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We show that the femtosecond four-wave mixing signal from GaAs quantum wells generated in the phase-
matching direction k1+k2−k3 can fully resolve the pure heavy-hole, pure light-hole, and the mixed two
excitons by directly observing double quantum coherences. Time-dependent Hartree-Fock contributions for
different types of two excitons may be completely separated from higher-order Coulomb correlations by
specific pulse polarization configurations. Simulations performed on a one-dimensional three-band tight-
binding model for a GaAs quantum well are analyzed using double-sided Feynman diagrams which reveal the
Liouville space pathways contributing to the various peaks.

DOI: 10.1103/PhysRevB.77.075335 PACS number�s�: 78.47.�p, 78.67.De, 42.50.Md, 71.35.Cc

I. INTRODUCTION

Nonlinear four-wave mixing �FWM� experiments have
long been known to provide direct probes for the many-body
effects in the ultrafast dynamics of excitons in semiconductor
quantum wells �SQWs�.1–13 FWM signals are commonly dis-
played as a function of a single �time or frequency� variable
which provides a one-dimensional �1D� projection of the mi-
croscopic information. Signatures of complex many-body
dynamics may not be easily identified. It is difficult to re-
solve the two-exciton correlations involving both heavy-hole
�HH� and light-hole �LH� excitons by projecting all informa-
tion into a 1D signal. During the past decade, coherent opti-
cal two-dimensional correlation spectroscopy14–17 �2DCS�
techniques have been developed and applied to many chemi-
cal, biological systems,18–21 and SQWs.22–26 These femtosec-
ond analogs of nuclear magnetic resonance techniques27,28

correlate the polarization phase evolution in independent
time periods. Many-body couplings show up as cross peaks
between different resonances.

2DCS signals depend on three time delays �t1 , t2 , t3� be-
tween the incoming pulses, k1, k2, k3, and the signal, ks.
Three 2DCS techniques, SI, SII, and SIII are possible for an
exciton model.15 The signals are, respectively, generated
along the phase-matching directions kI=−k1+k2+k3, kII
=k1−k2+k3, and kIII=k1+k2−k3. Through a Liouville
space pathway analysis,14,15,24 2DCS can reveal detailed
many-body couplings. Recent simulations of the SI and SII
techniques show their capacity to separate coherences from
different pathways and to monitor two-exciton
correlations.22–26 However, SI and SII only partially resolve
different two-exciton resonances. Pure HH and pure LH two
excitons can not be completely separated from the mixed
�LH+HH� two excitons.12,29 This was shown for SI in Ref.
24 and for SII in Appendix A of this paper.

Most past work on many-body interactions in SQWs had
focused on the sub-HH excitons space. In a recent study of
HH excitons,32 in GaAs SQW, we demonstrated that SIII
�Refs. 15, 30, and 31� is particularly sensitive to two-exciton
correlations, as demonstrated recently for HH excitons in a
SQW. In this work, we extend that study to include HH and
LH exciton couplings. Apart from the coexistence of several

types of two excitons in the LH and HH exciton couplings,
two-exciton resonances are further complicated by many
sources such as time-dependent Hartree-Fock �TDHF� and
higher many-body correlations �HMBC� which are neglected
by the TDHF.

SIII, however, can completely separate pure HH, LH, and
mixed two excitons. With the proper choice of pulse polar-
izations, it can even separate TDHF and HMBC two-exciton
correlations. Moreover, as shown in Ref. 32, both frequency
axes in SIII involve two excitons; one of them �t2 or its con-
jugate frequency �2� is solely related to two excitons and
provides a very clean projection. We can thus combine the
information from both axes to improve two-exciton reso-
lution. In Sec. II, we present the model Hamiltonian and the
Heisenberg equations of motion. In Sec. III, we present the
level scheme for GaAs SQWs, the Feynman diagrams for
SIII, and the schematic 2D spectrum. Numerical calculations
within and beyond TDHF are presented respectively in Secs.
IV and V.

II. TIGHT-BINDING HAMILTONIAN AND EQUATIONS
OF MOTION

We used a three-band one-dimensional tight-binding
Hamiltonian of a linear chain with 10 sites and 40
electrons.33–38 This model with various number of sites has
been successfully employed to reproduce many experimental
1D FWM38 and 2DCS26 signals in GaAs SQWs.

The free band Hamiltonian is given by

HK = �
ijc

Tij
c ci

c†cj
c + �

ijv
Tij

vdi
v†dj

v, �1�

where ci
c† �ci

c� are the creation �annihilation� Fermi operators
of electrons in site i from the conduction band c and di

v† �di
v�

are the corresponding operators of holes in the valence band
v. The diagonal elements Tii

c,v describe the site energies for
the electrons �holes� in the conduction �valence� band, while
the off-diagonal elements Ti�j

c,v represent the couplings be-
tween different sites.

