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Recent investigations have highlighted the failure of a sum of R−6 terms to represent the dispersion inter-
action in parallel metallic, anisotropic, linear, or planar nanostructures �J. F. Dobson, A. White, and A. Rubio,
Phys. Rev. Lett. 96, 073201 �2006�, and references therein�. By applying a simple coupled-plasmon approach
and using electron hydrodynamics, we numerically evaluate the dispersion �noncontact van der Waals� inter-
action between two conducting wires in a collinear pointing configuration. This case is compared to that of two
insulating wires in an identical geometry, where the dispersion interaction is modeled both within a pairwise
summation framework and by adding a pinning potential to our theory leading to a standard oscillator-type
model of insulating dielectric behavior. Our results provide a further example of enhanced dispersion interac-
tion between two conducting nanosystems compared to the case of two insulating ones. Unlike our previous
work, this calculation explores a region of relatively close coupling where, although the electronic clouds do
not overlap, we are still far from the asymptotic region where a single power law describes the dispersion
energy. We find that strong differences in dispersion attraction between metallic and semiconducting or insu-
lating cases persist into this nonasymptotic region. While our theory will need to be supplemented with
additional short-ranged terms when the electronic clouds overlap, it does not suffer from the short-distance
divergence exhibited by purely asymptotic theories and gives a natural saturation of the dispersion energy as
the wires come into contact.
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I. INTRODUCTION

The dispersion interaction constitutes the outer, attractive
part of the van der Waals �vdW� force �in the nonretarded
regime, for charge-neutral, nonpolar species�. It can be ex-
plained via the interaction between small instantaneous di-
poles arising due to a mutual dynamic polarization of the
electron clouds �see, e.g., Ref. 1�. These attractive forces,
although weaker in magnitude than ionic or covalent bonds
between atoms or molecules, are ubiquitous across nature
and can play a central role in soft matter and biophysical
systems. Examples range from protein folding2–4 to the ad-
hesive properties of gecko feet.5,6 While the present work
cannot describe the contact regime where the vdW force is
strongest, it does suggest that noncontacting regions may
contribute more than previously suspected to the energetics,
in cases where pi-conjugation, for example, may lead to
near-metallic behavior in low-dimensional structures.

Dispersion forces also play an important role in the rap-
idly progressing area of nanoscience. Nanotubes are quasi-
one-dimensional structures, with electronic properties deter-
mined by their composition. The metallic or semiconducting
behavior depends on the helicity of carbon nanotubes. Nano-
tubes composed of boron nitride are primarily semiconduct-
ing, with a wide band gap and stable electronic properties.7,8

Armchair �n ,n� carbon nanotubes are metallic. The vdW at-
traction facilitates the self-assembly of single-walled nano-
tubes into bundles or ropes9 and being the primary intertube
attraction is important in a description of the cohesive ener-
getics of nanotube bundles.10

Recently, the differing asymptotic behavior of vdW inter-
actions for conducting systems, compared to insulating sys-

tems with identical geometry, has been displayed for various
systems.1,11–13 The simplest standard techniques applied in
computing the vdW interaction are based on the pairwise
summation of all R−6 contributions14 between microscopic
elements separated by distance R and so inherently assume
local properties of the two materials. More sophisticated
techniques15,16 when coupled with the usual assumption of a
local bulk-like dielectric function within the boundaries of
the constituents still lead to an interaction asymptotically
equivalent to a sum of R−6 contributions. Recently, progress
has been made in formalisms that describe both the contact
region of electron cloud overlap, as well as a dispersion con-
tribution at large distances.17–25 However, these theories pre-
dict the usual asymptotic �R−6 behavior and so could still be
improved with respect to the description of low-dimensional
systems with a small or zero electronic energy gap.

For a determination of the vdW interaction between
highly anisotropic systems of metallic nature, a pairwise
summation method fails to incorporate the long wavelength,
incompletely screened electron density fluctuations. These
lead to unexpected power laws for the vdW interaction as a
function of separation.12 The effects of this physics appear in
calculations on parallel one-dimensional �1D� electron
gases,26 on two-dimensional electron gases,27–29 and in
graphene sheets.12 More recently, this has been highlighted
as a more general phenomenon.12 The greatest underestima-
tion of the vdW interaction occurs between distant parallel
quasi-one-dimensional conductors.12,26,30

The coupled-plasmon approach addresses the shortfalls of
the pairwise summation technique, incorporating polariza-
tion between multiplets of atoms in the system and also elec-
tron movement within the wires. In modeling the electronic
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motions as coupled plasmons, large electron displacement
across many atoms in a system is allowed to occur, providing
a less constrained representation of electron movement. Plas-
mon frequencies can be determined by application of elec-
tron hydrodynamics, and the vdW dispersion energy then
corresponds to the separation dependent part of the sum of
zero-point plasmon energies. This approach has been em-
ployed previously in the determination of the vdW interac-
tion between systems of thin parallel metallic plates and also
thin parallel metallic wires. The sum of plasmon energies is
also known to provide an approximation to the full correla-
tion energy in the random phase approximation �RPA� �see,
e.g., Ref. 13�. A full RPA energy calculation would thus pro-
vide a natural and seamless extension to the present method,
valid at all separations including the regime of full electronic
cloud overlap.

