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We theoretically study the electronic properties of a graphene sheet on the xy plane in a spatially nonuniform
magnetic field, B=B0ẑ in one domain and B=B1ẑ in the other domain, in the quantum Hall regime, and in the
low-energy limit. We find that the magnetic edge states of the Dirac fermions, formed along the boundary
between the two domains, have features strongly dependent on whether B0 is parallel or antiparallel to B1. In
the parallel case, when the Zeeman spin splitting can be ignored, the magnetic edge states originating from the
n=0 Landau levels of the two domains have dispersionless energy levels contrary to those from the n�0
levels. Here, n is the graphene Landau-level index. They become dispersive as the Zeeman splitting becomes
finite or as an electrostatic step potential is additionally applied. In the antiparallel case, the n=0 magnetic edge
states split into electronlike and holelike current-carrying states. The energy gap between the electronlike and
holelike states can be created by the Zeeman splitting or by the step potential. These features are attributed to
the fact that the pseudospin of the magnetic edge states couples to the direction of the magnetic field. We
propose an Aharonov–Bohm interferometry setup in a graphene ribbon for an experimental study of the
magnetic edge states.
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I. INTRODUCTION

Graphene, a two-dimensional �2D� honeycomb lattice of
carbons, has attracted much attention because of its unusual
electronic properties. In the low-energy regime, electrons
near the two inequivalent valleys, K and K�, of its electronic
structure can be described by massless Dirac fermions1,2 and
they exhibit half-integer quantum Hall effects,3,4 in contrast
to the quantum Hall effect of the conventional 2D electrons
formed in semiconductor heterostructures.5 The long phase
coherence length and mean free path, of micrometer order,
measured6,7 in high-quality graphenes indicate potential ap-
plications of a graphene ribbon to coherent nanodevices.

On the other hand, the electron properties of the con-
ventional 2D systems have been investigated in the pre-
sence of spatially nonuniform magnetic fields. The nonuni-
form fields can cause the formation of charateristic current-
carrying edge states8,9 along the region of field gradient,

which correspond to the semi �� B�B� drift motion. These
states have been referred10 to as magnetic edge states in

analogy to the edge states,11 corresponding to the E� �B�

drift along sample boundaries. Their features have been
studied experimentally.12 The nonuniform fields can form
various magnetic structures such as magnetic steps,13–15

magnetic quantum dots,10,16,17 magnetic rings,18 magnetic
superlattices,19–21 etc., and play the role of characteristic bar-
riers and resonators for electron transport,22,23 the properties
of which are very different from those formed by an electro-
static gate potential.

A graphene sheet may provide a good experimental sys-
tem for studying the effects of the nonuniform magnetic
fields as a nonuniform-field configuration can be effectively
generated by applying a uniform field to a curved sheet.24 In
addition, the Dirac fermions in graphene can have interesting
properties under nonuniform fields,25 which may be different
from those of the magnetic edge states in the conventional
2D systems, since the Dirac fermions have electronlike, zero-

mode, and holelike Landau levels, as well as the pseudospins
representing the two sublattice sites of the honeycomb lat-
tice. Therefore, it may be valuable to study the electron prop-
erties of graphene in a nonuniform magnetic field, which is
the aim of the present work.

In this theoretical work, we study the electronic structures
of a graphene sheet �on the xy plane� in a spatially nonuni-
form magnetic field of step shape, B� =B0ẑ for x�0 and B�

=B1ẑ for x�0, in the integer quantum Hall regime, based on
a noninteracting-electron approach. By solving the Dirac
equation, we first investigate the low-energy properties of the
magnetic edge states formed along the boundary �x=0� be-
tween the two domains with different fields B0 and B1 when
the Zeeman effect is negligible. They are found to strongly
depend on whether B0 is parallel or antiparallel to B1. In the
palallel case of ��B1 /B0�0, the magnetic edge states origi-
nating from the n=0 Landau levels of the two domains are
dispersionless contrary to those from the n�0 levels, where
n is the Landau-level index. In the antiparallel case of �
�0, the n=0 magnetic edge states split into electronlike and
holelike levels near the boundary. These features, which are
absent in the magnetic edge states of the conventional 2D
electrons, are attributed to the fact that the pseudospin of the
magnetic edge states couples to the direction of the magnetic
field. On the other hand, the features of the n�0 magnetic
edge states are similar to those of the conventional cases.