The optical spectrum of GaAs SQWs connects a J= 3
2 va-

lence band and a J= 1
2 conduction band �the J= 1

2 valence
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band is well separated from the J= 3
2 valence band due to

spin-orbit interaction and need not be considered�. Only the
band edge states �Bloch vector k near 0� are optically active
due to momentum conservation. The conduction band can
thus be accurately represented by two conduction orbitals
Jz= �

1
2 and four valence orbitals, Jz= �

3
2 �HH� and Jz

= �
1
2 �LH� states.12,29,39,40 The dipole selection rules are pre-

sented in Fig. 1. The allowed transitions are denoted by R
and L arrows, representing right and left circularly polarized
photons, respectively. The corresponding transition dipoles
are �vc, where v=1,2 denote heavy holes �Jz= �

3
2

� and v
=3,4 represent light holes �Jz= �

1
2

�. c=1 and 2 denote elec-
trons with different spins in the conduction band �Jz= �

1
2

�.
The dipole interaction with the radiation field has the

form

HI = − E�r,t� · P̂ , �2�

where P̂ is the interband polarization operator

P � �
ijvc

��ij
vcp̂ij

vc + H.c.� . �3�

Here, �ij
vc are interband transition dipoles and p̂ij

vc�di
vcj

c. The
electric field E�r , t� of the three incoming pulses is given by

E�r,t� = �
�=1

3

�E��r,t� + E�
*�r,t��

= �
�=1

3

�e�E�
+�t − ���ei�k�·r−��t�

+ e�E�
−�t − ���e−i�k�·r−��t�� . �4�

Here, E�
+ �E�

− = �E�
+�*� is the envelope of the positive

�negative�-frequency component of the �th pulse centered at
��, with carrier frequency ��, polarization unit vector e�, and
wave vector k�.

We next turn to the many-body couplings. We assume
monopole-monopole Coulomb interaction between electrons
and holes,33,41,42

HC =
1

2 �
ijcvc�v�

�ci
c�†ci

c� − di
v�†di

v��Vij�cj
c†cj

c − dj
v†dj

v� , �5�

where

Vij = U0
d0

�i − j�d0 + a0
.

Here, U0 is the interaction strength, a0 is a spatial cutoff, and
d0 is the lattice constant.

The total Hamiltonian is finally given by

H = HK + HI + HC. �6�

The Heisenberg equations of motion derived from this
Hamiltonian can be truncated by employing the nonlinear
exciton equations �NEEs� formalism which has been widely
applied to Frenkel43,44 and Wannier4,45,46 excitons. The opti-
cal field is treated perturbatively, while Coulomb interactions
are included nonperturbatively. The NEE is most suitable for
describing Coulomb correlations in the low excitation ��3�

regime.9,47,48 In this work, we focus on coherent excitations
and thus only retain the two types of variables involving
single exciton and two exciton, respectively.4 To third order
in the radiation field, the equations of motion for the first
variable, pij

vc= �p̂ij
vc	, are given by34,36–38

− i
�

�t
pij

vc −
i

tex
pij

vc = − �
n

Tjn
c pin

vc − �
m

Tmi
v pmj

vc + Vijpij
vc

+ �
klv�c�

�Vkj − Vki − Vlj + Vli�

	��plk
v�c��*plj

v�cpik
vc� − �plk

v�c��*plk
v�c�pij

vc

− �plk
v�c��*Blkij

v�c�vc� + E�r,t� · 
��ij
vc�*

− �
klv�c�

��il
vc��*�pkl

v�c��*pkj
v�c

+ �
klv�c�

��lj
v�c�*�plk

v�c��*pik
vc�� , �7�

where the exciton dephasing time tex is introduced phenom-

enologically. The correlated two-exciton amplitudes Blkij
v�c�vc

is defined by

Blkij
v�c�vc � �dl

v�ck
c�di

vcj
c	 + �plj

v�c	�pik
vc�	 − �plk

v�c�	�pij
vc	 , �8�

and satisfy the equations of motion,

− i
�

�t
Blkij

v�c�vc −
i

tbi
Blkij

v�c�vc = − �
m

�Tjm
c Blkim

v�c�vc + Tmi
v Blkmj

v�cimevc

+ Tkm
c Blmij

v�c�vc + Tml
v Bmkij

v�cimevc� + �Vlk

+ Vlj + Vik + Vij − Vli − Vkj�Blkij
v�c�vc

− �Vlk + Vij − Vli − Vkj�pik
vc�plj

v�c

+ �Vik + Vlj − Vli − Vkj�plk
v�c�pij

vc,

�9�

where tbi is the two-exciton dephasing time. 2DCS signals
can be calculated by selecting the spatial Fourier components
of Eqs. �7� and �9� as shown in Appendix B.
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FIG. 1. Spin orbitals and selection rules for a single site of the
ten-site tight-binding model.
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In all calculations, we use the following parameters.12,49

For the site energies and carrier coupling energies, we take
Ti�j

c =8 meV, Ti�j
v=1,2=4.75 meV �HH band�, and Ti�j

v=3,4

=2.52 meV �LH band� to account for the in-plane dispersion
of the valence-band structure in the quantum well. The site
energies Ti=j

c and Ti=j
v=1,2 are taken as half of the band gap Eg.

U0=10 meV and a0 /d=0.5. The parameters of our one-
dimensional model were optimized for the description of ex-
citons and biexcitons in quantum wells. We assumed Gauss-
ian pulse envelopes,

E�
��t − t�� = exp�− �t − t��2/
�

2� , �10�

where 
�=250 fs for the calculations of all 2DCS signals
and 
�=100 fs for linear absorption. The carrier frequency
was detuned by ���=3.62 meV to the blue of the HH exci-
ton energy.

