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We use a recently proposed time-dependent approach to investigate the motion of electrons in quantum
pump device configurations. The occupied one-particle states are propagated in real time and employed to
calculate the local electron density and current. The approach can also be embedded in the framework of
time-dependent density functional theory to include electron-electron interactions. An advantage of the present
computational scheme is that the same computational effort is required to simulate monochromatic, polychro-
matic, and nonperiodic drivings. Furthermore, initial-state dependence and history effects are naturally ac-
counted for. We present results for one-dimensional devices exposed to a traveling potential wave. �i� We show
that for pumping across a single potential barrier, electrons are transported in pockets and the transport
mechanism resembles pumping of water with the Archimedean screw; �ii� we propose a simple model to study
pumping through semiconductor nanostructures and we address the phenomenon of the current flowing in the
opposite direction to the field propagation; �iii� we present the first numerical evidence of long-lived superim-
posed oscillations as induced by the presence of bound states and discuss the dependence of their lifetime on
the frequency and amplitude of the driving field. By combining Floquet theory with nonequilibrium Green’s
functions, we also obtain a general expression for the pumped current in terms of inelastic transmission
probabilities. This latter result is used for benchmarking our propagation scheme in the long-time limit. Finally,
we discuss the limitations of Floquet-based algorithms and suggest our approach as a possible way to go
beyond them.
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I. INTRODUCTION

The continuous progress in manipulating single molecules
chemically bound to macroscopic reservoirs has led to the
emerging field of molecular electronics.1 Besides the widely
studied stationary case, today experimental techniques en-
able the study of time-dependent phenomena in open quan-
tum systems, such as photon-assisted transport and electron
pumping through real or artificial molecules.

An electron pump is an electronic device generating a net
current between two unbiased electrodes. Pumping is typi-
cally achieved by applying a periodic gate voltage depending
on two or more parameters.2–4 Electron pumps have been
realized experimentally, e.g., for an open semiconductor
quantum dot5 driven by two harmonic gate voltages with a
phase shift, and for an open nanotube6 driven by an electro-
static potential wave. Recently, monoparametric pumping de-
vices have also been realized7,8 and studied theoretically, see
the works of Wang et al.,9 Vavilov et al.,8 and Foa Torres.10

In the literature, different techniques have been used to
discuss electron pumping theoretically. For slowly varying
electric fields,11 the device remains in equilibrium and the
pumping process is adiabatic.5,12 To describe adiabatic
pumpings, Brouwer4 has suggested a framework based on
the scattering approach of Büttiker et al.13,14 An alternative
and equivalent formulation based on Keldysh-Green’s func-
tion theory has been proposed by Zhou et al.15 A natural way
to go beyond the adiabatic case is to apply Floquet theory.
Within an equation-of-motion approach Camalet et al.16 have

found a general expression for the average total current and
for the noise power of electrons pumped in a tight-binding
wire. Alternatively, one can combine Floquet theory with
nonequilibrium Green’s function techniques.3,17,18 Generally
speaking, Floquet-based approaches provide a very powerful
tool to calculate average quantities of periodically driven
systems. However, going beyond the monochromatic case
quite quickly becomes computationally demanding. Further-
more, such approaches are not applicable to the study of
transient effects and nonperiodic phenomena.

In this work, we use a recently proposed time-dependent
approach,19 which is well suited to study the effects of an
electric field, such as a gate voltage or a laser field, on the
electron dynamics of a nanoscale junction. We show the fea-
sibility of our numerical scheme by calculating the full time
dependence �including the transient behavior� of observables
such as the local density and current. The method is designed
to deal with arbitrary frequencies and the same computa-
tional effort is required for both monochromatic and poly-
chromatic drivings as well as for nonperiodic perturbations.
We consider three different quantum pump configurations
driven by an electrostatic potential wave. For the case of a
single barrier, we show that the density is transported in
pockets �density maxima at potential minima�, a phenom-
enon that resembles pumping of water with the Archimedean
screw. The possibility of describing transport at the nanos-
cale using a hydrodynamic approach has been put forward in
Ref. 20 and our time-dependent simulation provides an ex-
plicit example of essentially classical fluid dynamics �in the
case of a purely kinetic stress tensor� as obtained from the
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quantum laws of motion. Second, we study pumping through
semiconductor nanostructures as, e.g., carbon nanotubes.6

We propose to model the device by a series of one-
dimensional potential barriers and we show that, despite the
simplicity of the model, the pumped current versus Fermi
energy has the same qualitative behavior as the pumped cur-
rent measured by Leek et al.6 We also address the phenom-
enon of current inversion, i.e., the direction of the particle
current being opposite to the direction of the field propaga-
tion. We provide an explanation based on inelastic scatter-
ings and corroborate the picture with a real-time simulation.
The quantum mechanism of absorption and/or emission of
quanta of the driving field is shown to correspond to
“bubbles” �in the electron liquid� moving in the same direc-
tion of the traveling wave, and hence an excess of density
moving in the opposite direction. In the last example, we
investigate transient regimes, a topic which is gaining in-
creasing attention in the quantum transport
community.19,21–30 We specialize to quantum wells and pro-
vide the first numerical evidence of long-lived superimposed
oscillations as induced by the presence of bound states. In
the limit of weak driving fields, we also discuss the depen-
dence of their lifetime on the frequency and amplitude of the
perturbing field.

The paper is organized as follows. In Sec. II, we describe
the system consisting of two macroscopic reservoirs con-
nected to a central device. We combine the Floquet theory
with the Keldysh formalism to study the long-time behavior
of the device, and we generalize the formula for the average
current by Camalet et al.16 Some general features of Floquet-
based algorithms are discussed. To overcome the limitations
of the Floquet theory, we use a recently proposed real-time
approach based on the propagation of the occupied single-
particle states.19 Full implementation details are given for
one-dimensional electrodes and arbitrary device geometries.
A detailed comparison between the numerical performance
of Floquet-based schemes and our method is also made. In
Sec. III, we show our numerical results which demonstrate
that the real-time propagation offers an alternative route to
investigate open quantum systems and provides a comple-
mentary picture of the microscopic dynamics. In Sec. IV, we
summarize the main results and discuss future projects.

II. TIME-DEPENDENT CURRENT

We consider an open quantum system C �central region�
connected to two macroscopically large reservoirs L and R
�left and right electrodes�. We are interested in describing the
electron dynamics when region C is disturbed by arbitrary
time-dependent electric fields. Assuming that the reservoirs
are not directly connected, the one-particle Hamiltonian of
the entire system reads

H�t� = �HLL HLC 0

HCL HCC�t� HCR

0 HRC HRR
� . �1�

The Hamiltonian H��, �=L ,R, as well as the Hamiltonian of
the central region HCC are obtained by projecting the full

Hamiltonian H onto the subspace of the corresponding re-
gion. How to choose the one-particle states in regions L, R,
or C depends on the specific problem at hand. We can use,
e.g., a real-space grid for ab initio calculations, or a tight-
binding representation for model calculations, or even differ-
ent basis functions for different regions �for instance, eigen-
functions of the reservoirs for L and R, and localized states
for C�.31 The off-diagonal parts in Eq. �1� account for the
contacts and are given in terms of matrix elements of H
between states of C and states of L and R. We use atomic
units throughout the paper.