We further study the magnetic edge states in the presence
of an additional electrostatic step potential, V�x�=V0 for x
�0 and V�x�=V1 for x�0. For ��0, the n=0 magnetic
edge states become dispersive, while for ��0 an energy gap
becomes created around the bipolar region in the spectrum of
the magnetic edge states. Similar features can be found when
the Zeeman spin splitting is finite, because in the nonuniform
field of step shape, the Zeeman effect behaves as the step
potential.

Finally, we suggest an interferometry setup formed in a
graphene ribbon for experimental study. In this setup, the
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magnetic edge states can provide partial paths of a full
Aharonov–Bohm interference loop, therefore the properties
of the magnetic edge states such as the gap of their energy
spectra can be investigated. We numerically calculate the
transmission probability through the setup by using the tight-
binding method and the Green function technique.30–32 The
results are consistent with the features of the magnetic edge
states obtained by solving the Dirac equation. We also derive
the transmission probability, based on the scattering matrix
formalism, and use it to analyze the numerical results.

This paper is organized as follows. The magnetic edge
states are studied without and with the electrostatic step po-
tential in Secs. II and III, respectively. The Zeeman spin
splitting is considered in Sec. IV, and the graphene interfer-
ometry is suggested and investigated in Sec. V. In Sec. VI,
this work is summarized. Throughout this work, we ignore
the intervalley mixing due to the nonuniform field, the valid-
ity of which is discussed in Appendix A. In Appendix B, we
derive the transmission probability, which may be applicable
to other graphene interferometry setups with a slight modifi-
cation.

II. MAGNETIC EDGE STATES

We consider a graphene sheet �on the xy plane� in the
nonuniform magnetic field of the step configuration,

B� �x� = �B0ẑ , x � 0

B1ẑ , x � 0,
� �1�

in the integer quantum Hall regime. Without loss of general-
ity, B0 is chosen to be positive and ��B1 /B0 is either posi-
tive or negative. This configuration may be realized with
field gradient dB /dx less than 104 T Å−1 and with not-too-
strong field strengths B0 and �B1� �less than, e.g., 100 T�. In
this case, the mixing between the K and K� valleys due to the
nonuniform field can be ignored �see Appendix A�, and the
electrons in each valley can be described separately by the
Dirac equation,

���� J · �� + V�x��	J = E	J, �2�

in the low-energy approximation. Here, J� 	K ,K�
 is the
valley index, v=�3at /2
�106 m s−1, a is the lattice con-
stant of graphene, t is the hopping energy between two
nearest-neighbor sites, �� K= ��x ,�y� and �� K�= �−�x ,�y� are

constructed by the Pauli matrices, �� � p� +eA� , p� is the mo-
mentum measured relative to the valley center �K or K�

point�, A� is the vector potential, and e��0� is the electron
charge. The electrostatic potential V�x� applied to the sheet
must be a smoothly varying function of x. The detailed form
of V�x� will be specified in Sec. III. The components of the
pseudospinor 	J represent the wave functions of the two
sublattice sites �denoted by A and B hereafter� of a unit cell
of graphene. The Dirac equations for the K and K� valleys
are connected to each other by a unitary transformation U
=�y. This feature suggests that the two equations have the
same energy levels and that their wave functions have the
relation, 	K�=U	K. Therefore, it is enough to solve the
Dirac eqaution for the K valley only.

Before studying the nonuniform-field cases, we briefly
discuss the case of a uniform magnetic field with strength B.
In this case, the Landau levels are found3 to be

En = Sgn�n���2�n�
eB , �3�

where n=0, �1, �2, . . ., is the Landau-level index. The lev-
els with n�0 are often referred to as electronlike, while
those with n�0 as holelike. In fact, one can obtain the Lan-
dau levels from the square of the Dirac Hamiltonian,

En
2 = 2
e�2B�m + 1/2 � 1/2� �4�

for the K valley, with �n�=m+1 /2�1 /2 and m=0,1 ,2 , . . ..
For a later discussion, it is worthwhile to analyze En

2. The
harmonic term with B�m+1 /2� is nothing but the Landau
level of the conventional 2D electrons, while the next term
�B /2 can be interpreted as the effective-Zeeman effect of
the pseudospin; B /2 for pseudo-spin-up and −B /2 for
pseudo-spin-down. Each Landau level with n�0 is com-
posed of the pseudo-spin-up �with m= �n�−1� and pseudo-
spin-down �with m= �n�� states, while the n=0 level comes
only from the pseudo-spin-down �up� states with m=0 in the
K �K�� valley. The n=0 level is independent of B as the
harmonic and effective-Zeeman terms exactly cancel each
other.