III. SIII TECHNIQUE APPLIED TO GaAs QUANTUM
WELLS

To investigate the excitonic structure of our model �Eq.
�6��, we transform from the real �site� space to momentum k
space. Applying periodic boundary conditions gives the fol-
lowing k values:38

k = 0, �
2�

Na
, �

4�

Na
, . . . , �

�N/2 − 1�2�

Na
,
�

a
,

where N is the number of sites. For N=10, there are 10 HH
and 10 LH single exciton states. However, because �k are
degenerate, we have 12 different energies. We first calculate
the linear absorption ���� using14,24

���� =
� j

n�c0
Im
P��� · Eopt

* ���
�Eopt����2 � , �11�

where n� is the average, frequency-independent refractive
index of the quantum well, 0 is the vacuum permittivity, and
c is the speed of light. Eopt��� is Fourier transform of the
pulse envelope E�

+. P��� is the Fourier transform of the linear
polarization obtained by integrating the linear equation �Eq.
�B5�� over a time period of 38 ps with 1660 time grid points.

Figure 2 shows the calculated linear absorption. There are
six pairs of peaks �one pair is very weak� and each pair
corresponds to HH and LH band contributions. The small
negative features in the absorption reflect numerical error.
The two strong peaks to the red are, respectively, referred to
as HH and LH excitons. These are the dominant peaks in the
linear or nonlinear responses of a quantum well. As N in-
creases, the strength of other peaks will be reduced and their
contributions to the linear absorption will form a continuum.
In the numerical calculations, we used spectrally narrow
pulses to reduce the influence of continuum states. Thus, in
the following analysis, we shall only consider the two
marked HH and LH excitons.

The many-electron level scheme12,29,39,40 including HH
and LH excitons and four bound two-exciton transitions is
presented in Fig. 3. The ground state to exciton dipoles �su-
perpositions of �vc� and the exciton to two-exciton dipoles
are collectively denoted by �ge and �ef, respectively. Sub-

scripts g, e, and f represent, respectively, the ground state,
the single, and the two-exciton manifold. e can be either
eH�eH� � or eL�eL�� denoting HH and LH excitons. f can be
either fH, fL, or fM representing, respectively, HH, LH, and
mixed two excitons. The unbound two-exciton transitions
�not shown for clarity� will be included in the numerical
calculations.

We shall consider the 2D projection of the SIII�t3 , t2 , t1�
signal24 in the ��3 ,�2� plane for fixed t1,

SIII��3,�2,t1� � � � dt3dt2SIII�t3,t2,t1�ei�3t3ei�2t2.

�12�

Within the rotating wave approximation, two basic Feynman
diagrams �vii� and �viii� �in the notation of Refs. 15 and 24�
contribute to this signal, each gives six diagrams, as shown
in Fig. 4, when all contributions of HH and LH transitions
are spelled out. The contributions of each diagram �Liouville
space pathway� to the signal are represented by different
symbols shown at the bottom. Solid �open� symbols denote
redshifted �blueshifted� two excitons. Open circles describe
the contributions from bare two excitons whose contributions
vary for fH, fL, and fM. However, we denote them collec-
tively by the same symbol �circle� for clarity.

With the help of Fig. 4, we can schematically sketch the
SIII spectrum. This is shown in Fig. 5, where the overlapping
symbols are slightly displaced for clarity. We first consider
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FIG. 2. Linear Absorption of the ten-site chain model for a
semiconductor quantum well. ��=0 is the HH exciton energy
which is around 1.5 eV �it varies for different samples�.
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the HH exciton contributions �diagrams �viia� and �viiia��.
Diagram �viiia�, when fH is redshifted and equals to 2eH
−�H1

, shows the resonance between 2eH−�H1
and the

ground state during the t2 period. During t3, �viiia� shows a
resonance between fH=2eH−�H1

and eH with frequency eH

−�H1
. Therefore, according to �viiia� and taking fH=2eH

−�H1
, we have a peak at ��3 ,�2�= �eH−�H1

,2eH−�H1
�

�solid red triangle�. The two coordinates correspond, respec-
tively, to the resonance energies during the evolution time
periods t3 and t2. The blueshifted two-exciton energy fH
=2eH+�H2

in �viiia� gives a peak at ��3 ,�2�= �eH

+�H2
,2eH+�H2

� �open red triangle�. Similarly, using dia-
gram �viia� and by taking, respectively, fH=2eH−�H1

and
2eH+�H2

, we obtain the solid and open red squares. For bare
two excitons, fH=2eH, there are no HMBC two-exciton
coupling50 and both diagrams �viia� and �viiia� contribute to
the signal at �eH ,2eH� �open circle�. Finally, the analysis of
other diagrams involving LH excitons is similar to the case
with only HH excitons.