In many applications of physical interest, the driving field
is periodic in time. In this case, it is possible to work out an
analytic expression for the dc component of the total current
Idc, provided memory effects and initial-state dependence are
washed out in the long-time limit. Below, we combine the
Floquet formalism with nonequilibrium Green’s functions
and generalize the formula for Idc by Camalet et al.16 to
arbitrary contacts. We also discuss the limitations of Floquet
theory and propose an alternative approach based on the real-
time propagation of the initially occupied states of the
system.

A. Long-time limit: Floquet theory and Keldysh formalism

Most approaches to driven nanoscale systems are based
on a fictitious partitioning first introduced by Caroli et al.32

The initial many-particle state is a Slater determinant of
eigenstates of the isolated left and right reservoirs with
eigenenergy below some chemical potential �. A more
physical initial state has been considered by Cini.33 It is a
Slater determinant of eigenstates of the contacted system L
+C+R with eigenenergy smaller than �. Independent of the
initial state, it has been proved21,34 that the number of elec-
trons per unit time that leave the �=L ,R reservoir is given
by the formula35

I��t� = 2 Re Tr�Q��t�� , �2�

Q��t� = �GR · ��
� + GR · �� · GA · ��

A��t;t� , �3�

provided that �a� t goes to infinity and �b� the retarded
Green’s function projected on the central region GR �or the
advanced one GA� vanishes when the separation between its
time arguments goes to infinity. In the above equation, �
=�L+�R is the embedding self-energy in the long-time limit
and the symbol Tr denotes a trace over a complete set of
states of the central region. We also have used the short-hand
notation �f ·g��t1 ; t2�	
−�

� dt̄f�t1 ; t̄�g�t̄ ; t2� for the convolution
of two functions f and g.

For an applied bias U� in reservoir �=L ,R, which is con-
stant in time, the embedding self-energy depends only on the
difference between its time arguments. Let

��
R/A��� = ����� �

i

2
����� �4�

be the Fourier transform of the retarded/advanced self-
energy. The imaginary part �� is the contribution of region �
to the local spectral density. The Fourier transform of the
lesser self-energy is then given by
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��
���� = if��������� , �5�

where f����= f��−U�� is the Fermi distribution function.
Let us specialize to periodic time-dependent perturbations

in region C: HCC�t�=HCC�t+T0�. According to Floquet
theory, we assume that the Green’s function in Eq. �3� can be
expanded as follows:

GR/A�t;t�� = �
m
� d�

2�
Gm

R/A���e−i��t−t��+im�0t�, �6�

where �0=2� /T0 is the frequency of the driving field. We
wish to emphasize that the above expansion is justified only
if all observable quantities �calculable from G� oscillate in
time with the same frequency as the external field �we thus
exclude those cases where the initial-state dependence and/or
history dependence are not washed out in the long-time
limit�. This is typically the case for adiabatic switchings �for
a detailed discussion on the existence of the adiabatic limit in
Floquet theory, see Ref. 36�.

Inserting Eq. �6� into Eq. �3� and extracting the dc com-
ponent, we obtain

Q�,dc 	 lim
t→�

1

T0
�

t

t+T0

dt̄Q��t̄� =� d�

2�
G0�����

����

+� d�

2�
�
m

Gm��������Gm
† �����

A�� − m�0� ,

�7�

where we have defined

Gm��� 	 Gm
R�� − m�0� = �G−m

A ����†. �8�

The last equality in Eq. �8� follows directly from the identity
GR�t ; t��= �GA�t� ; t��†. The dc component I�,dc of the time-
dependent total current I��t� is given by the right hand side
of Eq. �2� with Q��t� replaced by Q�,dc. In the Appendix, we
show that in the monochromatic case,

HCC�t� = HCC
0 + U+ei�0t + U−e−i�0t, �9�

the resulting expression for I�,dc can be cast in a Landauer-
like formula

IL,dc = �
m
� d�

2�
�fL���Tm,L��� − fR���Tm,R���� , �10�

and IR,dc=−IL,dc, as it should be due to charge conservation.
The “inelastic” transmission coefficients Tm,� may be inter-
preted as the probability for electrons to be transmitted from
one reservoir to the other with the absorption or emission of
m quanta of the driving field. They can be written as

Tm,L��� = Tr��L���Gm
† ����R�� − m�0�Gm���� , �11�

Tm,R��� = Tr��R���Gm
† ����L�� − m�0�Gm���� . �12�

The above equations resemble the trace formula obtained by
Meir and Wingreen in the case of a static bias.37

We observe that for zero driving the Fourier coefficients
Gm, and hence the transmission probabilities Tm,�, are all

zero except for m=0, and Eq. �10� reduces to the well-known
Landauer formula for steady-state currents.38 On the con-
trary, all the Tm,�’s contribute to the average current when a
driving field is present. The corresponding Gm’s can be com-
puted recursively from the zeroth order coefficient G0, as it
has been shown in Ref. 39 �see also the Appendix�. It is also
worth emphasizing that our formula for the Tm,�’s correctly
reduces to the one of Camalet et al.16 for a central region
described by a tight-binding wire of sites 
1� , . . . , 
N� and
connected to the left reservoir through 
1� and to the right
reservoir through 
N�. In this case, the spectral density
matrices �� have only one nonvanishing entry, ��L�n,m

=	n,1	m,1
L and ��R�n,m=	n,N	m,N
R, and the coefficients
Tm,� can be rewritten as

Tm,L��� = 
L���
R�� − m�0�
�Gm����N,1
2, �13�

Tm,R��� = 
R���
L�� − m�0�
�Gm����1,N
2. �14�

Equation �10� demonstrates how the initial Floquet as-
sumption of Eq. �6� allows for carrying the analytic calcula-
tion of the current �Eq. �2�� much further and eventually
delivers a simple numerical scheme for the computation of
the average current. Despite the enormous success in predict-
ing ac dynamical properties of many different nanoscale con-
ductors, Floquet theory might be inadequate to face the fu-
ture challenges of nanotechnology.40 Below, we discuss some
limitations of Floquet-based approaches.

�i� Numerical performance. For later comparison with our
proposed real-time approach, we briefly report on the nu-
merical performance of Floquet algorithms, such as the re-
cursive scheme described in the Appendix. Let N be the
number of basis functions in region C. For a given frequency
�, the calculation of G0��� requires the inversion of mmax

complex matrices of dimension N�N. The number mmax
should be chosen such that the cutoff energy Emax=mmax�0 is
much larger than any other energy scale in the problem.
Typically, mmax is in the range from 10 to 100. The coeffi-
cients G�m���, m
0, are then calculated from G��m−1����
by simple matrix multiplications according to Eq. �A20�.
Knowing the Gm’s, one can compute the inelastic transmis-
sion probabilities from Eqs. �11� and �12�, and hence the
average current.

