-
Büttiker Green’s function method. Different transport regimes �from quasiballistic to localization� are explored
depending on the length of the nanowire and the characteristics of the surface roughness profile. Quantitative
estimates of the elastic mean free paths, charge mobilities, and localization lengths are provided as a function
of the correlation length of the surface roughness disorder. Moreover, the limitations of the Thouless relation
between the mean free path and the localization length are outlined.
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I. INTRODUCTION

Semiconducting silicon nanowires �SiNWs� are currently
the subject of intense studies due to their prominent role in
the downscaling limits of metal-oxide-semiconductor field-
effect transistor devices and also because they provide alter-
native materials to challenge quantum effects in low
dimensionality.1–3 Compared to classical planar technology,
nanowires can better accommodate “all-around” gates im-
proving field-effect efficiency and device performances.4

Vapor-liquid-solid �VLS� growth techniques have recently
produced SiNWs with well controlled structural features,5–7

which open up innovative approaches to the design of
silicon-based nanodevices.8 Demonstrations of p-n junction
diodes,9 logic gates,10 field-effect transistors,11,12 and
nanosensors13,14 have been reported.

However, one key issue in the engineering of performant
SiNW-based field-effect transistors �SiNW-FETs� is to ascer-
tain how sensitive the charge mobilities are to structural fea-
tures such as diameter, growth direction, and disorder. Sur-
face roughness disorder �SRD� is a well-known limiting
factor in lithographic SiNW-FETs,15–17 and its impact on bal-
listic transport in VLS-grown nanowires is a challenging and
important question.11,12 Besides, SRD effects also raise fun-
damental questions in the framework of localization
theory.18,19

Recent ab initio studies20,21 have reported on specific sur-
face effects, such as dopant segregation in small diameter
SiNWs. However, most of these studies did not cope with the
analysis of the fundamental transport length scales in long
disordered nanowires. Several theoretical works have also
investigated the role of effective and simplified surface dis-
order models on the transport properties of nanowire-based
materials or devices.22–27

In this work, we report on a quantitative analysis of the
transport length scales in atomistic models of rough SiNWs.
The description of the SiNWs is based on an accurate tight-
binding Hamiltonian, previously validated by ab initio
calculations.28,29 The quantum transport properties are calcu-

lated with two different approaches. First, the elastic mean
free path and the charge mobility are computed with an op-
timized, real-space, order N Kubo-Greenwood approach.30,31

Additionally, the scaling properties of the Landauer-Büttiker
conductance are investigated with a standard recursive
Green’s function method to assess the effects of quantum
interferences driving to the localization regime. Both ap-
proaches give complementary results and allow us to explore
a broad range of conduction mechanisms, from the ballistic
to the diffusive and strongly localized regimes. These meth-
ods are briefly reviewed in Sec. II, then the results are dis-
cussed in Sec. III.

II. METHODS

A. Description of the surface roughness profile

The SiNW Hamiltonian is a third nearest neighbor three
center orthogonal sp3 tight-binding model that well describes
the electronic structure of ideal �disorder-free� nanowires.29

The SRD profile is defined as a random fluctuation of the
radius of the nanowire around its average value R0, charac-
terized by a Lorentzian autocorrelation function.17,32,33 In cy-
lindrical coordinates,

�R�z,�� = �
�n,k���0,0�

anke
in�ei�2�/L�kz, �1a�
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�1 + ��2�k
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Here, �nk� 
0,2�
 is a random number, L is the length of
the nanowire, and Lr is the correlation length of the SRD.
The silicon atoms outside the envelope defined by Eq. �1a�
are excluded from the nanowire and the dangling bonds are
saturated with hydrogen atoms.34 In the following, we set
R0=1 nm and renormalize the ank so that ��R2�z ,���1/2

=1 Å, leaving Lr as the only free parameter. The effects of
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the SRD on the transport length scales have been computed
for 
110-oriented SiNWs with Lr ranging from
0.54 to 4.34 nm 
Fig. 1�a�.

B. Transport methodologies

In the semiclassical transport theory, the effects of the
disorder can be characterized by the scattering rate between
the eigenstates of the ideal system.35 The scattering time �,
usually computed with the Fermi’s golden rule, can be split
into an elastic ��e� and an inelastic ��i� contribution �1 /�
=1 /�e+1 /�i� by virtue of Matthiessen’s law. The SRD is
expected to dominate backscattering at low temperatures,15,16

while the inelastic electron-phonon coupling plays a major
role at room temperature. In the Kubo-Greenwood approach,
the scattering time �e�E� and the mean free path �e�E�
=��E��e�E� are extracted from the saturation of the quantum
diffusivity, D�E , t�=�Z2�E , t� / t, where ��E� is the average
velocity and �Z2�E , t� the quadratic spreading of wave pack-
ets with energy E. Indeed, D�E , t� behaves as �2�E�t for short
times t, then reaches a maximum value Dmax�E�
�2�2�E��e�E� �diffusive regime�, before eventually decreas-
ing due to localization effects �see discussion below�.31