Turning back to the nonuniform field in Eq. �1�, we con-
sider the case without electrostatic potential, V�x�=0, in this

section. We choose the vector potential as A� �x�=B0xŷ for x

�0 and A� �x�=B1xŷ for x�0. This choice of A� is useful, as
the solution of Eq. �2� for the K valley can be written as
	K

† �x�=e−iky�†�x�=e−iky(
A
*�x� ,

B
*�x�), where  j is the wave

function of the sublattice site j� 	A ,B
 and 
k is the eigen-
value of py. Hereafter, we will measure energy and length in
units of E1 ���2
v2eB0� and lB ���
 /eB0�, where lB and E1

are the magnetic length and the energy gap between the n
=0 and n=1 Landau levels, respectively, of the bulk region
with B0. In these units, the Landau levels are equal to �n at
x�−1, while they are equal to Sgn�n�����n at x�1 /����.
Then the equation for  j=A,B is found to be

−
d2 j,k�x�

dx2 + 2�Veff
j �x,k� − En,k

2 � j,k�x� = 0. �5�

The effective potential10 Veff
j is harmonic,

Veff
j �x,k� = 

1
2 �x + k�2 + sj

1
2 , x � 0

1
2 ��x + k�2 + sj

�

2
, x � 0, � �6�

where sj=A=1 and sj=B=−1. Equation �5� has the form of the
usual Schrödinger equation with potential Veff

j and eigen-
value En,k

2 . Therefore, Veff
j is useful for understanding  j,k�x�

and En,k. The form of Veff
j in Eq. �6� shows that the pseu-

dospin �sj� couples to the direction ��� of the magnetic field.
The solution  j,k

� of Eq. �5� for x�0 can be expressed in
terms of the parabolic cylinder functions26 D��z� as
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�A,k
�

B,k
� � � �iEDE2−1�− �2�x + k��

DE2�− �2�x + k��
� . �7�

On the other hand, for x�0, the solution  j,k
� is found to be

dependent on the sign of �, i.e., on whether B1 is either
parallel or antiparallel to B0. For ��0,

�A,k
�

B,k
� � ��− i

E
��

D�E2/��−1��2��x +
k

�
��

DE2/���2��x +
k

�
�� � , �8�

and for ��0,

�A,k
�

B,k
� � �� DE2/�����2����x +

k

�
��

− i
E

����
D�E2/����−1��2����x +

k

�
�� � . �9�

The energy eigenvalue En,k can be obtained under the bound-
ary condition of the continuity of the wave functions in Eqs.
�7�–�9� at x=0. En,k is drawn in Fig. 1 for the two cases of
�=2 and �=−1. These two specific cases of � are enough to
understand the characteristics of the magnetic edge states.

The energy levels strongly depend on whether B1 is par-
allel or antiparallel to B0. In the parallel case of ��0, for
each n the energy levels gradually change from Sgn�n���n� to
Sgn�n��� �n� as k decreases from positive to negative values
�see the �=2 case in Fig. 1�a��. This feature can be under-
stood from the effective potential �see Eq. �6� and Fig. 1�c��.
As k increases from negative to positive values, the bottom
of Veff

j �x� moves from the region with B1 to that with B0,
passing the boundary x=0 around k=0. Therefore, for k�0,

the eigenstates have the Landau levels Sgn�n��� �n� and lo-
calize around x=−k /� �in the unit of lB�, while for k�0,
they have Sgn�n���n� and localize around x=−k. Around k
=0, the two levels of Sgn�n��� �n� and Sgn�n���n� connect
smoothly and the corresponding states are localized around
x=0. These states have been called10 magnetic edge states
and they can carry current along the boundary x=0.

Contrary to the corresponding states in the conventional
2D systems, the magnetic edge states in graphene have the
following different features for ��1. First, the edge states
with n�0 behave as electrons, with dispersion dEn /dk�0,
while those with n�0 behave as holes, with dEn /dk�0.
Second, the edge states with n=0 are dispersionless and
carry no current regardless of ���0�. These features come
from the nature of the Dirac fermions. Especially, the second
one can be understood from the fact that for ��0, the
effective-Zeeman and harmonic contributions to En=0

2 cancel
each other on both sides of x=0, as discussed in Eq. �4� and
as shown in the term of Veff

j representing the coupling of
pseudospin to field direction �see Eq. �6��. The case of 0
���1 can be understood in a similar way.