In the above procedure, most of the computational time is
spent for matrix inversions and matrix multiplications. We
can roughly estimate the overall time of a full run as Trun
�mmax�N�� ��i+�m�, where N� is the number of mesh
points �generally not uniform� along the � axis used to
evaluate the integral in Eq. �10�, and �i ��m� is the time for a
single matrix inversion �multiplication�. In our case, both �i
and �m scale as N3. Depending on the system and on the
external driving forces, the inelastic transmission probabili-
ties might exhibit quite sharp peaks as function of energy.
Therefore, for an accurate computation of the energy integral
in Eq. �10�, a fine energy grid is required, which means that
N� is large. In the numerical calculations of Sec. III, N� is in
the range of 100–1000. We conclude that Trun / ��i+�m�
�103–105.

�ii� Periodic potentials. Beyond the monochromatic case,
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the recursive scheme of the Appendix becomes computation-
ally demanding. The inclusion of one, two, etc., more har-
monics in the expansion of the driving field �see Eq. �A4��
transforms the block tridiagonal system of equations for the
Gm’s into a block pentadiagonal, heptadiagonal, etc., system
of equations. For arbitrary periodic drivings, a Floquet-based
approach may not be feasible.

�iii� Arbitrary time-dependent potentials. Besides the
wide class of periodic drivings, it is of interest to investigate
the response of a nanodevice to nonperiodic drivings as
well.41 In such cases, the Floquet formalism does not apply
and a full time-dependent approach is required.

�iv� Transients. The Landauer formalism provides a very
powerful technique to calculate nonequilibrium quantities in
steady-state regimes. Similarly, the Floquet formalism allows
to calculate nonequilibrium quantities in “oscillating-state”
regimes, i.e., when all transient effects are died off. How-
ever, transient responses can be expected to become of some
relevance in the future. Molecular devices will eventually be
integrated in nanoscale circuits and respond to ultrafast ex-
ternal signals. Transient effects in such operative regimes
may not be irrelevant, as it has been recently recognized by
several authors.19,21–30 In Sec. III, we provide explicit evi-
dence of long-lived superimposed oscillations in the time-
dependent current profile. The frequencies of these oscilla-
tions are not commensurable with the driving frequency, and
have to be ascribed to the presence of “adiabatic” bound
states.42,43

B. Real-time propagation

In this section, we propose an alternative approach to
driven nanoscale transport. The main idea is to calculate the
time-dependent total current from the time-dependent wave
functions 
�s�t��, where 
�s�0�� is the sth eigenstate of the
system L+C+R before the time-dependent perturbation is
switched on. Our approach does not rely on the Floquet as-
sumption, and is free from all the limitations discussed pre-
viously. Furthermore, the computational time is comparable
with Floquet-based algorithms.

As the full Hamiltonian H�t� refers to an extended and
nonperiodic system, we cannot solve brute force the
Schrödinger equation44

i
d

dt

��t�� = H�t�
��t�� . �15�

Fortunately, we do not need to calculate the time-dependent
wave function everywhere in the system in order to calculate
the total current. The knowledge of the wave function in
region C is enough for our purposes �see below�. Denoting
with 
�C�t��, the wave function projected on region C and
with 
���t�� the wave function projected on region �=L, R, it
is straightforward to show that Eq. �15� implies the following
equation for 
�C�t��:45

i
d

dt

�C�t�� = HCC�t�
�C�t�� + �

0

t

�R�t;t��
�C�t���

+ �
�=L,R

HC� exp�− iH��t�
���0�� , �16�

where

�R�t;t�� = �
�=L,R

HC� exp�− iH���t − t���H�C �17�

is the Fourier transform of the embedding self-energy in
Eq. �4�.

Equation �16� is an exact equation for the time evolution
of open systems, but is still not suited for a numerical imple-
mentation. The importance of charge conservation in quan-
tum transport makes the unitary property a fundamental re-
quirement. In this work, we use a unitary algorithm which
has been recently proposed to study electron transport in bi-
ased electrode-device-electrode systems.19 Below, we illus-
trate the main ideas and specialize the formulas of Ref. 19 to
one-dimensional reservoirs.

For a given initial state 
��0��= 
��0��, we calculate the
time-evolved state 
��tm=2m	��= 
��m�� by approximating
Eq. �15� with the Crank-Nicholson formula

�1 + i	H�m��
��m+1�� = �1 − i	H�m��
��m�� , �18�

with H�m�= 1
2 �H�tm+1�+H�tm��. The above propagation

scheme is unitary �norm conserving� and accurate to second
order in 	. From Eq. �18�, we can extract an equation for the
time-evolved state in region C, similar to what we have done
for the derivation of Eq. �16�. The final result is

�1C + i	Heff
�m��
�C

�m+1�� = �1C − i	Heff
�m��
�C

�m�� + 
S�m�� − 
M�m�� ,

�19�

with 1C the identity matrix in region C. Equation �19� is the
proper �unitary� time discretization of Eq. �16�. Moreover,
Eq. �19� is ready to be implemented since it contains only
finite-size matrices and vectors �with the dimension used to
describe the central region as, e.g., the number of lattice sites
in a tight-binding representation or the number of grid points
in a real-space grid representation�. In the following, we give
full implementation details of the memory term 
M�m��, the
source term 
S�m��, and the effective Hamiltonian Heff

�m� ap-
pearing in Eq. �19�.

For the sake of simplicity, we consider one-dimensional
semi-infinite reservoirs described by tridiagonal matrices
H��, �=L, R, with diagonal entries h� and off-diagonal en-
tries V�, see Fig. 1. For tight-binding models, the parameter
h� represents the on-site energy while the parameter V� rep-
resents the hopping integral between nearest-neighbor sites.
The Hamiltonian H�� is also suited to describe continuum
models with a three-point discretization of the kinetic term.
In this case, the parameter h�=1 /�x2+U� and V�=
−1 / �2�x2�, where �x is the grid spacing. We would like to

......

|L> |R>|1;L>|2;L> |2;R>|1;R>

Region C
hL hL hR hR

VL VL VR VR

FIG. 1. �Color online� The schematic sketch of the electrode-
junction-electrode system with semiperiodic one-dimensional
electrodes.
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emphasize that the algorithm can easily be generalized to
reservoirs with an arbitrary semi-infinite periodicity and it is
not limited to one-dimensional systems.19

Without loss of generality, we consider a central region
that includes few sites of the left and right reservoirs, and we
denote by 
�� the state where only the site of region C con-
nected to the reservoir �=L, R is occupied �see Fig. 1�.

The memory state 
M�m�� stems from the second term on
the r.h.s. of Eq. �16� and reads


M�0�� = 0, �20�

while for m�1, we have


M�m�� = 	2 �
�=L,R


���
k=0

m−1

���
�C
�k+1�� + ��
�C

�k���

��q�
�m−k� + q�

�m−k−1�� . �21�

The q coefficients can be computed recursively according to

q�
�0� =

− �1 + i	h�� + ��1 + i	h��2 + �2	V��2

2	2 , �22�

q�
�1� =

1 − i	h� − 2	2q�
�0�

1 + i	h� + 2	2q�
�0�q�

�0�, �23�

and for m�2

q�
�m� =

q�
�1�q�

�m−1�

q�
�0� − 	2 q�

�0�q�
�m−2�

1 + i	h� + 2	2q�
�0�

− 	2�
k=1

m−1
q�

�k� + 2q�
�k−1� + q�

�k−2�

1 + i	h� + 2	2q�
�0� q�

�m−k�, �24�

with the convention that q�
�m�=0 for negative m.