�Z2�E , t� is evaluated as

�Z2�E,t� =
Tr�
Ẑ�t� − Ẑ�0�2��E − Ĥ��

Tr���E − Ĥ��
, �2�

where Ẑ�t� is the position operator in the Heisenberg repre-

sentation, ��E− Ĥ� is the spectral measure of the SiNW
Hamiltonian, and Tr is the trace over the sp3 basis set. Peri-
odic boundary conditions are applied along the nanowire, the
convergence being achieved for supercell lengths L

�500 nm. The real-space, order N methodology of Ref. 31
has been adapted to this multiorbital per site problem. In
particular, we have used the kernel polynomial method36 to
compute the spectral quantities from the Lanczos recursion
coefficients.37 This provides a more accurate description
of the band edges than the usual continued fraction
expansion.26,31,38

In the absence of inelastic scattering, quantum interfer-
ences build up beyond the diffusive regime, which leads to
the localization of all wave functions in the zero-temperature
limit.18,39,40 The conductance of long nanowires in the strong
localization regime can therefore be characterized by the lo-
calization length 	�E�

�ln g�E,L�� � − 2L/	�E� , �3�

where g�E ,L�=G�E ,L� /G0 is the normalized conductance
of wires with length L �G0=2e2 /h being the quantum of
conductance� and �¯� is a statistical average over different
realizations of the disorder. g�E ,L� can be conveniently
computed in the Landauer-Büttiker Green’s function
framework.33 This method is indeed well suited to the de-
scription of finite-size nanowires connected to drain and
source electrodes. The latter are modeled as ideal, semi-
infinite nanowires with radius R=R0+0.2 nm. The transmis-
sion through the device is computed from the self-energies of
the contacts and Green’s function of the nanowire using a
standard decimation technique.26,41

III. RESULTS AND DISCUSSION

A. Electronic properties

Let us first discuss the electronic structure of the SiNWs.
The conduction band density of states �DoS� 
�E� for the
ideal and for two disordered SiNWs are shown in Fig. 1�b�.
In the ideal SiNW, the first two Van Hove singularities
�VHs’s� arise from the 
001 bulk conduction band minima29

and are split by the intervalley couplings, while the others
�above 1.7 eV� arise from both 
001 and �
100, 
010�
minima. The DoS is markedly affected by the SRD. At Lr
=0.54 nm, the lowest-lying VHs’s are shifted to higher ener-
gies, as a result of the increase of the average lateral confine-
ment within the SiNW. However, with increasing Lr, the con-
duction band edge moves to lower energy, while the DoS is
steadily degraded, hardly showing any fine structure for Lr
�2.17 nm. The lowest-lying conduction band states are in-
deed trapped deeper in energy in the largest sections of the
nanowire 
see Fig. 1�a�. The extent of the electron wave
functions will ultimately determine the transport regime.42

B. Elastic mean free paths and charge mobilities

The mean free path of the electrons and holes is plotted as
a function of their energy in Fig. 2 for the same two Lr as in
Fig. 1. The main features of the underlying band structure
still show up at Lr=0.54 nm. Indeed, the electron mean free
path reaches its maximum ��e�70 nm� between the first two
VHs’s �single subband transport�, which shows a dip at the
edge of the second subband, then further decreases above
E�1.7 eV due to the enhancement of interband scattering.
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FIG. 1. �Color online� �a� SRD profile and isoprobability surface
of the ground-state conduction band wave function of small sec-
tions of 
110-oriented SiNWs for two values of Lr. �b� Correspond-
ing conduction band DoS �dashed and solid lines�. The DoS of the
ideal nanowire with radius R0=1 nm is also shown �dotted line�.
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The hole mean free path also exhibits a very sharp peak
��e�110 nm� in the first �mostly light-hole� subband, but it
becomes very short in the dense, lower-lying subbands.
However, at Lr=2.17 nm, the fine structure of �e cannot be
so easily related to the band structure of the ideal nanowire.
The mean free path is almost reduced by half in the first
electron “subband,” while the peak on the valence band side
is nearly five times smaller and is superseded by a broad
feature at lower energies.

The charge carrier mobility � is another key quantity for
assessing device performances. In absence of strong inelastic
scattering processes, it can be related to the Kubo conductiv-
ity,

�EF� = n�EF���EF�e

= −
e2

2
� dE
�E�Dmax�E�

�fFD�E − EF�
�E

, �4�

where n�EF�=�dE
�E�fFD�E−EF� is the charge density �per
unit of length� at a given Fermi energy EF, e is the elemen-
tary charge, and fFD�E� is the Fermi-Dirac distribution
function.31,33 The mobility ��EF� is plotted as a function of
EF in Fig. 3 for Lr=0.54 nm and Lr=2.17 nm, both at T
→0 K and at room temperature �T=300 K�. The low tem-
perature mobility follows the same trends as �e. In particular,