For two thin parallel metallic plates of infinite area, sepa-
rated by a distance greater than the thickness of the plates,
Böstrom and Sernelius29 and Dobson and Wang28 have ap-
plied the coupled-plasmon approach to obtain a dispersion
energy of dependence D−5/2 on the separation distance D of
the metal slabs. This result is in agreement with the appro-
priate limit of microscopic random phase approximation cal-
culations for a pair of two-dimensional electron gases per-
formed by Sernelius and Björk.27 A pairwise summation
analysis for this system of thin parallel metallic plates gives
a D−4 dependence of the vdW attraction, notably smaller at
large separation than the D−5/2 dependence derived by apply-
ing the coupled-plasmon approach. An equally unconven-
tional result was obtained for the interaction between
graphene planes.11,12

Another example system in which the pairwise summa-
tion analysis was shown to underestimate the dispersion in-
teraction for conductors is that of two parallel wires of infi-
nite length.12,26,30,31 For a pair of parallel, conducting,
infinitely long wires, the dispersion interaction, calculated by
a standard sum of R−6 contributions between microscopic
elements separated by distance R, has a D−5 dependence on
the separation distance D of the two wires. However, an
analysis of the zero-point energy of the delocalized coupled
1D plasmon modes parallel to the long axis, modeled for
wires of length L�D, finds the vdW interaction to have a

D−2�ln�D/A�−3/2� �1�

dependence on separation distance D. A denotes the smear-
ing radius of a wire, representing the finite extent of the
electronic wave function or electronic density fluctuation on
the wire in the direction perpendicular to the long axis. The
analysis assumes an electron mean free path greater than the
separation distance of the wires, which can be satisfied by
bismuth nanowires32 and conducting nanotubes.10,33 The
vdW interaction �Eq. �1�� is almost 3 powers of D greater
than that obtained in a standard pairwise summation frame-
work. This highlights the importance of including electron
movement and screening from subsequent polarization of
electron pairs in conducting systems. The occurrence of an
enhanced dispersion interaction in metallic systems might
have repercussions, particularly in nanotechnology. The
above considerations suggest that metallic and nonmetallic

nanotubes could experience different cohesive forces, for ex-
ample, though analysis beyond the present methods would be
needed to explore this possibility in the case of electron
cloud overlap. In the present paper, we explore another
case31 where a sum of R−6 contributions does not yield a
correct description of the vdW interactions. We consider two
linear structures �“wires”�, each of length L, in a collinear
“pointing” configuration as shown in Fig. 1. D is the separa-
tion between the near ends of the wires, while Dcm is the
distance between the centers of the wires. A is an effective
radius of the wire, which we will discuss further in Sec. II.

Our motivation for looking at this case was threefold.
First, there is intrinsic interest in the cohesive properties of
nanostructures of all kinds, and the present work is particu-
larly relevant to the interactions of carbon nanotubes, a tech-
nologically important case. Second, recent work34 has sug-
gested that vdW forces may be involved in the surprisingly
strong force that tends to make the tips of iron microwhis-
kers grow toward one another during fluidized-bed iron ore
reduction processes. While it is not clear that the electron
mean free path in these cases is sufficiently long to validate
the assumptions of the present work, it is interesting that our
approach can predict vdW forces between linear conducting
systems in the appropriate pointing geometry that are en-
hanced compared with standard vdW theory. Third, a nu-
merical investigation of wires of finite length allows us to
look at a region of relatively close coupling where, although
the electronic clouds are not permitted to overlap, we are still
far from the truly asymptotic regime where a single power
law describes the force. We find that the dispersion interac-
tion between the wires shows strong differences between me-
tallic and insulating cases even in this nonasymptotic regime,
reinforcing asymptotic results11,12,26,27,29 already known in
other geometries. We further find that the greater interaction
at large distances in the metallic case does not imply a lesser
interaction at small distances in the metallic case, contrary to
a false expectation based on a single power law at all dis-
tances.