The source state 
S�m�� stems from the last term on the
r.h.s. of Eq. �16� and reads


S�m�� = − 2i	 �
�=L,R

HC�

�1� − i	H���m

�1� + i	H���m+1 
���0�� , �25�

where 1� is the unit matrix in region �. The source state
depends on the initial wave function in the reservoirs. As we
are interested in propagating eigenstates of H�0�, 
���0�� has
the following general expression:


��
�0�� = A�

�+�
 + p�� + A�
�−�
− p�� , �26�

with


p�� = �
j=1

�

eip�j
j ;�� , �27�

and the state 
j ;��, where only the jth site of reservoir �
=L, R is occupied, see Fig. 1. For extended states in region �
the parameter p� is real. For bound states or fully reflected
states in region �, the parameter p� is imaginary and the
amplitude �A�

�+� or A�
�−�� of the growing exponential is zero.

No matter if p� is real or imaginary, one can prove that

HC�

�1� − i	H���m

�1� + i	H���m+1 
p�� = ��
�m�
�� , �28�

with

��
�m� = eip�V�
�

�m� + i	�
k=0

m


�
�m−k��q�

�k� + q�
�k−1�� , �29�

and


�
�m� =

�1 − i	h� − 2i	V� cos p��m

�1 + i	h� + 2i	V� cos p��m+1 . �30�

Finally, the effective Hamiltonian is given by

Heff
�m� = HCC

�m� − i	 �
�=L,R

q�
�0�
����
 . �31�

The above algorithm allows us to calculate the time evo-
lution of any initial state whose wave function in the reser-
voirs has the form in Eq. �26�. This is the case of both the
contacting approach by Caroli et al. and the partition-free
approach by Cini. In the former approach, the initial one-
particle states are eigenstates of the isolated left and right
reservoirs, meaning that


��
�0�� = 2�

j=1

�

sin�p�j�
j ;�� =

 + p�� − 
− p��

i
, �32�

for �=L �or �=R�, zero for �=R �or �=L�, and zero in
region C. In the latter approach, the computation of the ini-
tial one-particle states is more involved. Here, we have used
a recently proposed general scheme based on the diagonal-
ization of the imaginary part of the retarded Green’s
function.19 This scheme may also be used for arbitrary, semi-
periodic electrodes. In the special case of spatially uniform
one-dimensional reservoirs, one can, of course, always use
the textbook procedure of matching the wave function at the
interfaces.

Denoting with 
�s,C�t��, the evolution of the original
eigenstate 
�s�0�� in the central region, we can calculate the
time-dependent occupation ��j , t� of a state 
j� in region C
according to

��j,t� = �
s

f��s�
�j
�s,C�t��
2, �33�

where �s is the eigenvalue of H�0� corresponding to the ei-
genvector 
�s�0�� and f��� is the Fermi distribution function.
Similarly, the total time-dependent current I��t� can be cal-
culated from the time derivative of the total number of par-
ticles in electrode � and reads

I��t� = − 2�
s

f��s��
j��

Im�j
�s,C�t����s,C�t�
���HCC�t���j ,

�34�

where the sum is over all states j of region C except the state

��. We observe that for systems out of steady-state regimes
IL�t�+ IR�t�= Id�t��0, where
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Id�t� =
d

dt
�

j�L,R
��j,t� �35�

is the displacement current.
We wish to conclude this section with a discussion on the

performance of our method and a comparison with Floquet-
based approaches.

�i� The computational time Trun scales linearly with the
number of states Ns used to evaluate the sum in Eq. �33� or
Eq. �34�, and quadratically with the number of time steps Nt.
In most cases, transient effects disappear after few femtosec-
onds �few tens of a.u.�. Using a time step of the order of
10−2 a.u., we can obtain a rather good estimate of I�,dc with
Nt�103–104. Given a central regions with hundreds of
states, the real-time algorithm can be of the same speed of or
even faster than the Floquet algorithm of the Appendix.

�ii� The real-time algorithm can deal with arbitrary �peri-
odic and nonperiodic� drivings, and the computational time
is independent of the specific time dependence of HCC�t�.
Moreover, the algorithm is easily generalized19 to deal with
spatially uniform bias potentials in the electrodes with arbi-
trary dependence on time, such as for an ac bias.

�iii� From the time-evolved states 
�s�t��, we have access
to the total current I��t� at any time t, and not only to the
long-time limit of the dc component of I��t�. In particular,
we can easily investigate transients and the full shape of I��t�
for t→�. In practice, this limit is achieved for a finite time
Tmax after which all transient phenomena have died out.

�iv� Another advantage of our method is the possibility of
including electron-electron interactions via time-dependent
density functional theory.46 Indeed, the external potential is
local in both space and time provided the initial state is the
ground state of the contacted system. Therefore, according to
the Runge-Gross theorem,46,47 the interacting time-dependent
density can be reproduced in a fictitious system of noninter-
acting electrons moving under the influence of an effective
Kohn-Sham potential which is local in space and time. We
observe that this is not the case in the contacting approach
since the switching of the contacts makes the external poten-
tial nonlocal in space and hence the Runge-Gross theorem
does not apply.

�v� Finally, we would like to stress that the Hamiltonian
HCC�t� enters in the algorithm only via the effective Hamil-
tonian Heff of Eq. �31�, and has no restrictions. Thus, besides
one-dimensional structures �like those considered in Sec.
III�, one can consider other geometries as well, such as those
of planar molecules, quantum rings, nanotubes, jellium slabs,
etc.

III. NUMERICAL RESULTS

In this section, we illustrate the performance of the pro-
posed scheme by presenting our results for one-dimensional
continuous systems described by the time-dependent Hamil-
tonian,

H�x,t� = −
�2

2
+ U�x,t� . �36�

We discretize H on an equidistant grid and use a three-point
discretization for the kinetic term. Within this model, we

study various model systems highlighting different features
in electron pumping.

A. Archimedean screw

As a first example of electron pumping, we have calcu-
lated the time evolution of the density and total current for a
single square barrier exposed to a traveling potential wave
U�x , t�=U1 sin�qx−�0t�. The wave is spatially restricted to
the explicitly treated device region which in our case also
coincides with the static potential barrier. The barrier extends
from x=−8 a.u. to x= +8 a.u. and its height is 0.5 a.u., see
inset �b� in Fig. 2. The system is unbiased, i.e., UL=UR=0,
and the Fermi energy of the initial �ground� state is �F
=0.3 a.u. For the numerical implementation, we have chosen
a lattice spacing �x=0.08 a.u., and 200 k points between 0
and kF=�2�F which amounts to the propagation of 400
states.