The unique capacity of SIII to resolve two excitons within
the HH region have been demonstrated in Ref. 32. The �2
axis provides a clean projection of two excitons which only
contains two exciton to ground state resonances. By combin-
ing the two-exciton information along the �2 and �3 axes,
we can achieve high resolution. We note that the peaks re-
lated only to HH two excitons around ��3 ,�2�= �eH ,2eH�
and the LH two excitons around �eL ,2eL� are separated from
the mixed two-exciton peaks at �2=eH+eL. Thus, the mixed

two excitons do not affect the pure HH �LH� two excitons, as
is the case in SI �Ref. 24� and SII �see Appendix A� tech-
niques. Moreover, as we shall show later, by choosing spe-
cific pulse polarizations, SIII can also fully separate the cor-
related pure or mixed two excitons from their corresponding
TDHF contributions. For example, in the vicinity of
�eH ,2eH�, there will be only contributions from HMBC but
no bare two excitons arising from TDHF.

IV. TIME-DEPENDENT HARTREE-FOCK SIMULATIONS
OF TWO-DIMENSIONAL CORRELATION

SPECTROSCOPY

SIII is equal to P�kIII��t3 , t2 , t1 , t�, where P�kIII� is the inter-
band polarization in the phase-matching direction kIII, given
by

P�kIII��t3,t2,t1,t� � �
ijvc

�ij
vcpij

vc:�kIII��t3,t2,t1,t� . �13�

To calculate the 2D spectra, we first compute P�kIII� for fixed
t1=150 fs from t3=0 to 28 ps with 660 time grid points by
solving Eqs. �B1�, �B5�, and �B6�. These calculations were
then repeated by varying t2 from t̄2=0 ps to 14 ps on a 330-
point grid.

We first present calculations at the TDHF level. To that

end, we set the correlated two-exciton variables Blkij
v�c�vc:k1+k2

in Eq. �B1� to be zero. According to Eq. �8�, this is equiva-
lent to the following TDHF decoupling:

�dl
v�ck

c�di
vcj

c	 = plk
v�c�pij

vc − plj
v�cpik

vc�

= �dl
v�ck

c�	�di
vcj

c	 − �dl
v�cj

c	�di
vck

c�	 . �14�

Using the parameters given in Sec. II, we obtained the 2D
spectra �Eq. �12�� shown in Fig. 6. In all figures, the origin is
eH for �3 and 2eH for �2. For XRRR polarization configu-
ration �indices are chronologically ordered from right to left,
i.e., k1 is R and signal is X�, only pure HH two excitons
appear at �0,0� and pure LH two excitons appear at around
�4, 8�, as shown in the top panel. For the XRLR configura-
tion �middle panel�, only mixed two excitons appear at �0,4�
and �4,4�. All possible two excitons are seen for XXXX con-
figuration �bottom panel�. Finally, we note that only bare two
excitons show up at this TDHF level.50
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Figure 6 can be interpreted using the wave-vector-selected
equations of motion in Appendix B. In Eq. �B1�, apart from

the term −Sk3k2k1
�plk

v�c�:k3�*Blkij
v�c�vc:k1+k2 containing the corre-

lated two excitons, all other terms are within TDHF. The
permutation symbol Sk3k2k1

and its action on different ex-
pressions are defined in Eqs. �B2� and �B4� in Appendix B.
Among the TDHF terms, the terms containing optical field
E��t� ��=1,2 ,3� represent Pauli blocking. Our simulations
show that their contributions to the signal are very small.

Another nonlinear TDHF term Sk3k2k1
�plk

v�c�:k3�*plk
v�c�:k2pij

vc:k1

in Eq. �B1� does not contribute to the signal for translation-
ally invariant systems.38 Retaining only the dominant TDHF

term Sk3k2k1
�plk

v�c�:k3�*plj
v�c:k2pik

vc�:k1, Eq. �B1� becomes

− i
�

�t
pij

vc:�k1+k2−k3�  �
klv�c�

�Sk3k2k1
�plk

v�c�:k3�*plj
v�c:k2pik

vc�:k1� .

�15�

R polarized photons can induce two transitions, �v1 ,c1�
and �v3 ,c2�. L polarized photons induce two other transi-
tions, �v2 ,c2� and �v4 ,c1�, as shown in Fig. 1. We first con-

sider the term �plk
v�c�:k3�*plj

v�c:k2pik
vc�:k1 in Eq. �15� arising from

one permutation of Sk3k2k1
.

For the XRRR configuration, the indices �v� ,c�� in

�plk
v�c�:k3�* can be either �v1 ,c1� or �v3 ,c2� for the R polarized

pulse k3, as shown in Fig. 1. For �v� ,c��= �v1 ,c1�, we have

�
klv�c�

�plk
v�c�:k3�*plj

v�c:k2pik
vc�:k1 = �

kl

�plk
v1c1:k3�*plj

v1c:k2pik
vc1:k1.

�16�

Since both pulses k2 and k1 are R polarized, the c and v
indices in Eq. �16� can only assume, respectively, the values
c=c1 and v=v1. Therefore, in this case, we have only pure
HH two excitons. Similarly, if the indices �v� ,c�� in

�plk
v�c�:k3�* take the other possible value of �v3 ,c2�, then we

only have pure LH two excitons because pulses k2 and k1
can only excite LH excitons through transitions �v3 ,c2�.
Analysis of other terms arising from the permutation of
Sk3k2k1

yields the same conclusion: XRRR can only access
pure HH or LH two excitons at the TDHF level. Mixed two
excitons are not excited.