The paper is organized as follows. The analytic work will
be presented in Sec. II, and Sec. III then outlines the numer-
ics. Our Results and Discussion compare the dispersion in-
teraction between wires in the pointing geometry for insula-
tors and conductors and are presented in Sec. IV. The
principal findings and future prospects are discussed in the
final section.
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FIG. 1. Geometry for electron density perturbations on pointing
wires.
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II. ANALYTICS

We evaluate the dispersion interaction between the two
wires by the coupled-plasmon approach �see, e.g., Refs.
12–14�. Plasmons are quantized versions of the wavelike col-
lective motions of the electrons. The equilibrium and/or
ground state of the wire is described by a constant electron
number density per unit length, n0. Plasma waves entail a
perturbation �n�X , t� to the number density, where we have
defined a variable X �see Fig. 1� to label positions along the
wire.

Here, we neglect electronic radial and azimuthal motions,
i.e., those perpendicular to the long axis. These are frozen
out by quantum effects in atomically thin systems but can be
present in other cases. We do not consider them here be-
cause, for the thin linear systems of interest here, they consist
of spatially constrained electronic motions leading to con-
ventional vdW force laws. By contrast, the unconstrained
electronic motions along the wire will be shown below to
lead to an unconventional, enhanced long-ranged vdW inter-
action that is the principal focus of attention here. For ex-
ample, the azimuthal electronic motions have been consid-
ered by Rotkin and Hess35 in the case of two long parallel
nanotubes. They considered only small separations between
the tubes and found these modes to give a more rapidly
decaying vdW interaction as a function of nanotube separa-
tion D, compared to the purely longitudinal modes investi-
gated in Ref. 11. Thus, we expect that our neglect of the
electronic motions perpendicular to the long axis will not
affect the long-ranged forces that we are investigating here.

To describe the electronic motions along the wire, we use
a conventional hydrodynamical picture, valid even for de-
generate quantal electrons in the limit of long-wavelength
perturbations. During the plasmon motion, the electron fluid
element that was at position X �see Fig. 1� in the unperturbed
state of the wire �bold lines in Fig. 1� is displaced to position
X+R�X , t� �dotted lines in Fig. 1�. In the simplest hydrody-
namical model �correct to lowest order in the wave number
Q of the wave�, the motion of the fluid element is described
by Newton’s second law for a free mass under the action of
a mean potential energy function ��X , t� generated by the
Coulomb interaction with other fluid elements:
Md2R�X , t� /dt2=−���X , t� /dX=F. Here, M is the electron
effective mass for motion along the wire.

An element of electron fluid at a point on any wire will
experience a Coulomb potential due to electrons at every
other point on that wire and also due to those at every point
on the adjacent collinear wire. Considering plasmons in one
dimension, evidently, the Fourier transform of the Coulomb
potential does not converge. However, by recognizing that
the one electron wave functions are of finite extent in the
direction perpendicular to the wire, we can examine a sym-
metrically “smeared” version of the wire with finite smearing
radius A. While we apply a radially smeared pair potential,
expressed explicitly as

�̃��X − X��� =
e2

��X − X��2 + A2�1/2 �2�

in our work to follow, any expression that saturates the
Coulomb interaction for �r��A would give similar results for

the long-wavelength fluctuation phenomena that drive the
unusual effects to be explored here.

The force on an element of electron fluid at a point in time
can be expressed using the radially smeared pair potential �̃
as

M
d2R�X,t�

dt2 = −
�

�X��−D/2−L

−D/2

�n�X�,t��̃��X − X���dX�

+ �
D/2

D/2+L

�n�X�,t��̃��X − X���dX�	 . �3�

This applies for either D /2�X�D /2+L or
−�D /2+L��X�−D /2. We apply a linearized form of the
continuity equation,

�n�X,t� = −
�

�X
�no�X�R�X,t�� , �4�

to describe the perturbation to the electron number density in
terms of the equilibrium number of electrons per unit length
of wire, no�X�.

Plasmon movement within metallic wires is confined by
requiring zero electron displacement at the wire ends. An
alternative analysis, in which the zero boundary condition
occurring at the wire ends is naturally inherent, could be
obtained by applying a sine-basis decomposition. Note that
different boundary conditions, such as allowing the electron
gas to move out over the ends of the uniform positive back-
ground, which would then cause a restoring force, could be
applied instead and possibly would provide a further alterna-
tive description of the plasmon modes.