In Fig. 2, we plot the time-dependent average current cal-
culated according to

�I�t�� = ��T0 − t�
1

t
�

0

t

d�I��� + ��t − T0�
1

T0
�

t−T0

t

d�I��� ,

�37�

with the period of the traveling wave T0=2� /�0. For the
time propagation, we have chosen a time step 2	=0.02 a.u.
As expected �I�t�� converges to some steady value IL,dc after
a transient time of the order of 50–60 a.u. We have calcu-
lated the average current in three different points of region C
and verified that the steady value does not depend on the
position. The dc limit IL,dc can also be computed from the
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FIG. 2. �Color online� Time-dependent average current at the
left �blue �dark gray�� and right �green �light gray�� interfaces and in
the middle of region C �red �gray�� for pumping through a single
square barrier by a traveling wave. The traveling potential wave is
restricted to the propagation window 
x
�8 a.u. and has the form
U�x , t�=U1 sin�qx−�0t� with amplitude U1=0.35 a.u., wave num-
ber q=1.6 a.u., and frequency �0=0.2 a.u. Inset �a� is a magnifica-
tion of the long-time behavior. The straight line corresponds to the
value IL,dc=7.63�10−4 a.u. of the average current calculated using
the Floquet algorithm. Inset �b� displays the static potential barrier
�solid line� and the superimposed right-moving traveling wave
�dashed line�.
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Floquet algorithm of the Appendix. Using mmax=15 and
N�=150 energy points between 0 and �F, we find IL,dc
=7.63·10−4 a.u., in very good agreement with the average
current of the time propagated system, see inset �a� of Fig. 2.

In Fig. 3, we plot the time-dependent density ��x , t� in the
device region as a function of both position x and time t. The
density exhibits local maxima in the potential minima and is
transported in pockets by the wave. From Fig. 3, it is also
evident that the height of the pockets is not uniform over the
system, and reaches its maximum around x=0. We also no-
tice that the particle current flows in the same direction as the
driving wave. The pumping mechanism in this example re-
sembles pumping of water with the Archimedean screw. The
observed classical behavior of the electron fluid is in agree-
ment with the predictions of a recent hydrodynamic
approach20 to transport at the nanoscale �in our example the
stress tensor is purely kinetic�.

B. Pumping through a semiconductor nanostructure

The second example was motivated by a recent experi-
ment on pumping through a carbon nanotube by Leek et al.6

The arrangement has been suggested by Talyanskii et al.48

and is as follows. A semiconducting nanotube lying on a
quartz substrate is placed between two metallic contacts. A
transducer generates an acoustic wave on the surface of the
piezoelectric crystal. The crystal responds by generating an
electrostatic potential wave which acts like our traveling
wave on the electrons in the nanotube. The direction of the
pumping current is found to depend on the applied gate volt-
age. A pumping current flowing in the direction opposite to
the propagation direction of the traveling wave has been in-
terpreted in a stationary picture as a predominant hole tun-
neling over electron tunneling. To reproduce such an inver-
sion in the current flow, we have modeled the nanotube with
a periodic static corrugation U0�x�=UC�1+cos�kx�� in region
C, with UC=0.5 a.u. and k=10� /6�5.2 a.u. �see inset in
Fig. 4�. For a traveling wave U�x , t�=U1 sin�qx−�0t�, with

U1=0.5 a.u., �0=0.8 a.u., and q=0.6 a.u., we have found
that the minimum current occurs at �F=3.0 a.u. All param-
eters in this example have been chosen to better illustrate and
discuss the effect of the current inversion. The present sec-
tion is not intended to give a realistic description of some
specific experiment.

In Fig. 4, we plot the time-dependent average current �see
Eq. �37�� in three different points of the device region. For
the numerical propagation, we have used a lattice spacing
�x=0.06 a.u., a time step 2	=0.02 a.u., and 400 k points
between 0 and kF=�2�F. The system responds to a right-
moving traveling wave by generating a net current flowing to
the left. Again, we observe that the transient time is of the
order of few tens of a.u., and that the steady value is inde-
pendent of the position. As in the previous example, we used
the Floquet algorithm of the Appendix for benchmarking our
real-time propagation algorithm. Due to the high Fermi en-
ergy, the calculation was carried out with mmax=15 and N�

=400 energy points between 0 and �F. The result IL,dc
=−3.26�10−2 a.u. is displayed in Fig. 4 with a straight line
and is in extremely good agreement with the long-time limit
of the average current obtained from direct propagation in
time.

To understand how the electron fluid moves when the
direction of the current is opposite to that of the driving
potential wave, we have studied the dynamical flow pattern
of the density. Such a study has the merit of providing a
picture of the microscopic dynamics which is complemen-
tary to the ones of Floquet-based approaches �adiabatic pic-
ture, high frequency limit, theory of linear response, etc.�,
and hence helpful for a better qualitative understanding.

In Fig. 5, we display a contour plot of the excess density
���x , t�=��x , t�−��x ,0� in an extended region which in-
cludes the device region and a portion of the left reservoir. In
the device region, we clearly see pockets that are dragged by

FIG. 3. �Color online� Time-dependent density in region C as a
function of position x and time t. The range for ��x , t� is between 0
and 0.06 a.u. for improved visibility of the pockets of density. All
parameters are the same as for Fig. 2.
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FIG. 4. �Color online� Time-dependent average current at the
left �blue �dark gray�� and right �green �light gray�� interface and in
the middle of region C �red �gray�� for pumping through a device
region which extends from x=−6 to x=6 a.u. A traveling wave
U�x , t�=U1 sin�qx−�0t� with U1=0.5 a.u., �0=0.8 a.u., and q
=0.6 a.u. is superimposed to the static potential U0�x�=UC�1
+cos�kx�� with UC=0.5 a.u. and k=10� /6�5.2 a.u., and the all
system is unbiased, see inset. The straight line corresponds to the
value of the average current as obtained from the Floquet algorithm
which yields IL,dc=−3.26�10−2 a.u.
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the traveling wave and are moving to the right. However,
every pocket with a slightly positive �� is followed by a
pocket with a noticeably negative ��, and the net excess
density is negative. On the other hand, in the left reservoir,
pockets with negative �� are damped very fast away from
the interface between device region and lead, while pockets
with positive �� move to the left. We conclude that the driv-
ing produces right-moving “bubbles” in the device region
and that to each bubble corresponds a more dense region of
fluid moving to the left. One can estimate the speed vpoc of
the traveling pockets from the slope of the patterns at con-
stant density and finds vpoc��0 /q�1.33 a.u., as expected.
We also notice superimposed density oscillations on each
pocket. These oscillations have the same spatial period of the
static corrugation in the device region, and move in the same
direction of the pockets at a constant speed vosc��0 /k
�0.15 a.u.

