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Symmetry of wurtzite nanostructures with the c-axis in the layer plane
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In wurtzite-based quantum wells and superlattices with the c-axis parallel to the layer plane, the plane is
parallel to either a symmetry plane of the wurtzite lattice (type I structures, the (11-20) growth direction) or
a glide plane parallel to the c-axis (type II structures, the (10—10) growth direction). We show that, in both
cases, the space symmetry of the structure depends on the parity of the number of monolayers within the
slab(s). The point symmetry is C,, except for the type II structures with odd number(s) of monolayers. The
latter structures have the o, point symmetry and can present a built-in electric field. Quite different selection
rules, depending on the structure symmetry, govern electron optical transitions and exciton radiative recombi-
nation as well as first- and second-order infrared absorption. The intensities of the various dipolar, infrared, and
Raman lines are discussed. The effect of applied magnetic and electric fields is presented. A simple optical test
is proposed to distinguish the structures with the o, point symmetry and those with the C,, one.
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I. INTRODUCTION

The wurtzite lattice is a polar one. The nanostructures
grown along the c-axis direction present a huge built-in elec-
tric field arising from the piezoelectric effect and the differ-
ence in spontaneous polarizability between the well and bar-
rier materials. The field reduces the electron and hole
eigenenergies (quantum confined Stark effect) and hence the
radiative recombination energies. For wide enough wells, the
ground transition can be lower in energy than the well-
material band gap. In addition, the field spatially separates
electrons from holes, thus reducing the exciton binding en-
ergy and the oscillator strength for radiative recombination.
Such effects have been evidenced experimentally and com-
puted numerically in numerous papers [see, for example,
Refs. 1-3 for GaN-based quantum wells (QWSs) and Ref. 4
for ZnO-based ones]. In order to cancel the built-in field or at
least to reduce its strength, structures have been grown with
the c-axis in the layer plane. Wurtzite heterostructures such
as QWs or superlattices (SLs) can be grown with the layer
plane being parallel to a symmetry plane (type I heterostruc-
ture, the (11-20) growth direction) or to one of the three
glide planes parallel to the c-axis (type II heterostructure,
(10-10) growth direction). The growth of wurtzite III-
nitride or ZnO heterostructures along the (11-20) direction
has already been achieved using substrates such as
(11-20) 6H-SiC (Ref. 5) and 4H-SiC,% (01-12) LiTa0Os,’ or
(1-102) sapphire.? (100) y-LiAlO,,” (10-10) 6H-SiC,'° or
even (10—10) GaN (Ref. 11) have been used to obtain
growth along (10— 10).

We study hereafter the consequences of the various sym-
metries of the nanostructures on their electronic, optical, and
vibrational properties. The present paper is organized as fol-
lows. Section II is devoted to space-symmetry analysis of
QWs and SLs, site symmetry of atoms in the lattice, and
symmetry reduction by an applied magnetic or electric field.
In the following section, the selection rules for dipolar opti-
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cal transitions, exciton radiative recombination, infrared ab-
sorption, and Raman scattering are established together with
the relative strengths of their various lines. In Sec. IV, it is
shown that a piezoelectric field is forbidden from symmetry
in most of the structures, except those with an odd number of
monolayers within the slab(s). In the latter structures, piezo-
electric field can exist but should be weak. Some experi-
ments are suggested to distinguish structures with the o, and
C,, point symmetries, respectively. Finally, Sec. V provides
a brief summary of the results.

II. SYMMETRY ANALYSIS

The wurtzite lattice (Cgv nonsymmorphic space group)
has a threefold rotation axis and a 65 improper rotation
(screw) axis. Both axes are parallel to the ¢ direction but do
not coincide one with the other. In addition, the 65 screw axis
is also a threefold rotation axis. Whereas atoms of the lattice
lie on the threefold axes, the 65 axes do not bear atoms. The
three symmetry planes are parallel to the c-axis and each of
the three glide planes parallel to the c-axis is perpendicular
to one of the symmetry planes (Fig. 1). Hereafter, we con-
sider heterostructures whose well and barrier materials are
stoichiometric binary compounds with common anion or cat-
ion as, for example, (GaN),,/AIN QWs or (GaN),,(AIN),
SLs (ZnO-based structures have also been grown). Whereas
the monolayers are regularly spaced in type I heterostruc-
tures, they form closely spaced pairs in type II heterostruc-
tures (Fig. 1).