We seek time-periodic separable solutions of Eq. �3� in
the form

R�X,t� = R�X�exp�− i�t� . �5�

The left-right symmetry evident in Fig. 1 requires that
there exist even solutions for which R�X�=R�−X� and also
odd solutions for which R�X�=−R�−X�. We used this prop-
erty and put Eqs. �5� and �4� into Eq. �3�. Integrating by parts
and using the explicit form of the smeared Coulomb poten-
tial �2�, we obtained

M�2R�X�
n0e2 = �

D/2

L+D/2

R�X��� − 2�X − X��2 + A2

��X − X��2 + A2�5/2

	
− 2�X + X��2 + A2

��X + X��2 + A2�5/2	dX�. �6�

Equation �6� holds for either −�L+D /2��X�−D /2 or
D /2�X�L+D /2 and is an eigenvalue equation for the fre-
quencies �i of self-sustaining plasma oscillations �plas-
mons�, corresponding to coupled charge density fluctuations
on the two wires.

A. Evaluation of the dispersion energy

The dispersion energy EvdW is then the part of the total
plasmon zero-point energy that depends on the separation D
between the wires. Thus,
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EvdW�D� =



2 �
j

�� j�D� − � j�D → ��� . �7�

Application of numerical techniques is necessary to solve
for the eigenfrequencies �i, as the broken translational sym-
metry of the collinear wire geometry with a gap prevents
Fourier transformation being used to solve the integral equa-
tion �6� analytically in k space.

B. Incorporating internal pressure

Although the eigenvalue problem �6� derived from the
expression for the force felt on an element of electron fluid at
a point could now be solved to give us odd and even solu-
tions for the plasmon frequency, we extend this to incorpo-
rate the contribution to the force felt by an element of elec-
tron fluid from the internal pressure of the electron fluid.
This electronic pressure is caused mainly by velocity devia-
tion of electrons in a fluid element from the average velocity.
It is the electron pressure term that distinguishes our formal-
ism from a purely classical Newton II approach, and it intro-
duces the quantal and Pauli-principle physics �electron de-
generacy pressure� into the formalism. We expect it should
give higher frequencies to the plasmon modes with rapid
spatial variation. Without the pressure term, the theory cor-
rectly describes the response of a free electron gas in the
limit of long wavelength, and it agrees with the correspond-
ing limit of the quantal Lindhard response. This limit was
adequate in Ref. 12 because there the treatment was limited
to the asymptotic regime of distant interactions between in-
finitely long wires, where the long-wavelength fluctuations
completely dominate. Here, we want to explore wires of fi-
nite length at finite separations. While the phenomena which
we expose will still turn out to be due to long-wavelength
fluctuations, a detailed treatment needs to account, for ex-
ample, for the reduced polarizability of a short wire of length
L resulting from the requirement to excite wavelengths of
O�L−1� in order to polarize its electron gas. For this reason,
we introduce the plasma pressure in the simplest available
model. In some regimes, it also aids in achieving numerical
stability of the solutions.

The excess pressure due to a density perturbation �� is
usually modeled from an analysis of the free Fermi gas36–41

as �P=MB2��. Here, �� is the three-dimensional density
perturbation and B is a velocity of the order of the Fermi
velocity of the metal. We take �=nA−2. The pressure can
now be expressed in terms of the equilibrium pressure P0,
and the perturbation to the electron number density per unit
length, �n=��A2, as P= P0+A−2MB2�n. Now, B is of order
of the Fermi velocity of the metal composing a wire. The
pressure force per electron, to be added to the right side of
Eq. �3�, is then

F = −
1

�0

dP

dX
= MB2d2R�X,t�

dX2 , �8�

where from the linearized continuity �Eq. �4��, the perturba-
tion to the electron number density has again been expressed
as a function of the equilibrium number density n0 and the
displacement R of an electron fluid element.

C. Dispersion interaction for insulating wires

The prior analysis, applying a coupled-plasmon approach,
accounts for conduction of electrons and so provides a more
complete description in evaluating the vdW interaction be-
tween two conducting collinear wires. However, we would
expect the pairwise summation method of individual R−6

atomic contributions, which does not allow for electron
movement along the wires, to remain an apt description of
the dispersion interaction between insulating wires with a
sufficiently large gap. We therefore applied two different
modifications to the theory described above: Each is de-
signed to explore the difference between metallic and non-
metallic wires.

�A� A modified pairwise additive approach was applied to
calculate the dispersion interaction between two collinear in-
sulating wires. Using Eqs. �6�–�8�, we first calculated nu-
merically and tabulated the dispersion interaction energy
EvdW�� ,d� of short metallic wires of length L=�A, with sepa-
ration D=dA between the ends. �For fixed �d, we found
EvdW�� ,d� to be of the conventional form −C���d−6 as ex-
pected; see Sec. IV�. We then modeled a long insulating wire
of length L= i�A �i=1,2 ,3 , . . . � by a collection of short wire
segments of equal length �A, placed end to end, but with
electrons not allowed to flow from segment to segment. This
crudely represents individual atoms or bonds on an insulat-
ing wire, as electron movement along the wire is restricted,
now being confined to within each wire segment. Assuming
that the mutual polarization between any two wire segments
is not affected by any other wire segment composing the
collinear wire system, the pretabulated dispersion interaction
EvdW�� ,d=q�� can be used between any two segments of
length �A lying in opposite wires and separated by distance
q�. Summation of the dispersion interaction between each
segment on one wire and all segments on the opposite wire
�as illustrated in Fig. 2� then gives the total vdW interaction
for insulating wires, separated by distance D= p�, in the pair-
wise summation approach:

EvdW
pairwise�D = p�� = �

m,n=0

i−1

EvdW„�,d = �p + m + n��… . �9�

Here, each wire has length L= i�, where i is an integer.
This method provides an increasingly accurate represen-

tation of two collinear wire insulators with decreasing length
of the individual wire segments, as electron movement is
restricted to the individual wire pieces.

�B� We also explored a more conventional approach to
model an insulator by adding a harmonic pinning force
−M�pin

2 R�X� to the right-hand side of the equation of motion

�3� for MR̈. This, plus transposition and inclusion of the

FIG. 2. Pairwise summation of an element of wire A with all
corresponding elements on wire B.
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pressure term �8�, resulted in an eigenvalue problem of the
form �cf. Eq. �6��

M��2 − �pin
2 �

n0e2 R�X� = �
D/2

L+D/2

R�X��� − 2�X − X��2 + A2

��X − X��2 + A2�5/2

	
− 2�X + X��2 + A2

��X + X��2 + A2�5/2	dX� −
MB2

n0e2

d2R

dX2 .

�10�

Each eigenfrequency of Eq. �10� is of the form

�i = 
�̄i
2 + �pin

2 , �11�

where �̄i is an eigenfrequency of Eq. �10� with the pinning
term absent. A semiconducting or insulating wire with an
electronic energy gap Eg can be modeled by including a fi-
nite pinning frequency �pin�0. A metallic wire is modeled
by setting �pin=0. The idea is that each electron experiences
a force tending to tie it to its labeled equilibrium position X.
In this simple approach, the pinning energy 
�pin is loosely
associated with the electronic gap Eg of an insulator,

�pin�Eg. The pinning has the effect of reducing the polar-
izability of the electron gas, stiffening the plasmon modes
and making them less affected by coupling between the
wires. The modified frequencies �Eq. �11�� are then substi-
tuted into Eq. �7� to obtain the vdW energy as before. A
similar pinning approach gives the conventional power laws
for the vdW attraction between insulating two-dimensional
sheets �EvdW�−D−4� and for distant parallel insulating
wires42 �EvdW�−D−5�. As we will show in Sec. IV, for the
present problem in the appropriate parameter regime, the
pinned approach also produced results very similar to ap-
proach �A� in which the wire was cut into short segments.
Both will be seen to give results for the vdW interaction
between collinear wires that is very different from the case of
metallic wires.

III. NUMERICS

To solve Eq. �10� numerically, the integral is discretized
by application of the trapezoidal rule, which, along with a
zero boundary condition for the displacement at the edges of
each wire, converts the integral equation �10� to a symmetric
matrix eigenvalue equation of dimension N−1, where N is
the total number of partitions of the integral term in Eq. �10�.
With inclusion of a pinning force, the matrix eigenvalue
problem is of the form

M��2 − �pin
2 �

n0e2 Ri = �
m=1

N−1 �GimWm −
MB2N2

L2n0e2 Pim	Rm �12�

for 1� i�N−1. Here, Gim is the matrix

Gim =
A2 − 2��i − m�L/N�2

���i − m�L/N�2 + A25/2 	
A2 − 2�D + �i + m�L/N�2

��D + �i + m�L/N�2 + A25/2 .

Here, Wm=L /N, 1�m�N−1, is the weighting function for
trapezoidal integration: The end weights W0=WN=L /2N are
not sampled because of the pinning condition R0=RN=0, so

that the �N−1�� �N−1� matrix equation �12� is symmetric.
In Eq. �12�,

Pim = �i−1,m − 2�i,m + �i+1,m �13�

is a discrete dimensionless version of the second-derivative
operator. In obtaining Eq. �12� from Eq. �10�, X and X� have
been replaced by discrete positions Xi and Xm defined in
terms of the absolute wire length L, wire separation distance
D, and N by Xi=D /2+ iL /N for i=0,1 ,2 , . . . ,N and
Xm=D /2+mL /N for m=0,1 ,2 , . . . ,N.