For the XRLR configuration, we consider the same TDHF

term �plk
v�c�:k3�*plj

v�c:k2pik
vc�:k1 in Eq. �15� where the R polar-

ized pulse k3 leads to �v� ,c��= �v1 ,c1� or �v3 ,c2� in

�plk
v�c�:k3�*. For �v� ,c��= �v1 ,c1�, we again obtain Eq. �16�.

Because pulse k2 is L polarized, plj
v1c:k2 in Eq. �16� is always

zero for any c values. Even c=c1, plj
v1c:k2 = plj

v1c1:k2 is still zero
because L polarized photons cannot access �v1 ,c1� transition,
as shown in Fig. 1. Thus, the TDHF term

�plk
v�c�:k3�*plj

v�c:k2pik
vc�:k1 does not contribute to the signal when

�v� ,c��= �v1 ,c1�.
We next consider other terms arising from the permuta-

tions of �plk
v�c�:k3�*plj

v�c:k2pik
vc�:k1. Under the same condition

�v� ,c��= �v1 ,c1�, we have

Sk3k2k1 �
klv�c�

�plk
v�c�:k3�*plj

v�c:k2pik
vc�:k1

= �
klv�c�

�plk
v�c�:k3�*plj

v�c:k1pik
vc�:k2 + ¯

= �
kl�

�plk
v1c1:k3�*plj

v1c:k1pik
vc1:k2 + ¯ . �17�

Equation �17� can contribute to the FWM signal by taking
c=c1 and v=v4, which gives

− i
�

�t
pij

vc:�k1+k2−k3�  �
kl�

�plk
v1c1:k3�*plj

v1c1:k1pik
v4c1:k2 + ¯ ,

�18�

where R polarized pulse k1 accesses �v1 ,c1� transition and L
polarized pulse k2 accesses �v4 ,c1� transition, which are both
possible, as shown in Fig. 1. Moreover, when c=c1 and v
=v4, pij

vc:�k1+k2−k3� becomes pij
v4c1:�k1+k2−k3� and is also acces-

sible by the final X polarized heterodyne pulse according to
the selection rules. Thus, in Eq. �18�, pulses k1 and k2, re-
spectively, create a HH exciton and a LH exciton, thus form-
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ing mixed two excitons, as shown in Fig. 6�B�. The same

conclusion holds if the indices �v� ,c�� in �plk
v�c�:k3�* assume

the other possible value of �v3 ,c2�. The above analysis ex-
plains why only mixed two excitons are created by the
XRLR configuration at the TDHF level.

Finally, the XXXX configuration involves a superposition
of both XRRR and XRLR and is thus nonselective. Both
pure HH �LH� two excitons and mixed two excitons are gen-
erated, as shown in Fig. 6�C�.

V. HIGHER CORRELATION EFFECTS: BEYOND TIME-
DEPENDENT HARTREE-FOCK

The full NEE calculation, beyond TDHF, reveals many-
body correlations among HH and LH excitons. By selecting
pulse polarizations, one can completely separate correlation
effects from TDHF contributions for different types of two
excitons. For the XRRR configuration �Fig. 6�A��, any peaks
other than �b� and �h� would be due to HMBC. For example,
peaks around �0, 4� and �4, 4� must be from the correlated
mixed two excitons. This is because around these positions
there should be no TDHF contributions according to Fig.
6�A� but there should be HMBC contributions from mixed
two excitons according to Fig. 5. For XRLR �Fig. 6�B��, all
peaks other than �e� and �f� are induced by HMBC. For ex-
ample, the peaks around �0, 0� and �4, 8� must be from the
correlated pure HH �LH� two excitons. This is because there
are no TDHF contributions in their vicinity according to Fig.
6�B�. However, there should be contributions from correlated
pure HH two excitons at �0, 0� and pure LH two excitons at
�4, 8� according to Fig. 5. Thus, the XRRR and XRLR con-
figurations completely separate the correlation effects from
the TDHF contributions for mixed two excitons and pure HH
�LH� two excitons.

In Fig. 7, we present the full NEE calculation for the
XRLR configuration. To show how 2D spectra evolve with
time-delay parameters, in panels A and B, we use different
values of t1 and the initial t2, t̄2. We see new peaks ��a� and
�g�� not predicted in Fig. 5. The origin of these peaks is not
clear. It may be due to interferences along different axes, or
among LH and HH excitons arising from small LH and HH
exciton splitting. For example, peak �a� in panel A might be
the tail of peak �e� along �2 but may become an isolated
peak due to the interference with LH excitons along �3.
However, it is easy to identify peaks such as �a� and �g� in
the 2D spectra because their �2 values vary with different
excitation conditions. Thus, we can easily exclude them
when determining the two-exciton correlation energy. Using
Fig. 7�A�, we can directly deduce the bound correlation en-
ergies for various two excitons. From peaks ��c� and �d�� and
��m� and �n��, we obtain that the two-exciton binding ener-
gies for HH and LH two excitons are, respectively, 1.35 and
1.45 meV.