��EF� is much lower around the conduction and valence
band edges, where the wave functions tend to localize in the
largest sections of the nanowires. The room-temperature mo-
bility �300K, which averages over the Fermi-Dirac distribu-
tion, is more significant in this range �but might be further
limited by phonon scattering�. As a matter of fact, �300K is
almost constant for Fermi energies corresponding to electron
and hole densities up to n�1019 cm−3. It peaks around n
=1020 cm−3 then rapidly decreases. The values of �300K at
n=1018 cm−3 and n=1020 cm−3 are reported as a function of
Lr in Fig. 4. They are comparable for electrons and holes in
the low-density limit, and are ranging from a few hundreds
to �1000 cm2 V−1 s−1, in fair agreement with the experimen-
tal estimates for the most performant undoped silicon
nanowires.11 The mobility moreover shows a minimum as a
function of Lr. This suggests that the electrons and holes are
less sensitive to short length scale fluctuations of the SRD
profile.43 They are much more efficiently scattered at inter-
mediate values of Lr, while the mobility slowly increases at
large Lr as the surface of the nanowires becomes locally
smooth again. The mobility is still, however, quite smaller
around the conduction and valence band edges �i.e., at low
densities�, as evidenced in Fig. 4.

C. Conductance, quantum interference effects,
and localization regime

In the absence of disorder, the transport through the
SiNWs is ballistic so that the Landauer-Büttiker conductance
G�E�=N�G0 is quantized and independent of the wire length
L, N� being the number of conducting channels at energy E.
This is illustrated in Fig. 5�d�.44 Conductance quantization
has actually been observed in narrow constrictions �quantum
point contacts� made on silicon45 and silicon wires.11,46 The
conductance is expected to scale as �e /L, in short, weakly
disordered nanowires;40 however, most of the results avail-
able on longer and wider, lithographically defined SiNWs
evidence strong disorder effects �due to wire width fluctua-
tions or charged impurities� such as quantum interferences,
localization,47 and charging phenomena.48,49

In this work, we neglect the effects of inelastic scattering
and focus on the transition from weak to strong localization.
The localization length 	�E�, computed from the scaling
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FIG. 2. �Color online� Mean free path of the �a� holes and �b�
electrons as a function of energy for Lr=0.54 nm and Lr=2.17 nm.
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FIG. 3. �Color online� Mobility of the �a� holes and �b� electrons
as a function of the Fermi energy EF for Lr=0.54 nm and Lr

=2.17 nm. The mobility is plotted both at T→0 K �symbols� and
T=300 K �thick lines�.
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analysis of the Landauer-Büttiker conductance �see Sec.
II B�, is plotted as a function of the conduction band energy
in Fig. 5�b� �Lr=2.17 nm�. The logarithm of g was averaged
�for each L� over 150 random SRD profiles 
Fig. 5�c�. 	
ranges from a few nanometers close to the gap up to
�500 nm at higher energies. The electrons indeed tend to
localize in the largest sections of the nanowires near the con-
duction band edge 
see Fig. 1�a�. As another illustration, the
local density of states is shown at two conduction band en-
ergies in Fig. 5�a� for a short nanowire with length L
�30 nm. The corresponding localization lengths are
	�1.475 eV�=13.5 nm and 	�1.55 eV�=114.5 nm.

In weakly disordered quasi-one-dimensional �quasi-1D�
systems, the fundamental length scales 	 and �e are expected
to fulfill the relation 	�2�N�+1��e.

39,50 This relation was
first established by Thouless39 for strictly one-dimensional
systems then further generalized using random matrix theory
to weakly disordered quasi-1D systems with a large number
of conducting channels.40 Recently, it has been challenged
numerically in models of chemically doped, disordered car-
bon nanotubes.51 The 	 / �2�e� ratio in SiNWs is compared to
N�+1 �deduced from the band structure of the ideal nano-

wire� in Fig. 6. As evidenced by our calculations, 	 / �2�e�
roughly scales as N�+1 close to the conduction band edge,
but not at higher energies. These discrepancies likely arise
because the surface roughness induces large changes in the
electronic structure of such thin Si nanowires �as shown in
Fig. 1�, which hinder the identification of a well-defined
channel structure. Similar discrepancies were also recently
reported in simplified models of disordered quantum wires,
but in the presence of a magnetic field.19

IV. CONCLUSION

In conclusion, some key transport length scales have been
investigated in disordered semiconductor nanowires using an
optimized real-space, order N Kubo-Greenwood method
combined with a recursive Green’s function based Landauer-
Büttiker approach. The effectiveness of an atomistic surface
roughness profile in limiting transport has been demon-
strated, and the trends in the energy-dependent electron and
hole mobilities, mean free paths, and localization lengths
have been discussed at a quantitative level. The limitations of
the Thouless relation in such complex disordered systems
have also been pointed out. Other studies focusing on the
role of nanowire orientation, diameter, and on other kind of
disorders such as dopants,29,52 surface defects, or oxide traps
deserve further consideration. Moreover, the impact of disor-
der on SiNW-based field-effect devices should also be
investigated,53 beyond its intrinsic effects on the transport
length scales.
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