When analyzing the QW and SL structures, we adopt the
approximation that the atoms are on the sites of a wurtzite
lattice with lattice constants being averages between the lat-
tice parameters of well and barrier materials. Taking this ap-
proximation into account, the coordinates of all the atoms in
the lattice are well defined, and one can determine both the
space group and the atomic arrangement over the Wyckoff
positions for arbitrary numbers of monolayers m and n. The
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FIG. 1. Structure of AB wurtzite lattice with the c-axis (x axis)
perpendicular to the sheet. Black dot: A (or B) site within the
x=0 plane. Open dot: site with an atom of the same species as
within the x=0 plane but located within the first adjacent layer.
Atoms of the other species are not shown. Each atomic site is lo-
cated on a threefold rotation axis perpendicular to the x=0 plane.
Cross: location of a 65 screw axis perpendicular to the x=0 plane.
Crossed dot: location (restricted to an hexagon) of a 2; screw axis
perpendicular to the x=0 plane. The z axes for type I and type 11
structures are indicated.

space symmetry of QWs is described by layer groups (here-
after, the labeling of layer groups follows Ref. 12), whereas
that of SLs is described by space groups. In our notation, the
x axis coincides with the c-axis of the wurtzite lattice and the
z direction is perpendicular to the layer plane. Each layer
group has the same symmetry operations, except the transla-
tions along the z axis, as one particular three-dimensional
three-periodic space group that will be labeled hereafter as
the corresponding group.'®> The correspondence between
layer groups and three-dimensional three-periodic space
groups is provided in Ref. 14. The two-dimensional Brillouin
Zone (BZ) of the layer group coincides with the (k,,k,) re-
striction of the BZ of the corresponding three-dimensional
three-periodic space group and presents the same symmetry
properties as the restriction. In particular, the layer group and
its corresponding group have the same point symmetry. The
irreducible representations (IRs) of the little group of the
(k,ky) wave vector can be taken directly from the tables of
the IRs of the corresponding three-dimensional three-
periodic space group. The optical selection rules can be es-
tablished using the conventional procedure. In particular, the
(kx,ky) wave vector has to be kept in a direct transition.
Within the two-dimensional BZ, the optical selection rules
are the same as for the corresponding space group in the
(k,ky,) plane.

(1) Except the type II QWs with odd values of m, the
lattice of any QW is a primitive orthorhombic/rectangular
and presents a 2, screw axis parallel to the x axis (Fig. 1). In
addition, one has the following symmetry elements.

In type I QWs, there is a glide plane parallel to (x,z) with
improper translation parallel to x. For even values of m, there
is also a glide plane parallel to (x,y) with improper transla-

PHYSICAL REVIEW B 77, 075336 (2008)

tion parallel to y, the layer group being L33 (pb2,a) and the
corresponding group C;v and for odd values of m, a symme-
try plane parallel to (x,y), the layer group being L29
(pb2,;m) and the corresponding group C%U.

The structure of type II QWs with even values of m is
made of either closely spaced pairs of monolayers only or
widely spaced pairs of monolayers only (Fig. 1). In both
cases, there is a symmetry plane parallel to (x,z) and a glide
plane parallel to (x,y). In the former case, the improper
translation is diagonal for m=2 (2M —1) and parallel to x for
m=4N, where M and N are positive integers (for example,
for m=2, the improper translation is diagonal). In the latter
case, the direction of the improper translation for a given
value of m is exchanged in comparison with that occurring in
the former case. The layer group and corresponding group
are L28 (pm2,b) and C%U, respectively, when the improper
translation is parallel to x and L32 (pm2,n) and C}, respec-
tively, when it is diagonal.

For type II QWs with odd values of m, the lattice is
monoclinic/rectangular, and the only symmetry element is a
symmetry plane parallel to (x,z). The layer group is L11
(pm11) and the corresponding group is C;.