The peaks that follow the predicted pattern in Fig. 5 such
as �b�–�f�, �h�, �m�, and �n� in panels �A� and �B� retain the
same �2 values for different time-delay parameters or pulse
polarization configurations. Therefore, these peaks can be
used to determine two-exciton couplings, attractive two-
exciton binding energy �TBE� or repulsive two-exciton scat-

tering energy �TSE�. To that end, we need only identify the
peaks below and above the lines �2=2eH=0,eH+eL
�4 meV and 2eL�8 meV, respectively. For example, we
can obtain the energy of peak �c� along �2 and thus get the
TBE for LH two excitons. Note that the unresolved peak, a
shoulder �d�, to the red of peak �c�, as predicted by Fig. 5.
Peaks �d� and �c� always appear in pairs and thus can help
identify both peaks even though they are very weak and not
well resolved. Similarly, we obtain the TBE for HH two
excitons from peaks �m� and �n�. Moreover, by using spec-
trally narrow pulses and different detunings, one can even
clearly show the blueshifted TSE of correlated same-spin
excitons.32 For current pulse parameters, the TSE feature is
not seen.

The spectra shown in Fig. 7 completely separate the pure
HH�LH� two excitons from mixed two excitons �peaks �e�
and �f��. We can thus accurately determine the correlation
energies of pure HH and LH two-excitons, even when the
two-exciton features are weak �e.g., peaks �m� and �n� in Fig.
7�A��. The XRLR configuration excludes the TDHF contri-
butions at �0, 0� and �4, 8� which contain correlated HH �LH�
two excitons and thus further enhance the resolution. Such
resolution may not be achieved by other techniques �SI and
SII� where features such as �d� and �c� or �m� and �n� are
hidden under the stronger mixed two-exciton peaks, �e� and
�f�.

To check the convergence of the correlation energies, we
have repeated the calculation of the 2D spectrum with the
same parameters as in Fig. 7�A� but with different basis sets.
These are shown in Figs. 8�A� �14 sites� and 8�B� �20 sites�.
We note that the main features such as mixed exciton peaks
�e� and �f�, pure LH two-exciton peaks �c� and �d�, and pure
HH two-exciton peaks �m� and �n� had converged and agree
with Fig. 7�A�. In fact, the binding energies of pure HH and
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t̄2=0 fs.

LIJUN YANG AND SHAUL MUKAMEL PHYSICAL REVIEW B 77, 075335 �2008�

075335-6



LH two excitons can be obtained with very high resolution in
this experiment. For example, although we cannot resolve
clearly peaks �c� and �d�, by connecting the ridges between
peaks �c� and �d�, we can obtain a straight line, whose energy
along �2 accurately gives the LH two-exciton binding en-
ergy. However, we also note that the XRLR polarization con-
figuration does not resolve the correlated mixed two excitons
because peaks �e� and �f� are dominated by the TDHF con-
tribution, as shown in Fig. 6�B�. The contributions from
HMBC mixed two excitons will overlap with these TDHF
contributions and may not be easily distinguished.

The XRRR spectra are shown in Fig. 9. As in Fig. 7, the
origin of peaks �a� and �g� is not clear and might be attrib-
uted to the cross interferences among HH and LH excitons
along different axes. They do not follow the pattern in Fig. 5
and their �2 values vary for different configurations. Accord-
ing to Fig. 6�A�, there should be no signals at positions �e�
and �f� for the XRRR configuration at the TDHF level.
Therefore, �e� and �f� in Fig. 9 must come from correlated
mixed two excitons, according to Fig. 5. In this way, we
achieve a complete separation of correlated mixed two exci-
tons from their TDHF counterparts. In other techniques, SI
�Ref. 24� and SII �Appendix A�, correlated mixed two exci-
tons always overlap with other dominant peaks and may not
be easily resolved. Furthermore, we note that the mixed two
excitons formed by two same-spin excitons do not have ap-
preciable red shifts or blueshifts from eH+eL�4 meV. This
indicates that if using other techniques these correlation fea-
tures will completely overlap with the stronger single-
exciton transitions and may not be detected at all.

The XXXX spectra are shown in Fig. 10. As expected,
this configuration cannot completely separate the correlation
and TDHF contributions neither for pure HH �LH� two ex-
citons nor for mixed two excitons. This is because the TDHF
peaks occupy all the major peak positions, as shown in Fig.

6�C�. Panels �A� and �B� are calculated with the same param-
eters except that t1 and the initial t2, t̄2, are slightly different.
We find strong interferences between the within and beyond
TDHF contributions. For example, even though peaks �e�
and �f� in Fig. 6�C� show the mixed two excitons from TDHF
contributions, in Fig. 10, peak �f� is missing due to interfer-
ence. However, we can still resolve several peaks such as �b�,
�e�, and �h� which have the same �2 values as compared to
the corresponding peaks in Figs. 7 and 9.
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In summary, the proposed 2DCS technique is particularly
useful for resolving different correlated two excitons. The
separation of two-exciton HMBC effects from the TDHF
level may be achieved by selecting specific pulse polariza-
tions.
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APPENDIX A: THE SII TECHNIQUE

The SI technique was analyzed in Ref. 24. For complete-
ness and comparison with the SIII technique discussed in this
work, we present below a Feynman diagram analysis of the
SII technique. We denote the heterodyne-detected signal gen-
erated by three very short �impulsive� pulses along the
phase-matching direction kII=k1−k2+k3 as SII�t3 , t2 , t1�.24