A. Dimensionless form of equations

The eigenvalue problem can be written in dimensionless
form as follows. First, we scale all lengths by the effective
radius A, introducing dimensionless quantities d, �, ri, and wi
such that D=dA, L=�A, Ri=riA, and Wi=wiA. We also de-
fine Jim=A3Gim which is dimensionless. We introduce a char-
acteristic frequency �0 defined by

�0 =
 n0e2

MA2 , �14�

which is 1
2�P, where �P=
4�n0��A2�−1e2 /M is the bulk

plasma frequency calculated assuming a bulk electron den-
sity n3D=n0��A2�−1, as though the 1D density n0 were dis-
tributed uniformly throughout a cylinder of radius A. Then,
the equation of motion �12� can be written in dimensionless
form as

�2 − �pin
2

�0
2 ri = �

m=1

N−1 �Jimwm − �2N2

�2 Pim	rm, �15�

where

Jim =
1 − 2�2�i − m�2N−2

��2�i − m�2N−2 + 1�5/2 	
1 − 2�d + ��i − m�N−1�2

��d + ��i − m�N−1�2 + 15/2

�16�

for even ��� and odd ��� solutions, respectively. In Eq. �15�,

�2 =
B2

A2�0
2 �17�

is a dimensionless measure of the importance of the pressure
term. Equation �15� holds for 1� i�N−1.

The discrete eigenfrequencies � j from numerical solution
of the �N−1�� �N−1� matrix equation �15� were used as
follows in calculating the attractive dispersion energy EvdW
between the wires �cf. Eq. �7��:

EvdW =



2 �
j=1

N−1

�� j
�+��d� + � j

�−��d� − 2� j
�0��d → ��� . �18�

Here, � j
�+��d� is the jth eigenvalue of Eq. �15� with the �

sign used in Eq. �16�, corresponding to even plasmon modes.
Similarly, � j

�−��d� is the eigenvalue with the � sign in
Eq. �15�, corresponding to odd modes. � j

�0��d→�� is the jth
eigenvalue with only the first term kept in Eq. �16�, corre-
sponding to infinite separation d→�. Note that the even and
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odd modes are degenerate in the limit d→�, accounting for
the factor of 2 in the last term of Eq. �18�.

B. Numerical convergence

Numerical convergence of the dispersion interaction with
respect to N was also verified. A larger N corresponds to
dividing the integral into more partitions; consequently, as
more “points” along the wire are sampled, larger N means
plasmon modes with shorter wavelengths are also sampled.
The lowest plasmon mode wavelengths are expected to con-
tribute negligibly to the dispersion interaction, so for suffi-
ciently large N, numerical convergence of the vdW interac-
tion should be evident. We found that N up to 800 was
sufficient for convergence of the dispersion interaction for
wires separated by D=2A at all of the lengths treated here
�up to 80A�. Increasing the internal pressure, corresponding
to using a larger Fermi velocity, gives a more rapid conver-
gence of the dispersion interaction with respect to N and a
weaker vdW attraction between the two wires. This is be-
cause the pressure term stiffens the short-wavelength modes,
making them less sensitive to the weak interaction between
the wires. We also found that inclusion of the pressure im-
proved the numerical stability.

The value of N necessary for convergence �to a given
fractional level� increases with wire length and also with
wire separation distance. For comparison of the dispersion
energy for conducting and insulating wires, and in investi-
gating variation of separation distance for wires much longer
than the separation distance, we employed N sufficiently
large to achieve convergence of the vdW interaction to about
three significant figures.

C. Choice of numerical parameters for carbon nanotubes

The basic approach described above should apply to any
system where there is an essentially 1D electron gas with
long mean free path, such as a metallic nanowire or the con-
duction band of a metallic �n ,n� carbon nanotube. The re-
sults using Eq. �15� are dimensionless and therefore univer-
sal in a sense. However, the dispersion energy from Eq. �7� is
thereby obtained in units of 
�0 defined in Eq. �14�, and this
quantity will be different for different 1D systems. Our di-
mensionless lengths are defined in terms of the Coulomb
smearing length A, which is taken to be the radius of the
quasi-1D electron gas, e.g., the tube radius in the nanotube
case. It is also necessary to choose the dimensionless input
parameters �, �pin��pin /�0, to suit the particular system.