(2) The symmetry of SLs includes the translational sym-
metry along the z direction. It implies that the SL period
involves an integer number of the wurtzite-lattice period in
the growth direction. Therefore, m+n should be equal to 2P
and 40 for type I and type II SLs, respectively, where P and
Q are positive integers. It follows that m and » should have
the same parity. There is no other limitation for type I SLs.
For type II SLs, the pairs of (m,n) values [for example, (2,4)
or (3,3)] that are not such that m+n is an integer multiple of
4 are forbidden since they preclude the SL translational sym-
metry along the z direction. The SL symmetry is described
by space groups. The type II SLs with odd values of m and n
have only a single point symmetry element, i.e., a symmetry
plane parallel to (x,z). Their space symmetry is described by
the CSl space group. For other SLs, there is a 2; screw axis
parallel to the x axis (Fig. 1). In addition, one has the fol-
lowing symmetry elements.

In type I SLs, there is a glide plane parallel to (x,z) with
improper translation parallel to x. For even values of m and
n, there is also a glide plane parallel to (x,y) with improper
translation parallel to y, the space group being C;U, and for
odd values of m and n, a symmetry plane parallel to (x,y),
the space group being C%U.

The structure of type II SLs with even values of m and n
is made of either only closely spaced pairs of monolayers or
only widely spaced pairs of monolayers (Fig. 1). In both
cases, there are a symmetry plane parallel to (x,z) and a
glide plane parallel to (x,y). In the former case, the direction
of the improper translation can be deduced from those in
single QWs with the same numbers of monolayers as in the
SL well and barrier slabs using the following relations:

(diagonal) X (diagonal) — (diagonal),

(Ilx) X (Ilx) — (Ilx), (1)

where the direction of the SL improper translation appears in
the right side of the relations. For example, for m=n=2, the
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TABLE 1. Space symmetries of the various structures.

Type I even m
odd m

Type II even m (see text)

odd m

Type I (m+n=2P) even m and n
odd m and n

Type Il (m+n=4Q) even m and n (see text)

odd m and n

QW

SL

Corresponding
Space symmetry group
L33 (pb2,a) G5, (Pca2,)
L29 (pb2,m) C3, (Pmc2,)
128 (pm2,b) C3, (Pmc2,)
or L32 (pm2n) C;U (Pmn2,)
L11 (pm11) C! (P1m1)

C3, (Pca2,)
C3, (Pmc2;)

C3, (Pmc2;)
or C;v (Pmn2,)
C! (P1m1)

improper translation is diagonal. Note that the well and bar-
rier slabs cannot have different improper-translation direc-
tions. Indeed, m+n would be [4(M+N)-2] that cannot be
equal to 4Q. Relations (1) also hold in the latter case.

The SLs with the improper translation parallel to x have
the C%v space group, whereas those with the diagonal trans-
lation have the CZU group.

The results concerning both QWs and SLs are displayed
in Table I. It is noteworthy that the 2; screw axis of the
structures with the C,, point symmetry is, in any case, par-
allel to the c-axis of the wurtzite lattice.

(3) The site symmetry of an atom in the lattice is C, (no
symmetry), except when the atom is located within a sym-
metry plane. In the latter case, the site symmetry includes the
plane and is described by the C, group (the o, or g;, group
depending the symmetry plane is perpendicular or parallel to
the layer plane).

(4) A uniform magnetic field (axial vector) applied to a
structure keeps a symmetry or glide plane (the latter with its
improper translation) when perpendicular to it.!> The field
also keeps any translation, as well as those rotations whose
axes are parallel to its direction. For example, the 2; screw
axis of the structures with the C,, point symmetry is kept
when the field is parallel to it. In addition, the gauge trans-
formations under the symmetry operations strongly modify
the symmetry properties of the electron wave functions.'> In
two-periodic structures, the Hamiltonian symmetry is de-
scribed by a rod group when the field lies in the layer plane
and by a point group when it does not. In three-periodic
structures such as SLs, for example, the symmetry is de-
scribed by a rod group whose axis is parallel to the field.