The corresponding 2D signal defined as

SII��3,t2,�1� � � � dt3dt1SII�t3,t2,t1�ei�3t3ei�1t1

�A1�

will be displayed in the ��3 ,�1� plane for a fixed t2. Using
the notation of Refs. 15 and 24, this signal is described by
three basic Feynman diagrams �iv�, �v�, and �vi�, where �iv�
and �v� only involve single excitons and �vi� involves both
single and two excitons. The complete set of diagrams de-
rived from the three basic diagrams by specifying the various

HH and LH excitons are shown in Fig. 11. fH, fL, and fM
denote the various two excitons. For example, due to Cou-
lomb interactions, fH can be either redshifted fH=2eH−�H1

,
bare fH=2eH, or blueshifted fH=2eH+�H2

compared to twice
the single HH exciton energy, 2eH. In diagrams �via� to �vid�,
each solid symbol describes a type of redshifted two excitons
and the corresponding open symbol describes blueshifted
ones. Open circles denote contributions from bare two exci-
tons.

The SII signals from �iva�–�ivd�, �va�–�vd�, and �via�–
�vid� are plotted schematically in Figs. 12�iv�, 12�v�, and
12�vi�, respectively. The total spectrum obtained by sum-
ming all diagrams is shown in the panel �s� of Fig. 12, where
overlapping peaks are slightly displaced for clarity.

Note that different types of two excitons are only partially
separated in panel �s�. Pure HH �LH� two excitons �e.g., solid
red triangle� are still overlapped with the mixed two excitons
�e.g., solid green square�. The situation is similar in all other
2D projections of SII where pure HH �LH� two excitons and
the mixed two excitons may not be fully separated.
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APPENDIX B: WAVE-VECTOR SELECTION FOR THE SIII

TECHNIQUE

In our earlier work,24 we presented the equations of mo-
tion for calculating SI 2DCS for a two-pulse configuration.
Below, we extend them to calculate SIII 2DCS signals in-

duced by three pulses. To that end, we present the equations
of motion for selecting the kIII=k1+k2−k3 component of
the interband density matrix pij

vc in Eq. �7�. Additional terms
and equations are necessary in the three-pulse scheme due to
the more permutations among different pulses.

− i
�

�t
pij

vc:�k1+k2−k3� −
i

�ex
pij

vc:�k1+k2−k3� = − �
n

Tjn
c pin

vc:�k1+k2−k3� − �
m

Tmi
v pmj

vc:�k1+k2−k3� + Vijpij
vc:�k1+k2−k3� + �

klv�c�

�Vkj − Vki − Vlj + Vli�

· �Sk3k2k1
�plk

v�c�:k3�*plj
v�c:k2pik

vc�:k1 − Sk3k2k1
�plk

v�c�:k3�*plk
v�c�:k2pij

vc:k1

− Sk3k2k1
�plk

v�c�:k3�*Blkij
v�c�vc:k1+k2� − E3

*�t� · �
klv�c�

���il
vc��*Sk2k1

pkl
v�c�:k2pkj

v�c:k1

+ ��lj
v�c�*Sk2k1

plk
v�c�:k2pik

vc�:k1� − E2�t� · �
klv�c�

���il
vc��*Sk3k1

�pkl
v�c�:k3�*pkj

v�c:k1

+ ��lj
v�c�*Sk3k1

�plk
v�c�:k3�*pik

vc�:k1� − E1�t� · �
klv�c�

���il
vc��*Sk3k2

�pkl
v�c�:k3�*pkj

v�c:k2

+ ��lj
v�c�*Sk3k2

�plk
v�c�:k3�*pik

vc�:k2� , �B1�

where �ex describes exciton dephasing time. In Eq. �B1�, Skikj
and Skikjkk

�i , j ,k=1,2 ,3� describe all possible ways making the
relevant terms to contribute along the direction kIII=k1+k2−k3. For example,

Sk3k2k1
�plk

v�c�:k3�*plj
v�c:k2pik

vc�:k1 = �plk
v�c�:k3�*plj

v�c:k2pik
vc�:k1 + �plk

v�c�:k3�*plj
v�c:k1pik

vc�:k2 + �plk
v�c�:−k2�*plj

v�c:−k3pik
vc�:k1

+ �plk
v�c�:−k2�*plj

v�c:k1pik
vc�:−k3 + �plk

v�c�:−k1�*plj
v�c:−k3pik

vc�:k2 + �plk
v�c�:−k1�*plj

v�c:k2pik
vc�−:k3

= �plk
v�c�:k3�*plj

v�c:k2pik
vc�:k1 + �plk

v�c�:k3�*plj
v�c:k1pik

vc�:k2 + plk
v�c�:k2�plj

v�c:k3�*pik
vc�:k1

+ plk
v�c�:k2plj

v�c:k1�pik
vc�:k3�* + plk

v�c�:k1�plj
v�c:k3�*pik

vc�:k2 + plk
v�c�:k1plj

v�c:k2�pik
vc�:k3�*, �B2�

where each density matrix has either positive or negative
wave vector. Two other typical examples showing the opera-
tions of Skikj