For the numerical work below, we chose parameters
roughly appropriate to the conduction band of a �5,5� single-
walled carbon nanotube. While a metallic nanotube is an
excellent metal, it is not a free-electron metal. We therefore
first establish a correspondence between our classical New-
ton II approach and the relevant q→0 quantal response by
considering an infinitely long wire as follows. A simple
model of the rigid time-oscillatory displacement of the
k-space Bloch electron distribution under an external electric
field E0 exp�iqz− i�t� gives the bare density-density response
for q→0 as

�0�q,�� = vFq2/���2
� . �19�

Here, the Fermi velocity vF= �
−1���k� /dk�k=kF
is the gradient

of the 1D Bloch energy ��k� at the Fermi point k=kF. vF can
be calculated by differentiation of the analytic Bloch electron
dispersion for single-walled �n ,n� nanotubes given in Eq.
�4.6� of Saito et al.43 In this way, we obtained the Fermi
velocity of the conduction bands �those with q=n and
q=2n in the notation of Saito et al.� as vF=
3a�t� / �2
�.
Here, �t�=3.03 eV is the hopping parameter and
a=4.65 bohr radii is the length of the primitive translation
vector of the parent two-dimensional graphene lattice. This
gives vF=9.9�105 m /s independent of n, a value quite
comparable to Fermi velocities in three-dimensional metals.

The bare response of the infinite wire can also be calcu-
lated via the Newton II approach �used in our numerical
treatment outlined above for the case of finite length�, giving

�0�q,�� = n0q2/�m�2� , �20�

where n0 is the 1D density of the electron gas and m is the
effective classical mass.

By comparing Eqs. �20� and �19�, we establish the equiva-
lence

n0/m = vF/��
� .

Thus, the energy 
�0 that scales our vdW energy predictions
�see Eqs. �7�, �14�, and �15�� is


�0 = 

 vF

�


e2

A2 =
8.02

n
eV, �21�

where we have used the result43 A=
3na / �2�� for the radius
of a �n ,n� carbon nanotube.

Assuming that the characteristic velocity B entering the
pressure term Eq. �8� is of order vF, we find that the dimen-
sionless pressure parameter � appearing in Eq. �15� is of
order unity. We used the value �=1.38 throughout.

We also need to choose values for the pinning frequency
�pin that mimic the effect of an insulating energy gap. Semi-
conducting carbon nanotubes have electron energy gaps up
to O�1 eV�. Assuming that 
�pin is of this order, we obtain
from the numbers above a ratio �pin��pin /�0=O�n /8� for a
�n ,n� nanotube. We explored cases with values of �pin vary-
ing from 0 �representing the conduction electrons of a me-
tallic wire� to �pin=1.73 �representing strongly semiconduct-
ing electron bands�.

IV. RESULTS AND DISCUSSION

We first verified that, in the pointing geometry of interest
here, our numerical coupled-plasmon approach yields the ex-
pected dispersion interaction of form EvdW�−C6���d−6 for
two wires whose �equal� dimensionless length � is much less
than their dimensionless separation d measured between their
ends. In this limit, the d−6 law can be predicted analytically
by modeling each piece of wire as a polarizable dipole.1,13 To
test this power law explicitly, in Fig. 3, we plot dcm

6 EvdW vs d,
where dcm�d+� is the distance between the centers of the
wires.
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For each chosen value of �, the plot settles down to a
constant value −C6��� for d��, which confirms the expec-
tation. This basic d−6 behavior is observed both for metallic
wires and for semiconducting wires �modeled by adding a
pinning force as described above�. For a given wire length �,
the coefficient C6��� depends considerably on the pinning
frequency �pin, i.e., metallic wires ��pin=0� attract more
strongly than insulating ones with the same concentration of
vdW interacting electrons, but still with a d−6 law for the
energy.

Much more interesting is the behavior of the dispersion
energy when the separation d is less than the length �. Here,
a single dipole does not adequately represent the electronic
response of a wire, and consequently no single power law dp

emerges for the energy EvdW�d� because a multipolar expan-
sion would be required in order to generalize the dipolar
argument. We are therefore out of the “asymptotic” region of
a distant vdW interaction, though still not in a region of
electronic cloud overlap. In this regime, a conventional ap-
proach would be to sum �integrate� contributions of form
−C�r1−r2�−6 from small segments of the two wires at posi-
tions r1 and r2, respectively. This approach predicts that, for

fixed d, the dispersion energy for increasing wire length �
will saturate rapidly as soon as � exceeds d, to a value pro-
portional to −d−4. We find that this saturation does occur for
insulating wires, as modeled either with a substantial pinning
frequency �pin or by cutting a metallic wire into mutually
insulated pieces shorter than the separation. It is definitely
not true for intact metallic wires ��pin=0� as modeled by our
full numerical coupled-plasmon approach. In the metallic
case, the interaction continues to grow with wire length and
still has not saturated for wires many times longer than the
separation. These findings are illustrated in Fig. 4.