An electric field keeps a symmetry plane when contained
within it. For a glide plane to be kept by the electric field, the
latter has to be in the plane and perpendicular to the im-
proper translation. An electric field lifts the translational
symmetry in the directions that are not perpendicular to it.
The space symmetry of a SL reduces to a two-dimensional
group whose plane is perpendicular to the field. That of a

QW reduces to a rod group whose direction is perpendicular
to the field except in the case when the field is perpendicular
to the layer plane. In the latter case, the space symmetry is
described by a two-dimensional group.

III. DIPOLAR OPTICAL SELECTION RULES, EXCITON
RADIATIVE RECOMBINATION, INFRARED
ABSORPTION, AND RAMAN SCATTERING

Bulk hexagonal GaN and ZnO are direct-gap semiconduc-
tors (at the I' point). The symmetries of the lower conduction
band and of the three upper valence bands (the latter in in-
creasing order of energy) in GaN are described by the I';, I'g,
I';, and I'; double-valued IRs of the C‘gv space group, respec-
tively. Hereafter, the labeling of space group IRs follows
Ref. 16. Note that when the spin-orbit interaction (SOI) is
not taken into account, the symmetries of the lower conduc-
tion band and of the upper valence bands (they are only two)
are described by the I';, I'g, and I'; single-valued IRs of the
C‘gv space group, respectively.!” With the account of SOI, the
I’} IR transforms into I';, whereas 'y splits into I';+T'g. In
ZnO, the symmetries of the lower conduction band and of
the three upper valence bands are the same as in GaN, but
the ordering in energy of the valence bands is perhaps dif-
ferent. It seems reasonable to assume that the nanostructures
considered in the present paper are, such as bulk GaN and
ZnO, direct-gap semiconductors at the I" point, except per-
haps for structures with very thin slabs (few monolayers) as
occurs for some GaAs/AlAs SLs with the zinc blende lattice.
For this reason, our study is focused onto the I" point for
dipolar optical electron transitions.

A. Dipolar optical selection rules

The symmetry of the various structures allows the follow-
ing conclusions concerning their optical properties to be
drawn.

075336-3



P. TRONC AND P. VENNEGUES

TABLE II. Kronecker products of (a) I' double-valued IRs and
(b) I single-valued IRs in the structures with the o, point group and
polarizations in parentheses for the allowed transitions.

(a) F3 F4
T, T(x,y) ()
F4 Fz(y) FI(X,Z)

(b) r, T,
F] F](X,Z) FZ(y)
I Iy(y) I'y(x,2)

(1) The QWs with the L11 space symmetry and the SLs
with the CSl space symmetry have the o, symmetry for the I
point. The subduction procedure of the relevant I' IRs of the
Céu group onto its L11 or C: subgroup provides the follow-
ing correspondence:

without the account of the SOIl: T, =T, T'y—T,+T,,

with the account of the SOLl:  I';,I'y—T3+1,. (2)

The vector representation is 21I";(x,z)+1'5(y). Therefore,
there are bright excitons with the I'; and I'; symmetries.
They radiatively recombine with the x,z and y polarizations,
respectively. Table II(a) displays the Kronecker products of
the double-valued IRs of the o, group, together with the
allowed polarizations in parentheses for the optical transi-
tions. Note that the transitions between states with the same
symmetry are allowed in the x and z polarizations, whereas
transitions between states with different symmetries are al-
lowed in the y polarization.

(2) The other QWs and SLs have the C,, symmetry for
the I' point. The subduction procedure of the relevant I' IRs
of the Cgv group onto its L28 (or 29, or 32, or 33) or C%v (or
Cgv, or C;U) subgroup provides the following correspon-
dence:

without the account of the SOI: Iy —=T'|, T's—T53+1y,

with the account of the SOI: T';,I'g — I's. (3)