Next, we discuss the case of ��0, which is very different
from the ��0 case �see Fig. 1�b��. For large positive k, the
eigenstates have the Landau levels of Sgn�n���n� or
Sgn�n����n�, while for large negative k��0�, their energy
either increases �shows electronlike behavior� or decreases
�holelike�. This feature can be understood from Veff

j �x ,k�. As
shown in Fig. 1�d�, for large positive k, the two local har-
monic wells of Veff

j �x ,k� occur far from the boundary of x
=0, resulting in the Landau levels that are localized in each
well. As k decreases to negative values, the two local wells
move toward x=0 and merge into a single well �not har-
monic anymore� at x=0, and then the bottom of the merged
well increases. Therefore, the eigenstates with k�0 are mag-
netic edge states localized at x=0 and they can carry current
along x=0. They are either electronlike �dEn�0 /dk�0� or
holelike �dEn�0 /dk�0�. One can estimate their group veloc-
ity for k�0 as �1 /
�dEn /dk� �v from the minimum value
of the merged well of Veff

j , where � ��� stands for the hole
�electron�-like states. In the case of ��0, where the mag-
netic fields B0 and B1 are antiparallel, the eigenstates in
n�0 Landau levels correspond to classical motions, so-
called snake orbits,8–10,14 while those in the n=0 level have
no clear correspondence to classical motions as they have
both electron and hole characters.

For ��0, the effective-Zeeman contribution to En
2 has the

opposite sign between the domains of x�0 and x�0, as
shown in Eq. �6�. This coupling of pseudospin to field direc-
tion causes an energy barrier at x=0. For example, a pseudo-
spin-down state has larger effective-Zeeman contribution at
x�0 than at x�0. As a result, as k decreases, the magnetic
edge state becomes more confined around x=0 due to the
effective-Zeeman barrier. This pseudospin feature, which en-
hances the splitting into electronlike and holelike states, is
absent in the magnetic edge states of the conventional 2D
electrons.

III. MAGNETIC EDGE STATES IN AN ELECTROSTATIC
STEP POTENTIAL

In this section, we consider an additional electrostatic po-
tential V�x� of step shape,
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FIG. 1. �Color online� Upper panels: Energy spectra En,k for �a�
�=2 and �b� �=−1. The energy levels of the n=0 magnetic edge
states are highlighted by the filled squares. For ��0, the n=0 lev-
els are dispersionless, while they split into electronlike and holelike
levels for ��0. Lower panels: Effective potential Veff

j=B�x ,k� in Eq.
�6� for �c� �=2 and �d� �=−1. Different values of k=1.5 �solid
line�, 0 �dashed�, and −2 �dotted� are chosen. Energy and length are
measured in units of E1 ���2
v2eB0� and lB ���
 /eB0�,
respectively.
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V�x� = �V0, x � 0

V1, x � 0,
� �10�

to the nonuniform magnetic field in Eq. �1�. Here, V0 and V1
are constants. This potential gives rise to a characteristic
modification of the n=0 magnetic edge states, such as the
creation of an energy gap for ��0, as will be seen below.
Moreover, the modification is directly applicable to the case
where the Zeeman spin splitting is finite, as will be studied in
Sec. IV.

The step potential V�x� is assumed to be smoothly varying
in the length scale of the lattice constant a. Then, we can still
ignore the intervalley mixing and solve the Dirac equation
in Eq. �2� in the same way as above. In Fig. 2, choosing
V0=0 and V1=0.5 �in the units of E1 and lB�, we draw
the energy spectra of the magnetic edge states for �=2 and
�=−1.

The features of the energy spectra are discussed below.
For ��0, the eigenstates with large positive �negative� k
have the Landau levels shifted by V0 �V1� and do not carry
current, while the magnetic states around k=0 have the en-
ergy smoothly connecting the Landau levels of the large
positive and negative k’s. We point out that the n=0 mag-
netic edge states carry current due to the potential step V�x�.
On the other hand, for ��0, the eigenstates with large posi-
tive k have the Landau levels shifted by V0 or V1, depending
on whether they are localized in the bulk region of x�0 or
x�0. For convenience, we introduce the Landau-level indi-
ces nL and nR for those localized in x�0 and in x�0, re-
spectively. In this case, the energy levels with n=0 split,
opening the energy gap between the electronlike and holelike
magnetic edge states contrary to the case without the step
potential. For �=−1 and V1−V0=0.5, the gap size is the
same as the step height V1−V0.