and Skikjkk
are

E2�t� · �
klv�c�

��il
vc��*Sk3k1

�pkl
v�c�:k3�*pkj

v�c:k1

= E2�t� · �
klv�c�

���il
vc��*�pkl

v�c�:k3�*pkj
v�c:k1

+ ��il
vc��*�pkl

v�c�:−k1�*pkj
v�c:−k3�

= E2�t� · �
klv�c�

���il
vc��*�pkl

v�c�:k3�*pkj
v�c:k1

+ ��il
vc��*pkl

v�c�:k1�pkj
v�c:k3�*� �B3�

and

Sk3k2k1
�plk

v�c�:k3�*Blkij
v�c�vc:k1+k2 = �plk

v�c�:k3�*Blkij
v�c�vc:k1+k2

+ �plk
v�c�:−k2�*Blkij

v�c�vc:k1−k3

+ �plk
v�c�:−k1�*Blkij

v�c�vc:k2−k3

= �plk
v�c�:k3�*Blkij

v�c�vc:k1+k2

+ plk
v�c�:k2Blkij

v�c�vc:k1−k3

+ plk
v�c�:k1Blkij

v�c�vc:k2−k3. �B4�

To solve Eq. �B1� for the time-dependent interband coher-
ences matrix pij

vc:�k1+k2−k3�, we need the equations of motion
for the first-order �in the optical field� density matrices
pij

vc�k����=1,2 ,3�; the three second-order two-exciton matri-

ces Blkij
v�c�vc:k1+k2, Blkij

v�c�vc:k1−k3, and Blkij
v�c�vc:k2−k3. The first-

order equations are given by

− i
�

�t
pij

vc�k�� −
i

�ex
pij

vc�k�� = − �
n

Tjn
c pin

vc�k�� − �
m

Tmi
v pmj

vc�k��

+ Vijpij
vc�k�� + E��t� · ��ij

vc�*,

�� = 1,2,3� . �B5�

The equations of motion for the three two-exciton density
matrices are, respectively,
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− i
�

�t
Blkij

v�c�vc:�k1+k2� −
i

�2ex
Blkij

v�c�vc:�k1+k2�

= − �
m

�Tjm
c Blkim

v�c�vc:�k1+k2� + Tmi
v Blkmj

v�c�vc:�k1+k2�

+ Tkm
c Blmij

v�c�vc:�k1+k2� + Tml
v Bmkij

v�c�vc:�k1+k2��

+ �Vlk + Vlj + Vik + Vij − Vli − Vkj�Blkij
v�c�vc:�k1+k2�

− �Vlk + Vij − Vli − Vkj�Sk2k1
pik

vc��k1�plj
v�c�k2�

+ �Vik + Vlj − Vli − Vkj�Sk2k1
plk

v�c��k1�pij
vc�k2�, �B6�

− i
�

�t
Blkij

v�c�vc:�k1−k3� −
i

�2ex
Blkij

v�c�vc:�k1−k3�

= − �
m

�Tjm
c Blkim

v�c�vc:�k1−k3� + Tmi
v Blkmj

v�c�vc:�k1−k3�

+ Tkm
c Blmij

v�c�vc:�k1−k3� + Tml
v Bmkij

v�c�vc:�k1−k3��

+ �Vlk + Vlj + Vik + Vij − Vli − Vkj�Blkij
v�c�vc:�k1−k3�

− �Vlk + Vij − Vli − Vkj�Sk1k3
pik

vc��k1��plj
v�c�k3��*

+ �Vik + Vlj − Vli − Vkj�Sk1k3
plk

v�c��k1��pij
vc�k3��*, �B7�

and

− i
�

�t
Blkij

v�c�vc:�k2−k3� −
i

�2ex
Blkij

v�c�vc:�k2−k3�

= − �
m

�Tjm
c Blkim

v�c�vc:�k2−k3� + Tmi
v Blkmj

v�c�vc:�k2−k3�

+ Tkm
c Blmij

v�c�vc:�k2−k3� + Tml
v Bmkij

v�c�vc:�k2−k3��

+ �Vlk + Vlj + Vik + Vij − Vli − Vkj�Blkij
v�c�vc:�k2−k3�

− �Vlk + Vij − Vli − Vkj�Sk2k3
pik

vc��k2��plj
v�c�k3��*

+ �Vik + Vlj − Vli − Vkj�Sk2k3
plk

v�c��k2��pij
vc�k3��*, �B8�

where �2ex describes two-exciton dephasing times.
By solving Eqs. �B1� and �B5�–�B8�, we obtain the kIII

component of interband coherences, pij
vc:�k1+k2−k3�. Then, SIII

2DCS can be obtained through Eq. �12�. We found that for
well separated pulses, numerical effort can be reduced sig-
nificantly by employing only a subset of the above equations.
Equations �B7� and �B8� can be neglected with small effects
on the correlation energies. Therefore, all 2D spectra re-
ported are calculated by neglecting Eqs. �B7� and �B8�. This
is equivalent to neglecting the Sk3k2k1

before the term

�plk
v�c�:k3�*Blkij

v�c�vc:k1+k2 in Eq. �B1�, or including in Eq. �B4�
only the term Blkij

v�c�vc:k1+k2 but neglecting Blkij
v�c�vc:k1−k3 and

Blkij
v�c�vc:k2−k3. This is also the general practice when calculat-

ing 2DCS for Frenkel excitons.
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