In the subgroups, there is only a single double-valued IR,
the I's one. Due to our choice of coordinate axes with the z
axis parallel to the growth direction, which is the choice
usually made by experimentalists, the vector representation
is I';(x) +I'5(y) +I'4(z) for the type I structures with the C%v
space or corresponding group. It is I';(x)+I'5(z) +'4(y) for
the other structures with the C,, point symmetry. Indeed, one
has to exchange y and z when going from the former struc-
tures to the latter ones. Keeping this in mind, results will be
presented only for the type I structures with the C%U group:
There is a dark exciton with the I', symmetry and bright
excitons with the I'y, '3, and I'y symmetries that can radia-
tively recombine with the x, y, and z polarizations, respec-
tively. Relation (4) shows that any carrier transition is al-
lowed in any polarization:

r5XF5=F1+F2+F3+F4. (4)
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FIG. 2. Band diagram at the BZ center and polarizations for
allowed dipolar optical transitions in (a) the structures with the o,
point symmetry and (b) the type I structures with the c§v space
symmetry (for the other structures with the C,, point symmetry, one
has to exchange y and z). On the right side of the figure, the polar-
izations shown in capitals (strong transitions) are allowed both
without and with the account of the SOI. The polarizations allowed
only from the SOI (weak transitions) are shown in parentheses.

(3) One can be concerned about the strength of the above
dipolar transitions. It is possible to find criteria for strong and
weak transitions. Indeed, the strong transitions should be al-
lowed even when the SOI is not taken into account, whereas
the weak transitions should be allowed only from the SOI.

(i) For structures with the o, point symmetry, the single-
valued IRs transform as follows with the account of the SOI:

Il =T+ 1. (5)

Tables I1(a) and II(b) allow Fig. 2(a) to be drawn and provide
the optical selection rules when the SOI is not taken into
account and when it is. In the latter case, the weak transitions
(i.e., the transitions allowed from the SOI only) are given in
parentheses.

(ii) For structures with the C3, space symmetry, the
single-valued IRs transform as follows with the account of
SOL:

F17F2’F3’F4HF5' (6)

Table IIT and relation (4) allow Fig. 2(b) to be drawn and
provide the optical selection rules when the SOI is not taken
into account and when it is. In the latter case, the weak
transitions are given in parentheses.

The above results arise from the symmetry of the wurtzite
lattice and do not depend on the binary material under con-
sideration. Of course, some differences in oscillator strength
could exist between various materials.
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TABLE III. Kronecker products of the I' single-valued IRs in
the type I structures having the C%v space or corresponding group.
The polarizations for infrared transitions are indicated in parenthe-
ses. The rules for the other structures with the C,, point group are
obtained by exchanging y and z.

1—‘l Fz F3 F4
Ty I(x) I, F3(y) I4(2)
r, r, I‘1(%) F4(Z) F3()’)
I; F3(y) I4(z) I'(x) I,
r, F4(Z) F3(y) r, T, (x)

B. Infrared absorption and Raman scattering

(1) In the structures with the o, point group, the vector
representation is 2I";(x,z)+',(y), and the I'; and I'; phonon
modes are infrared active in the x, z, and y polarizations,
respectively.

In the structures with the C%U space or corresponding
group, the vector representation is I';(x)+1'5(y) +1"4(z), and
the I'y, I'3, and I', phonon modes are infrared active in the x,
y, and z polarizations, respectively.

(2) The Raman operator is 4I';+2I'; and
3T +I',+ '3+ 14 in the structures with the o, and C,, point
group, respectively. In the structures with the o, point group,
the I'; and I", phonon modes are Raman active in the xx, yy,
7z, and xz and in the xy and yz polarizations, respectively. In
the structures corresponding to the C%U group, the I'y, I',, T3,
and I'y phonon modes are Raman active in the xx, yy, and zz,
in the zy, in the yx, and in the xz polarizations, respectively.
For second-order infrared absorption and Raman scattering,
Table IV provides the selection rules arising from the prod-
ucts of phonons at high-symmetry points of the BZ for the
structures with the o, point group. For the structures with the
C,, point group, Table V provides the selection rules arising
from the products of phonons at the I" point. It can be seen
that the I' phonons can induce infrared transitions with any
polarization as well as Raman scattering between any pair of
polarizations. Of course, some other points in the BZ should
enhance the intensities of the transitions. For example, in the
structures with the Cgv space symmetry, the X, Y, and S
points in the BZ induce the same selection rules as does the
I' point.

(3) One can also be concerned about the strength of the
various infrared and Raman transitions. The phonon density
of states (DOS) influences the intensities of lines in the spec-

TABLE IV. Second-order infrared and Raman selection rules for
the structures with the o, point symmetry. The I" IRs entering into
the Kronecker products of the A IRs are marked by a cross.