We further study the energy gap with varying height V1
−V0 for �=−1. In Fig. 3, we choose V1−V0=1.5, which is
larger than the energy spacing between the n=0 and n=1
Landau levels, contrary to the case of Fig. 2�b� where the
height �=0.5� is smaller. In this case, the energy gap of the
magnetic edge states occurs between the nL=1 and nR=−1
Landau levels. Moreover, the gap size is no longer the same
as the step height, but corresponds to the energy difference
�=0.5� between the nL=1 and nR=−1 levels.

The above feature can be understood as follows. For
�=−1, the effective Hamiltonian in Eq. �2� is odd under the
inversion operator Rinv, Rinvx� =−x�,

Rinv�v�� J · �� + V�x� −
V0 + V1

2
�RinvRinv	J

= − �v�� J · �� + V�x� −
V0 + V1

2
�Rinv	J

= �E −
V0 + V1

2
�Rinv	J. �11�

This property is consistent with the facts that the gap center
is located at Ec��V0+V1� /2 and that the gap size is deter-
mined by the energy difference between the Landau levels
just below and above Ec. Similar to the case in Fig. 1, it can
also be understood27 from Veff

j that the states with E�Ec are
electronlike, while those with E�Ec are holelike.

IV. ZEEMAN SPLITTING OF THE MAGNETIC EDGE
STATES

So far, we have ignored the spin degree of freedom. Re-
cently, Abanin et al. discussed33 that, in graphene, the Zee-
man splitting can be smaller than the Landau energy gap
only by the factor of about 10−1, due to the exchange inter-
action, and that it can play an important role in the edge-
channel transport in the quantum Hall regime. In this section,
we discuss the effect of the Zeeman splitting on the magnetic
edge states.

In the nonuniform field B�x� in Eq. �1�, the Zeeman split-
ting behaves as a spin-dependent step potential,

Vs
Z�x� = s�ZB�x� , �12�

where �Z=g*�B /E1, s=1 /2 �s=−1 /2� for spin-up �down�
electrons, and �B is the Bohr magneton. The exchange
enhancement33 of the g factor can be taken into account in
g*. We assume that Vs

Z�1 for convenience.
The Zeeman splitting can be considered as the spin-

dependent shift of the step potential, V�x�→V�x�+Vs
Z�x�.

The resulting magnetic edge states can easily be understood
from the features discussed in Sec. III. In Fig. 4, we draw
schematic energy dispersions of the n=0 magnetic edge
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(b) γ = -1

E n=0
n=1
n=2

nL=0

nL=1

nL=-1

nR=0

nR=-1

FIG. 2. The same as in Fig. 1 but in the presence of the step
potential V�x� with V0=0 and V1=0.5. For �=−1, the energy levels
are labeled by nL and nR, which are the indices of the Landau levels
localized at x�−1 and at x�1 /����, respectively �see text�. The
n=0 levels become dispersive for ��0, while the energy gap opens
between electronlike �nR=0� and holelike levels �nL=0� for ��0.
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FIG. 3. The same as in Fig. 2�b� but with �V0 ,V1�= �0,1.5�.
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states; the extension to n�0 states is trivial. For ��0, the
n=0 states are dispersive near x=0, as shown in Figs. 4�a�
and 4�b�. The energy difference between the spin-up and
-down states varies from ��Z to �Z as k increases. The av-
erage value of the spin-up and -down energy levels is shifted
by V0 �V1� at large positive �negative� k. On the other hand,
for ��0, the energy gap of the n=0 magnetic edge states
exists even without the electrostatic step potential �see Fig.
4�c��. For both the cases of ��0 and ��0, the sign of the
drift velocity ��dE /dk� is either positive or negative, de-
pending on �Z, V0, and V1. These spin-split dispersions show
that spin-polarized current can emerge between two mag-
netic domains.