In Fig. 6, we illustrate how the pumped current in this
model depends on the Fermi level. For Fermi energies com-
parable to the amplitude of the corrugated potential in the
device region, the pumping current is always positive, i.e.,
follows the propagation of the perturbed wave. However,
there are striking effects that are more or less independent of
the strength of the perturbation: the pumping current reaches
a maximum positive value at �F��0=0.8 a.u., then de-
creases with increasing Fermi energy �with the turning point
to negative values just below �F=2 a.u.� and reaches a mini-
mum �negative� value above �F=3 a.u. To rationalize this
behavior, we have calculated the total transmission probabili-
ties T�=�mTm,�, �=L ,R, for left- and right-going electrons
�see Eqs. �11� and �12��. As one can see from Fig. 6, both TL
and TR remain quite small for Fermi energies below �

�0.54 a.u., which roughly corresponds to the bottom of the
lowest band of the periodic structure of the device. In this
energy window, transport is dominated by tunneling and the
pumping current follows the traveling wave �TL
TR� similar
to the case of the Archimedean screw, see Sec. III A. For
�F
�, we enter the region of resonant transport �the energy
of the lowest band� and TL, TR sharply increase. We observe
that for �F��0=0.8 a.u., both TL and TR have a structure
similar to the total transmission function of the static case.
For �0��F��0+�, however, TL decreases significantly
while TR remains fairly constant around 1. We interpret this
in the following way. The probability of the right-going elec-
trons of emitting a photon of frequency �0 �and therefore
reducing their energy� is larger than for the left-going elec-
trons. Losing this energy, the transmission TL resembles the
static transmission function for energy �F−�0, which has a
much lower value. The asymmetry between left- and right-
going states can be easily understood by realizing that the
pump wave introduces a preferential direction in the prob-
lem. As further evidence to support this interpretation, we
note that for �F=�0+�, the transmission function TL in-
creases rapidly as for �F=�. This can be viewed as a replica
of the static transmission function shifted by one quantum of
energy �0. Throughout the energy window of the lowest
band, TL remains lower than TR. As a consequence, the
pumping current decreases monotonically. This behavior is
reversed when the Fermi energy hits the top of the lowest
band, around 3.4 a.u. In the gap �of about 2UC=1 a.u.�, both
TL and TR drop and transport is dominated by tunneling
again. In this region, TL
TR and the pumping current in-
creases.

It is interesting to realize that despite the simplicity of the
model, the pumped current has the same qualitative behavior
as the pumped current measured by Leek et al.,6 the only
difference being a nonvanishing pumped current at Fermi
energies comparable with the bottom of the band of the de-
vice. This difference is simply due to residual tunneling, an

FIG. 5. �Color� Contour plot of the excess density ���x , t� in the
device region �x between −6 and 6 a.u.� and in a portion of the left
reservoir �x between −30 and −6 a.u.�. Due to the large oscillations
of the excess density in the device region, ���x , t� has been scaled
down by a factor of 10 for 
x
�6 a.u.. We also draw straight lines to
show a pocket trajectory and the trajectory of a superimposed os-
cillation. All parameters are the same as for Fig. 4.
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FIG. 6. �Color online� dc component of pump current IL,dc and
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function of the Fermi energy. The curves have been obtained using
the Floquet algorithm of the Appendix with mmax=15 and N�
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effect which would drop off by making the central device
larger. The present model gives positive and negative pump-
ing currents as a function of the Fermi energy and provides a
simple physical interpretation of the effect of current inver-
sion. Our picture, however, is somewhat different from the
one given in Ref. 6. Indeed, in their explanation, the sign of
the pumping current is independent of the frequency �0 of
the traveling wave. On the other hand, in our case, if the
frequency exceeds the width of the lowest band, the right-
going electrons cannot emit a photon and current inversion is
not guaranteed anymore.

C. Transients effects

As a last example, we study electron pumping in quantum
wells. We will show the presence of long-lived superimposed
oscillations whose frequency is generally not commensu-
rable with the driving frequency. The quantum well is mod-
eled with a static potential U0�x�=−1.4 a.u., for 
x 

�1.2 a.u. and zero otherwise. Initially, the system is in the
ground state with Fermi energy �F=0.1 a.u. The unperturbed
Hamiltonian has two bound-state eigensolutions with ener-
gies �b,1

0 =−1.035 a.u. and �b,2
0 =−0.156 a.u. The ground-state

Slater determinant contains all extended states with energy
between 0 and �F and two localized states with negative
energy. At positive times, a constant bias UR=0.1 a.u. is
applied on the right lead and a traveling wave U�x , t�
=U1 sin�qx−�0t�, with q=0.5 a.u. and �0=0.5 a.u., is
switched on in the quantum well. In the numerical simula-
tions, we set the propagation window between x=−1.2 and
x=1.2 a.u. �which coincides with the static potential well�
and choose a lattice spacing �x=0.024 a.u. The occupied
part of the continuum spectrum is discretized with 100 k
points between 0 and kF=�2�F.

Let us first consider the biased system with no driving,
i.e., U1=0. We propagate the �noninteracting� many-body
state from t=0 to t=1400 a.u. using a time step 2	
=0.05 a.u., and calculate the current I�t� at the center of the
quantum well. As in the examples of Secs. III A and III B,
one observes a first transient behavior which lasts for few
tens of a.u. However, after this first normal transient, a sec-
ond transient regime sets in. In Fig. 7, we plot the modulus
of the discrete Fourier transform of the current

Ĩ��k� = 2	 �
n=np

np+N0

I�2n	�e−i�kn	, �k =
2�k

N0	
�38�

for np= �4+2p��103, p=0,1 ,2 ,3 ,4, and N0=16�103 �cor-
responding to the time intervals t� �tp , tp+T0� with tp

= �2+ p��100 a.u. and T0=800 a.u. Besides the zero-
frequency peak �not shown� due to the nonvanishing dc cur-

rent, the structure of Ĩ��� has five more peaks. Below, we
discuss the physical origin of these extra peaks and show that
they are related to different kinds of internal transitions.

We first observe that the biased system has two bound
states with energy �b,1

� =−1.032 a.u. and �b,2
� =−0.133 a.u.

�slightly different from the bound-state energies of the unbi-
ased system�. The first and the last two peaks occur at the
same frequency of the bound-continuum transitions �b,i

�

→�F, and �b,i
� →�F+UR, with i=1,2. These sharp structures

�mathematically stemming from the discontinuity of the
zero-temperature Fermi distribution function� give rise to
long-lived oscillations of the total current and density. Such
an oscillatory transient regime dies off slowly as 1 / t. The
power-law behavior can also be seen in the inset of Fig. 7,
where a magnification of the region with transitions from the
weakly bound electron to the two continua is displayed. De-
noting with Rp the product between the height of the second
peak and the propagation time tp+T0, we have found R2
=26.305 a.u., R3=26.307 a.u., and R4=26.328 a.u., which is
in fairly good agreement with the expected 1 / t behavior.
Therefore, the height of the peaks decreases with increasing
tp and approaches zero in the limit tp→�. On the contrary,
the sharp peak at �=�b,1

� −�b,2
� �bound-bound transition� re-

mains unchanged with increasing tp. The oscillations of the
bound-bound transition do not die off, in agreement with the
findings of Refs. 42 and 43. We emphasize that these latter
have nothing to do with external drivings.