Kronecker products

(A=T',A,B,C,D, E, Allowed infrared Allowed Raman

Y, or Z) I't T,  polarizations polarizations
A XA (i=1-2) + X, Z XX, Yy, 2%, XZ
A XA, + y Xy, yZ
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TABLE V. Second-order infrared and Raman selection rules
arising from the I" phonons for the type I structures having the Cgv
space or corresponding group. The I' IRs entering into the Kro-
necker products of the I' IRs are marked by a cross. The rules for
the other structures with the C,, point group are obtained by ex-
changing y and z.

I" part Allowed Allowed
infrared Raman

Products I' T', I's TI'y polarizations polarizations
I XT; (i=1-4)  + X XX, YV, 22
I'yxT, + Forbidden vz
I XT; + y Xy
I xTy + z Xz
Iy XT5 + z Xz
Iy XTIy + y Xy
I'3xTy + Forbidden vz

tra. In both types of structure under study, atoms located at
any Wyckoff position induce phonon modes with any pos-
sible I symmetry.'® It ensures that the DOS of any type of I’
phonon is large.

1. Infrared transitions

For a transition to be allowed, the Kronecker product of
initial and final electron states should include IR(s) from the
vector representation. When the SOI is taken into account, it
occurs for any transition in the structures with the o, point
symmetry [Table Il(a)], or with the C,, one, since the
I's X T's Kronecker product is equal to I'j+1",+1'3+T'. From
the Kronecker products of single-valued IRs, it can readily
be seen that any infrared transition is allowed without the
account of the SOI in the structures with the o, point sym-
metry [Table 1I(b)]. For structures with the C,, point sym-
metry, Table III shows that various Kronecker products of
single-valued IRs involve the I'y or I'; or 'y IR. Therefore,
infrared transitions (first and second orders) involving optical
phonon(s) from the vector representation should be strong
since they are allowed even without the account of the SOL.

2. Froelich interaction

A crystal with the wurtzite structure is made of planes
perpendicular to the c-axis with alternate anions and cations.
The phonons that induce the strongest coupling between the
carriers and the lattice in the present nanostructures are
among those that move rigidly parallel to the ¢ axis the
planes with positively and negatively charged ions. These
LO phonons give rise to the Froelich interaction and are
totally symmetric with respect to the little group of the cor-
responding k, point in the BZ of the structure (in the struc-
tures considered in the present work, the little group of the &,
vector is identical to the point group of the structure). There-
fore, the phonons can connect only carrier states with the
same point symmetry. As a result, among the carriers created
in an excited state, only those created in a state with the same
point symmetry as the ground I state can lower their energy
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TABLE VI. Possible allowed polarizations in various optical experiments for the type I structures having
the cﬁv space or corresponding group. The rules for the other structures with the C,, point group are obtained

by exchanging y and z.

Point symmetry o, Gy,
Electron dipolar transition at I" the point (x, 2), y (x, v, 2)
Exciton radiative recombination (x, 2), y X, V, 2

IR absorption (x,2),y X, ¥, 2
Raman scattering XX, VY, 22, XZ: XY, YZ XX, VY, 220 YZi XY: XZ
Second-order IR absorption (x,2),y X, 9,2

Second-order Raman scattering

XX, VY, 22, X0 XYy, Y2

XX, VY, TT0 YT Xy. XZ

to that of the latter through the Froelich interaction [under
the condition that one (several) phonon (s) can fit the energy
difference with the ground state and the wave-vector—
conservation law]. The Froelich interaction favors the forma-
tion of polarons, since the interaction energy between the
carrier or exciton and the phonon is maximal in the case.
Since the phonon involved in such a polaron is totally sym-
metric, the formation of a polaron imposes that the initial
carrier and the final polaron should have the same point sym-
metry.

3. Raman spectroscopy

The Froelich interaction favors the coupling between
electrons and phonons. As a consequence, the transitions in-
volving the x polarization should be strong. Of course, dif-
ferences in atomic masses and/or deformation potentials can
induce notable changes in the results when going from one
material to another.