V. GRAPHENE INTERFEROMETRY

In this section, we propose an interferometry setup for
studying magnetic edge states in a graphene ribbon. We fo-
cus on the case of �=−1 in Fig. 2�b� and demonstrate that
the energy gap of the magnetic edge states can be directly
studied by observing the Aharonov–Bohm interference of the
setup. The interferometry setup is useful as well for the other
cases of �.

We consider a ribbon with armchair edge; a setup with
zigzag edge will show a similar result. The ribbon consists of
three parts; the current source in the left, the middle scatter-
ing region, and the drain in the right. A nonuniform magnetic
field is applied such that B=B0ẑ in the source and drain,

while B= B̃0ẑ�−B0ẑ in the middle region �see Fig. 5�. At the
same time, a constant electrostatic potential V0=0 is applied
to the source and drain, while V1=0.5 in the middle region.
Then, the magnetic edge states form along the left and right
boundaries ab and cd of the middle region, while along each
boundary of the ribbon, there is one edge channel, which is
formed as a mixture of the contribution of the K and K�
valleys.28 The magnetic edge states are the same as those
studied in Fig. 2�b�, when their position separates from the
ribbon edge by more than the scale of magnetic length, lB

��
 /eB0, so that the overlap between the magnetic edge
states and the ribbon-edge channels is negligible. Note that at
each of the scattering points a–d in Fig. 5�a�, the number of

the incoming channels is the same as that of the outgoing
channels, so that the current is conserved.

The formation of the magnetic edge states depends on
energy. In the energy range ��0.5,1� of Fig. 2�b�, where
each valley supports only one magnetic edge channel, one
has the edge-channel transport shown in Fig. 5�a�. In this
case, there appears an Aharonov–Bohm loop around the
middle region, which is supported by the two counterpropa-
gating edge channels along the upper and lower ribbon edges
and by the magnetic edge states along the boundaries ab and
cd. As a function of B̃0, one can observe the Aharonov–
Bohm interference in the transmission through the setup. On
the other hand, in the energy range ��0,0.5�, where there is
no magnetic edge state along ab and cd �see Fig. 5�b��, no
Aharonov–Bohm interference can be observed. Therefore,
the Aharonov–Bohm loop can be formed, depending on
whether the magnetic edge channels exist along the bound-
aries ab and cd. This property allows one to measure the gap
of the magnetic edge states by varying the energy of the

incoming edge channel and by modulating B̃0.
We confirm the above proposal numerically by calculating

the transmission probability T�E� through the setup, using
the tight-binding method29 and the Green’s function
approach.30,31 Here, we skip the details of the method and
instead refer Refs. 23 and 32. The effect of the magnetic field
is taken into account by the Peierls phase. The strength of B0
is set to be about 800 T. At the boundaries ab and cd, the

magnetic field spatially varies linearly from B0 to B̃0 over the
length scales of 3lB. We choose the ribbon width �ab� and the
width �bc� of the middle region to be about 15lB and 30lB,
respectively, so that we can ignore the overlap between the
edge channels propagating oppositely to each other.

In Fig. 5, we plot T�E� for E=0.65 and E=0.35 as a

function of the Aharonov–Bohm flux �2��B̃0�S /0, where

n =0,
R

n =0R

n =0L
n =0L

n =0R

0

0

(a) γ (b) γ

(c) γ (d) γ

E

k k

E

k k

n=0 n=0
=2 =2

=−1 =−1
L n =0

FIG. 4. Schematic spin-dependent energy dispersion of the n
=0 magnetic edge states in the presence of the Zeeman splitting, 2
�Vs

Z�=0.2. We choose the parameters �� ,V0 ,V1� as �a� �2,0,0�, �b�
�2,−0.2,0.2�, �c� �−1,0 ,0�, �d� �−1,−0.2,0.2�.
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FIG. 5. Upper panel: Schematic diagram of a graphene-ribbon
interferometry, which consists of the left �with magnetic field B0�,
middle �with −B̃0�, and right �with B0� regions. There is one edge
channel along the ribbon edges, while there can be magnetic edge
states along the left and right boundaries, ab and cd, of the middle
region, depending on the energy of the states and the field configu-

ration of �B0 ,−B̃0�. In �a�, there appear two magnetic edge states
along each boundary, and thus the Aharonov–Bohm interference,
while no state and no interference exists in �b�. Lower panel:
Aharonov–Bohm effect in the transmission T through the interfer-
ometry as a function of the Aharonov–Bohm flux . The case of �a�
is plotted in �c�, while that of �b� in �d�.
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E is the energy of the incoming states to the setup, S is the
area of the middle region, and 0=h /e is the flux quantum.
As expected, for E=0.65, one has the interference, while
none for E=0.35. This confirms the proposal discussed
above.