Having discussed the behavior of the system which is
biased but not driven, we now study transient regimes in the
biased and driven system, i.e., U1�0. Using the same nu-
merical parameters as in the previous example, we evolve the
�noninteracting� many-body state from t=0 to t=1200 a.u.,
with a time step 2	=0.05 a.u. In Fig. 8, we plot the discrete
Fourier transform of the current calculated in the middle of
the quantum well for different amplitudes of the traveling
wave U1=0.00,0.01,0.03 a.u. The time interval used to

evaluate Ĩ��� is from t=200 a.u. to t=1200 a.u. As expected,

Ĩ��� has a well pronounced peak at the driving frequency
�first harmonic�. Increasing the amplitude of the driving
field, the height of the first-harmonic peak increases and
higher-order harmonic peaks become visible �breakdown of
linear response theory�. This is clearly shown in inset �b�
where the second-harmonic peak is visible for U1

=0.03 a.u. but not for U1=0.01 a.u. The structure of Ĩ��� has
also other peaks at frequencies which are not commensurable
with the driving frequency. Such peaks are due to the pres-
ence of bound states in the biased-only system. In inset �a�,
we show a magnification of the region with bound-
continuum transitions. The driving field broadens the peak
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FIG. 7. �Color� Modulus of the discrete Fourier transform of the
current for zero driving and UR=0.1 a.u. The inset shows a magni-
fication of the region with bound-continuum transitions. Different
curves correspond to different time intervals.
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structure, thus speeding up the power-law transient regime.
The shape of the bound-bound transition is displayed in inset
�b�. The height of the peak decreases with increasing ampli-
tudes and the transition changes from an infinitely long-lived
excitation to an excitation with a finite lifetime. Let ms be the
smallest integer for which ms�0
max�
�b,1

� 
 , 
�b,2
� 
 �; for

small amplitudes, the lifetime is proportional to �1 /U1
2�ms ac-

cording to the following reasoning. The retarded Green’s
function in region C can be written in terms of the embed-
ding self-energy of Eq. �4� and the Floquet self-energy �ac

R of
Eq. �A18�. The Floquet self-energy generates replica of the
continuous spectrum which are shifted by multiple integers
of �0 and contributes to the imaginary part of the Green’s
function, GR. The leading-order contribution of the mth rep-
lica to Im GR scales like �U1

2�m. Therefore, bound-state
simple poles of GR get embedded in the continuum spectrum
of some of the replica and acquire an imaginary part propor-
tional to �U1

2�m, with m the order of the replica. The leading-
order contribution to the life time of the bound-bound exci-
tation is then proportional to �1 /U1

2�ms.
In conclusion, we have shown that the biased and driven

quantum well has a very rich transient structure. This is due
to the presence of bound states which can substantially delay
the development of the Floquet regime.

IV. CONCLUSIONS AND OUTLOOK

Time-dependent gate voltages can be used to generate a
net current between unbiased electrodes in nanoscale junc-
tions. Most works focus on periodic drivings for which
Floquet-based approaches provide a powerful machinery to
investigate the long-time behavior of the system. Combining
Floquet theory with nonequilibrium Green’s functions tech-
niques, we obtained a general formula for the average current
of monochromatically driven systems in terms of inelastic
transmission probabilities. The case of polychromatic driv-

ings, which has received scarce attention so far, is analyti-
cally more complicated and computationally rather costly.

In this work, we proposed an alternative approach which
can deal with monochromatic, polychromatic, and nonperi-
odic drivings. The computational cost is independent of the
particular time dependence of the driving potential. As an
extra bonus, we can investigate how the transient behavior
depends on the initial state and on the details of the switch-
ing process. The basic idea is to calculate the time-dependent
density and current from the time-evolved �noninteracting�
many-particle state. This amounts to solving a single-particle
Schrödinger equation for each occupied eigenstate of the un-
perturbed system. We have given full implementation details
of the time-propagation algorithm and discussed its perfor-
mance. The generalization to two-or three-dimensional res-
ervoirs can be worked out following the general lines of Ref.
19 and its implementation is in progress.

We illustrated our scheme in one-dimensional structures.
First, we studied pumping through a single barrier, and
showed that the electrons are dragged by the traveling wave
and move in pockets. Second, we studied pumping in semi-
conducting structures, and investigated the phenomenon of
current inversion. In both examples, the Floquet algorithm of
the Appendix is used for benchmarking the long-time limit of
the real-time simulations and we have found an excellent
agreement between the two approaches. Finally, we consid-
ered pumping through a quantum well connected to biased
reservoirs. The aim of this latter example is to show the
existence of a long-lived transient regime in rather common
physical systems. The transient oscillations are explained in
terms of bound-bound transitions and bound-continuum tran-
sitions. These oscillations usually have frequencies which are
not commensurable with the driving frequency and are there-
fore not described by the initial Floquet assumption. In fact,
we believe that this is a rather important result. It implies
that the basic assumption behind the Landauer-Büttiker ap-
proach that a steady state is reached in the long-time limit is
generally not true.

The present work opens the path toward systematic stud-
ies of nanoscale devices as it is not restricted to linear re-
sponse theory and can cope with general time-dependent as
well as spatial perturbations. Our approach can also be ex-
tended in a natural way to describe more complicated physi-
cal systems. The effects of electron correlation may be
included within the framework of time-dependent density
functional theory19 by using present exchange-correlation
density functionals as well as orbital dependent ones. Sec-
ond, the scheme can be upgraded to cope with three-
dimensional reservoirs. This is computationally more de-
manding but clearly will pay back in our understanding of
nonequilibrium dynamical phenomena in nanoconstrictions.

Highlighting different physical phenomena, our idea of
real-time evolution of open quantum systems may also be
used to address questions such as time-dependent spin trans-
port, current fluctuations and shot noise, optimal control of
devices for quantum information processing,49 the role of
superconducting leads, heat transport, etc. In particular, the
design of fast, integrated, optoelectronic nanodevices clearly
requires the proper description of dynamical effects �relax-
ation, decoherence, etc.� on a microscopic level. Problems
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FIG. 8. �Color online� Modulus of the discrete Fourier transform
of the current for the biased quantum well �UR=0.1 a.u.� perturbed
by the traveling wave U�x , t�=U1 sin�qx−�t�, with q=0.5 a.u. and
�=0.5 a.u. Three different amplitudes U1=0.00 �black�, 0.01 �red
�gray��, and 0.03 �green �dark gray�� a.u. are considered. Inset �a�
displays a magnification of the region with bound-continuum tran-
sitions. Inset �b� shows a magnification of the region with the
bound-bound transition and the second-harmonic peak.
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related to current induced heating and electromigration
should also be addressed,23,50–52 and one might need to go
beyond the classical treatment of the ionic motion as it fails
in describing Joule heating.53–55 The present work is a small
step toward those ambitious goals, adding the physics of
time-dependent phenomena to the world of steady-state ef-
fects in quantum transport.
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APPENDIX: CURRENT FORMULA

The dc kernel Q�,dc in Eq. �7� is given by the sum of two
terms, both containing an integral over energy �. Conse-
quently, also the total dc current can be expressed as the sum
of two terms. From Eq. �2�, it is straightforward to obtain