We also investigated the behavior of our coupled-plasmon
interaction right down to zero separation of the wires, see
Fig. 5. Of course, a realistic treatment of this regime would
require the inclusion of covalent and other forces that are not
described in our formalism and that are specific to the par-
ticular quasi-1D system. Furthermore, a detailed plasmon
treatment even of the dispersion part of the energy in this
regime would require electronic response functions beyond
the long-wavelength description that we have used. How-
ever, our results establish the important result that our
method saturates naturally to a finite value at contact, unlike
empirical vdW correction schemes of the �CijRij

−6 type,

FIG. 3. Dispersion energy dcm
6 EvdW vs d for

dimensionless length �=2, pressure parameter
�=1.38, and zero pinning.

FIG. 4. �Color online� Dispersion energy EvdW vs wire length � for fixed separation d=2 and pressure parameter �=1.38. Diamonds:
metallic wire ��pin=0�. Solid squares: semiconducting wire with �pin=0.707. Solid triangles: semiconducting wire with �pin=1.0. Crosses:
semiconducting wire with �pin=1.224. Asterisks: semiconducting wire with �pin=1.732. Solid circles: metallic wire ��pin=0� that has been
cut into pieces of length 2. The unit of energy �on the vertical axis� is 
�0 as defined in Eqs. �14� and �21�. For the conduction band of a
�5,5� carbon nanotube, this energy unit is 1.6 eV.
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which have to be cut off in a somewhat arbitrary manner to
avoid divergence. Another significant conclusion from our
numbers in this small-separation regime concerns the relative
strength of the dispersion energy for metallic and nonmetal-
lic cases. Because the analytic results in various
geometries12,26 for the metallic interaction fall off with a
lower power and hence dominate the insulating result at
large distance, one might speculate that the opposite ordering
holds at small separation, i.e., that the insulating interaction
is stronger than the metallic one at small separation. How-
ever, such an argument depends on the assumption of the
same single power law for small separations as well as large.
This is not the case, and at small separations d, a power
series rather than a single power would be required for this
type of analysis. In fact, our results show that the metallic
attraction is stronger than the insulating one at all separations
for constant electron number density.

V. SUMMARY AND CONCLUSIONS

We have explored the dispersion interaction between two
collinear 1D electronic systems �wires� separated by a
vacuum gap in the electromagnetically nonretarded regime.
We considered the metallic case and also two models of an
insulating and/or semiconducting case. The metallic case was
modeled via free 1D electrons with an electronic pressure
term, but this model was also matched to a quantum band
model for the electrons for the purpose of modeling the con-
duction electron bands in carbon nanotubes. For the insulat-
ing cases, either a harmonic pinning force was added to the

equations or a model of very short, mutually insulated me-
tallic pieces was used, with rather similar results to the case
of a pinning force. Our calculations provide significant in-
sight additional to that previously obtained from asymptotic
dispersion energy calculations12,13,26,27,29 on low-dimensional
systems with at least one infinite spatial dimension. These
previous analytic calculations were all performed for the
asymptotic regime where a single power law �sometimes
multiplied by a logarithm� suffices to describe the dispersion
energy as a function of separation D. These previous works
showed that the distant interaction in these highly anisotropic
systems shows major qualitative differences between the me-
tallic and insulating cases. Specifically, the power law is dif-
ferent in the two cases, with the metallic interaction being
stronger in the asymptotic regime studied.

In contrast to those fully asymptotic calculations, we
treated wires of finite length L, with a finite separation D
between their ends, a regime where a single power law in D
does not describe the interaction. Unlike the asymptotic
cases, we find that the interaction at finite separations is a
continuous function of the pinning frequency �i.e., a continu-
ous function of the electronic energy gap�. Our coupled-
plasmon dispersion energy does, however, remain a strong
function of the gap right down to the limit of contacting
wires, where it remains finite, unlike asymptotic formulas for
the same quantity. In particular, we find a large difference
between the attractive dispersion energy of the most polariz-
able electron bands of metallic and semiconducting carbon
nanotubes. The dispersion energy was found to decrease
monotonically with energy gap at all values of L and D that
we studied.

We also found that a conventional pairwise summation of
terms of form −CR−6 is not an adequate description of me-
tallic wires, with a major discrepancy between this model
and our coupled-plasmon results. Specifically, the coupled-
plasmon energy, while similar to the summation approach for
very short wires, continues to grow with length L at fixed
separation D, while the −�CR−6 energy saturates rapidly to
an L→� value that is much smaller than the coupled-
plasmon energy.

A more detailed microscopic model, including a detailed
orbital description with Pauli repulsion and nondispersive
bonding forces, will be required to describe the cohesive
forces at distances where the electronic clouds overlap. The
present results suggest, however, that long-wavelength
coupled charge fluctuations will still enhance the vdW force
at these distances, necessitating a highly nonlocal model of
the Coulomb screening even in this limit. Theories that yield
a �R−6 asymptotics cannot be relied upon to achieve this.
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