Finally, we briefly analyze the numerical result for E
=0.65 in Fig. 5�a�. The period of the Aharonov–Bohm oscil-
lation is found to be �=7.8=1.24�2��. The fact that
� /2� is larger than 1 indicates that the actual Aharonov–
Bohm loop has smaller area than S, which is reasonable. The
line shape of the interference can be analyzed using the ex-
pression of T in Eq. �B7� derived in Appendix B. The line
shape is well fitted by Eq. �B7� with parameters of �=�
=0.5 and ta= tb= tc= td=0.23. From this fitting, one can get
the information of the scattering between the edge channels
along the ribbon edges and the magnetic edge channels along
ab and cd.

VI. SUMMARY

We have studied the magnetic edge states formed along
the boundary between the two domains with different mag-
netic fields B0 and B1 in graphene. It turns out that the mag-
netic edge states have very different features from those of
the conventional 2D electrons, since the former have a pseu-
dospin which couples to the direction of the magnetic field.
As a result, the n=0 magnetic edge states are dispersionless
for ��B1 /B0�0, while they split into electronlike and hole-
like current-carrying states for ��0. The Zeeman spin split-
ting or the additional electrostatic step potential can make the
n=0 states dispersive for ��0 and open an energy gap in the
bipolar region for ��0. These features show an interesting
manifestation of the Dirac fermions in graphene, and the
magnetic edge states can play a special role in the transport
of the Dirac fermions in a nonuniform magnetic field, such
as spin-polarized current along the boundaries of magnetic
domains.

Note added. During the preparation of this manuscript, we
have been aware of two preprints34,35 where the energy dis-
persion and current density of the snake states in a nonuni-
form magnetic field of waveguide shape are studied. Their
results partially overlap with our results for the case of �
�0 in Sec. II.
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APPENDIX A: INTERVALLEY SCATTERING IN
NONUNIFORM MAGNETIC FIELDS

In this section, based on the tight-binding method, we
show that the mixing between the K and K� valleys, due to a
spatially nonuniform magnetic field, can be ignored when the
field strength and the gradient of the field are much smaller
than 104 T and 104 T A−1, respectively, which is achieved in
current experimental studies.

We first discuss the matrix elements of the tight-binding
Hamiltonian of graphene in the presence of an external mag-
netic field. For each sublattice site j=A ,B, the Bloch wave
functions of an electron is written as

�k�
j�r�� =

1
�N

�
R� j

exp�ik� · R� j − i
e



�

R� j

r�

A� · dr�1��r� − R� j� ,

�A1�

where the sum runs over the potisions R� j of site j, N is the

number of unit cells, A� �r�1� is the vector potential, k� is the
momentum of the states, and �r�� is the wave function of
electrons participating in the � bonding. The matrix element
��k��

B �H��k�
A� of the tight-binding Hamiltonian for the nearest-

neighbor hopping is found to be

��k��
B �H��k�

A� =
t

N
�� exp�i

e



�

C
A� · dr�1�

�exp�ik� · R� A − ik�� · R� B� , �A2�

where t is the hopping energy between two nearest-neighbor
sites in the tight-binding scheme, the sum �� runs over the
nearest-neighbor site pairs of A and B, and C denotes the
path connecting the site pair.

Using the matrix element in Eq. �A2�, one can estimate
the effect of the magnetic field on the intervalley mixing. To
do so, we assume that k� and k�� are located near the K and K�
points, respectively. When a uniform magnetic field is ap-
plied, the path integration can be estimated, in terms of the
magnetic length lB and the lattice constant a, as
e

�CA� �r�1� ·dr�1�a2 / lB

2 . For

a2/lB
2 � �K� − K� ��a , �A3�

the intervalley mixing is negligible, since ��k��
B �H��k�

A�
��t /N���eik�·R� A−ik��·R� B ���k� −k���. For the uniform field �per-
pendicular to the graphene sheet� of strength 10 T, one can
find a / �lB

2 �K−K����10−4 so that the condition �A3� is
achieved, which is why the intervalley scattering can be ig-
nored in current experimental studies. The intervalley mixing
becomes important in a very strong magnetic field �104 T,
where a / �lB

2 �K−K����0.1.
In the same way, one can find the condition when the

intervalley mixing is negligible in a nonuniform field with
constant gradient �=�B�r��. For the mixing to be ignored, the
maximum value of the field must satisfy the condition �A3�.
In addition, the gradient � should be much smaller than

104 T A−1, since the path integration �e /
��CA� ·dr�1 in Eq.

�A2� becomes comparable to K� ·R� A−K� � ·R� B when �=�0
�1.7�104 T A−1. In current experimental studies, the gra-
dient is much smaller than �0 so that one can ignore the
intervalley scattering.