IV. DISCUSSION

A built-in electric field arising from piezoelectric effect
and/or the difference in spontaneous polarizability between
the well and barrier materials can exist only in the structures
with the o, point symmetry [the type II structures with odd
number(s) of monolayers within the slab(s)]. Indeed, the
structures have neither symmetry plane nor glide plane par-
allel to the substrate surface. Nevertheless, the piezoelectric
effect should be weak, if any, in the heterostructures since
any monolayer involves the same numbers of cations and
anions. Chauveau et al.'® have grown by molecular beam
epitaxy onto R-plane sapphire some A-plane ZnO layers
1 pm thick and two ZnO/Znjg;Mgp 170 QWs with well
widths of 1.6 and 4.1 nm, respectively. The samples have
their layer plane parallel to a symmetry plane of the wurtzite
lattice (type I structures). The wells exhibit no quantum
confined Stark effect, in accordance with their symmetry
properties since they have the C,, point symmetry with
a symmetry or glide plane parallel to the layers.
Photoluminescence experiments on ZnO layers resolve the A
and B excitons, in polarization perpendicular to the c-axis,
and the C exciton, in polarization parallel to the c-axis (the
notations A, B, and C for excitons refer to the widely used
ones in bulk wurtzite materials). Therefore, only the transi-
tions that are fully allowed i.e., those allowed even when the

SOI is not taken into account,!” appear in the spectra. Note

that, when the SOI is taken into account, there exist B and C
excitons with the I'; and I'y symmetries, respectively (in our
notations, I's and I'g IRs are exchanged in comparison with
notations formerly used for II-VI wurtzite materials). The
excitons can recombine with the polarization parallel and
perpendicular to the c-axis, respectively, but the intensity of
the transitions should be weaker since they are allowed only
from the SOL

Polarized-light experiments can help in distinguishing
structures with the o, point symmetry from those with the
C,, one. Table VI displays the possible polarizations in any
type of experiment for both types of structure. Raman spec-
troscopy (first and second orders) does not provide signifi-
cant enough differences from the point of view of symmetry
between structures with the o, and C,, point groups, since in
both cases activity is possible when dealing with any pair of
polarizations. On the contrary, electron dipolar transitions,
exciton recombination, and infrared absorption (first and sec-
ond orders) obey selection rules depending on the symmetry
of the structure. Application of a magnetic field in the experi-
ments can help in efficiently distinguishing structures. For
example, a magnetic field applied perpendicular to the layer
plane lowers the space symmetry of the wave functions in
the QWs with the o, (C,,) point group to the C; (o7,) point
symmetry (any translational symmetry is lifted since the field
is perpendicular to the layer plane'’). The optical selection
rules in the structures with the o, group can be deduced from
those in the structures with the o, one (Table II) by exchang-
ing y and z. On the contrary, any transition is allowed in any
polarization in the C; group. It provides a simple way to
distinguish the two types of structure from each other.

The parity of the well and barrier monolayer numbers
should be of prime importance for the nanostructure proper-
ties when the numbers are small. For larger values, the effect
should be weaker. Such a result is always assumed in the
envelope function approximation that is valid for not too
narrow wells and barriers and that imposes a symmetry plane
parallel to the layers and located at the center of any well and
barrier. Ultimately, the point symmetry of the structures be-
comes Cg, when the slabs are broad enough to reach the bulk
properties.

V. CONCLUSION

We determined the space symmetries of the various
wurtzite-based QWs and SLs with the ¢ axis in the layer
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plane. The latter is parallel to either a symmetry plane of the
wurtzite structure (type I nanostructure) or a glide plane
(type II nanostructure). A built-in electric field is forbidden
from symmetry except in type II nanostructures with an odd
number of monolayers in the well and in the barrier for SLs.
The selection rules have been established both for intraband
and interband dipolar optical transitions and the intensities of
the various lines discussed. The selection rules for first- and
second-order infrared absorption are different for structures
with the o, and C,, point symmetries, respectively. Froelich

PHYSICAL REVIEW B 77, 075336 (2008)

interaction takes place along the c-axis direction. A magnetic
field applied perpendicular to the layer plane allows QWs
with the C,, point group to be very simply distinguished
from those with the o, one using optical measurements.
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