I�,dc = I�
�1� + I�

�2�, �A1�

with

I�
�1� = − 2� d�

2�
f����Im Tr������G0���� , �A2�

and

I�
�2� = −� d�

2�
�
�

f����

��
m

Tr�Gm��������Gm
† ������� − m�0�� . �A3�

Below we use the recursive scheme by Martinez39 to cal-
culate the coefficients Gm. We write the Hamiltonian HCC�t�

as the sum of a static, HCC
0 , and periodic, UCC�t�, term and

expand the latter in Fourier modes

UCC�t� = �
n

Unein�0t, Un = U−n
† . �A4�

We also define the Green’s function g as the projection onto
region C of the Green’s function of the system which is
biased but not driven, i.e., UCC�t�=0. The Green’s function g
depends only on the difference between its time arguments
and can be expanded as follows:

gR�t;t�� = �
m
� d�

2�
gm

R���e−i��t−t��+im�0t�, �A5�

where the only nonvanishing coefficient of the expansion is
g0

R��� and reads

g0
R��� = 1/��1C − HCC

0 − �R���� , �A6�

with 1C the unit matrix in region C and �R the retarded
embedding self-energy of Eq. �4�. Inserting the above expan-
sions into the Dyson equation

GR�t;t�� = gR�t;t�� +� dt̄gR�t; t̄�UCC�t̄�GR�t̄;t�� , �A7�

we find a set of linear equations for the coefficients Gm

Gm��� = 	m,0gm��� + gm����
n

UnGm−n��� , �A8�

where we have used the short-hand notation gm���=g0
R��

−m�0� �the gm should not to be confused with the expansion
coefficient gm

R of Eq. �A5�; the latter is zero for all m�0�.
For arbitrary periodic drivings, the solution of Eq. �A8� is
computationally very hard. In the following, we specialize to
the monochromatic case and describe a feasible numerical
scheme to calculate the Gm’s.

For monochromatic drivings, Un=	n,1U++	n,−1U−, the al-
gebraic system in Eq. �A8� simplifies to �understanding the
quantities as function of ��

Gm = gm�	m,0 + U+Gm−1 + U−Gm+1� , �A9�

which is a tridiagonal system. In matrix form Eq. �A9� reads

�
]

M� �−� 0 0�

0

− g−1U−

. . . 0 0 − g0U+ 1C − g0U− 0 0 . . .

− g1U+

0

0� 0 M� �+�

]

��
]

G−3

G−2

G−1

G0

G1

G2

G3

]

� = �
]

0

0

0

g0

0

0

0

]

� �A10�
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where 0� is the null matrix and the matrices M� ��� read

M� �−� = �
� � 0 0

. . . − g−3U+ 1C − g−3U− 0

. . . 0 − g−2U+ 1C − g−2U−

. . . 0 0 − g−1U+ 1C

� ,

�A11�

M� �+� = �
1C − g1U− 0 0 . . .

− g2U+ 1C − g2U− 0 . . .

0 − g3U+ 1C − g3U− . . .

0 0 � �

� .

�A12�

Let M−
−1, M+

−1 be the bottom-right block of the inverse of
M� �−� and the top-left block of the inverse of M� �+�, respec-
tively. The coefficient G�1 can be expressed in terms of M�

−1

according to

G�1 = M�
−1g�1U�G0. �A13�

Substituting this result into Eq. �A9� with m=0, one obtains
a closed equation for G0

G0 = g0 + g0�
�

U�M�
−1g�1U�G0. �A14�

Exploiting the tridiagonal block structure of M� ���, we can
express the matrices M�

−1 as a continued matrix fraction

M�
−1 =

1C

1C − g�1U�

1C

1C − g�2U�

1C

�

g�3U�

g�2U�

=
1C

g�1
−1 − U�

1C

g�2
−1 − U�

1C

�

U�

U�

g�1
−1 , �A15�

which is equivalent to solving the following recursive rela-
tions �remaking explicit the dependence on ��:

M�
−1��� = H�,1

−1 ���g�1
−1 ��� . �A16�

and

H�,m
−1 ��� =

1C

g�m
−1 ��� − U�H�,m+1

−1 ���U�

=
1C

�� � m�0�1C − HCC
0 − �R�� � m�0� − U�H�,m+1

−1 ���U�

. �A17�

Introducing the ac self-energy,

�ac
R ��� = �

�

U�H�,1
−1 ���U�, �A18�

which accounts for the interaction between the electrons and
the ac driving field, we can rewrite the solution for G0 in Eq.
�A14� as

G0
−1��� = g0

−1��� − �ac
R ��� = �1C − HCC

0 − �R��� − �ac
R ��� .

�A19�

In our implementation, we have solved the above recur-
sive relations by truncating the hierarchy. For some m
=mmax, we set H�,mmax

���=g�mmax

−1 ���, and calculate all the
H�,m��� with m�mmax according to Eq. �A17�. The conver-
gence of the result can be tested by increasing mmax. Typi-
cally, the smaller �0 the larger one has to choose mmax to
achieve convergence. Once the matrix G0 has been calcu-
lated, the matrices Gm with m�0 are easily obtained from

G�m��� = H�,m
−1 ���U�G��m−1����, m 
 0. �A20�

Having explicit equations for the Gm’s, we now show how
to express the total dc current in terms of inelastic transmis-
sion probabilities. To calculate the contribution I�

�1� in Eq.

�A2�, we need to evaluate the imaginary part of Tr���G0�.
Using the identity

G0 − G0
† = G0

†��R − ��R�† + �ac
R − ��ac

R �†�G0, �A21�

we find

Im Tr���G0� =
1

2i
Tr����G0 − G0

†��

= −
1

2
Tr���G0

†�� + �ac�G0� , �A22�

where we have defined �=�L+�R= i��R− ��R�†� and �ac

= i��ac
R − ��ac

R �†�. From the recursive relation �A20� and the
definition of �ac

R in Eq. �A18�, we have

G0
†�ac

R G0 = �
�

G0
†U�H�,1

−1 U�G0 = �
�

G�1
† H�,1

† G�1,

�A23�

and hence

G0
†�acG0 = i�

�

G�1
† �H�,1

† − H�,1�G�1. �A24�

Next, we use the recursive relations �A17� and find
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H�,1
† ��� − H�,1��� = − i��� � �0� + U��H�,2

−1 ���

− �H�,2
−1 ����†�U�. �A25�

Inserting this result into Eq. �A24� yields

G0
†����ac���G0��� = �

�

G�1
† ������ � �0�G�1���

+ i�
�

G�1
† ���U�„�H�,2

−1 ����†

− H�,2
−1 ���…U�G�1��� . �A26�

The second term on the r.h.s. can be expressed in terms of
G�2 with the help of Eq. �A20�. In doing so, we obtain a first
term given by ��G�2

† �������2�0�G�2���, and a second
term that can be expressed in terms of G�3. Iterating ad
infinitum, we end up with the following expression:

G0
†����ac���G0��� = �

m
0
�
�

G�m
† ������ � m�0�G�m��� ,

�A27�

and therefore

Im Tr������G0����

= −
1

2�
m

Tr������Gm
† ������ − m�0�Gm���� .

�A28�

Substituting this result back into Eq. �A2� and performing
the sum I�

�1�+ I�
�2�, with I�

�2� from Eq. �A3�, we obtain the total
dc in terms of inelastic transmission probabilities �see Eq.
�10��. The above derivation is based on nonequilibrium
Green’s functions, and generalizes a previous derivation17 to
central regions of dimension larger than one.
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