APPENDIX B: TRANSMISSION THROUGH A GRAPHENE
RIBBON INTERFEROMETRY

In this section, we derive the transmission probability
through the inteferometry in Fig. 5�a�, based on the scatter-
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ing matrix formalism. The resulting expression in Eq. �B7�
can describe the Aharonov–Bohm effect of the interferom-
etry. One can easily obtain the transmission probability for
other setups with different edge-channel configurations by
slightly modifying the derivation.

The interferometry is in the integer quantum Hall regime
so that its electron transport can be described by edge chan-
nels, such as the edge states along ribbon edges and the
magnetic edge states along the boundaries ab and cd. The
scattering between the edge channels occurs at four scatter-
ing points p� 	a ,b ,c ,d
. Each point p has two incoming
channels with amplitude �p1

I , p2
I � and two outgoing ones with

�p1
O , p2

O�. For example, the two incoming channels to the
point a are one right-going channel and the other left-going
channel along the upper ribbon edge, while the two outgoing
channels from a are the two magnetic edge channels along
the line ab �see Fig. 6�. At each point p, we introduce a
scattering matrix Sp which links the amplitudes of the incom-
ing and outgoing states,

�p1
O

p2
O � = Sp�p1

I

p2
I � = �s11

p s12
p

s21
p s22

p ��p1
I

p2
I � . �B1�

The scattering matrix Sp has the general form of a 2�2
unitary matrix,

�s11
p s12

p

s21
p s22

p � = ei�p�i�1 − tp
2eip tpeip�

tpe−ip� i�1 − tp
2e−ip

� . �B2�

On the other hand, while edge channels propagate from one
scattering point p to its neighboring point p�, they acquire

phase accumulation �pp�. As a result, one has

�b1
I ,b2

I � = ei�ba�a1
O,a2

O� , �B3�

�d1
I ,d2

I � = ei�dc�c1
O,c2

O� , �B4�

c2
I = ei�cbb2

O, �B5�

a2
I = ei�add2

O. �B6�

By combining the relations �B1�–�B6� and by setting a1
I =1

and c1
I =0, one can obtain the transmission probability T

= �d1
O�2 of the edge state incoming from the source �the left of

the inteferometry� to the drain �the right�,

T = � �tbra + tarbe−i���tcrd + tdrce
−i��

1 − ei��tatb − rarbe−i���tctd − rcrde−i��
�2

, �B7�

where rp=�1− tp
2, � contains the Aharonov–Bohm phase as

well as the dynamical phase accumulated along one circula-
tion of the closed loop abcd,

� = �ba + �cb + �dc + �ad + a� − b� + c� − d� + �
p�	a,b,c,d


�p,

�B8�

�=a+b+a�−b�, and �=c+d+c�−d�. The transmis-
sion T can describe the Aharonov–Bohm oscillation of the

Dirac fermions in the setup of Fig. 5�a� as a function of B̃.
Note that, in general, the scattering matrix Sp contains infor-
mation on the scattering between the K and K� valleys.36

We close this appendix by analyzing Eq. �B7� for a simple
case of ta= tb= tc= td= t=1 /�2. In this case, the transmission
probability can be simplified as

T =

cos2 �

2
cos2 �

2

1 + 2 sin
�

2
sin

�

2
cos�� −

�

2
−

�

2
� + sin2 �

2
sin2 �

2

.

�B9�

This result shows the usual form for the Aharonov–Bohm
interference, except for the factors cos � /2 cos � /2 and
sin � /2 sin � /2. From the factors, one can see that there ap-
pears no interference whenever �=� or �=�. It happens
when destructive interference occurs during the propagation
from one ribbon edge to the other through the two magnetic
edge channels along ab or cd in such special cases.
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