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We introduce a model for rectification in three-terminal ballistic conductors, where the central connecting
node is modeled as a chaotic cavity. For bias voltages comparable to the Fermi energy, a strong nonlinearity is
created by the opening of a gap in the transport window. Both noninteracting cavity electrons at arbitrary
temperature as well as the hot-electron regime are considered. Charging effects are treated within the trans-
mission formalism using a self-consistent analysis. The conductance of the third lead in a voltage probe
configuration is varied to also model inelastic effects. We find that the basic transport features are insensitive
to all of these changes, indicating that the nonlinearity is robust and well suited to applications such as current
rectification in ballistic systems. Our findings are in broad agreement with several recent experiments.
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INTRODUCTION

There has been recent interest in applying ballistic three-
terminal junctions as voltage rectifiers or diodes in emerging
nanoelectric technology. From an application point of view,
the observed nonlinear I-V curves1–12 in these junctions are
quite attractive in that the effect persists to room temperature
and originates without any special engineering. Initial ex-
perimental investigation into the issue sought to add the
source of nonlinearity in various ways: The experiment
�Refs. 1 and 2� placed a triangular obstacle in a cavity in an
effort to “force” the electrons in one direction or another. For
some time, it was thought that such enhancements were
necessary,6,13 but other discussions14 pointed to a more gen-
eral origin of the rectification effects.4 These
discussions1,2,14,13 are all based on an application of the
transmission approach for multiterminal conductors15 in the
nonlinear regime. However, beyond the linear regime, appli-
cation of the transmission approach requires a self-consistent
treatment.16,17 Indeed, it has been shown that ballistic junc-
tions are very sensitive to side gating.18

Even in the linear regime, ballistic four-probe junctions
have found applications in Hall micromagnetometry19,20 and
scanning Hall probe microscopy.21,22 Recent advances in-
clude a vector Hall sensor.23 Multiterminal ballistic junctions
are also found to be sensitive potentiometers.24

In mesoscopic physics, the properties of ballistic four-
probe junctions were originally investigated in the linear
transport regime starting with the work by Roukes et al.,25

who found at low temperatures an absence �quenching� of
the Hall effect. Different geometries were investigated, lead-
ing to an enhanced or suppressed Hall effect depending only
on the geometry of the Hall cross.26,27 Already at He tem-
peratures, these effects can be well described by classical
trajectories.28 Interference effects play a role at much lower
temperatures.29 In the nonlinear regime, interference effects
in chaotic cavities have recently found interest in connection
with the generation of rectification effects. These works ex-
amine �predominantly� the second order in voltage term of
the I-V characteristic17 and demonstrate that interactions lead
to deviations from the Onsager symmetry.30–35 In compari-

son, the somewhat extreme conditions of large bias and high
temperature envisioned for applications of ballistic structures
as rectifiers and diodes are outside the scope of the mesos-
copic physics literature and thus require a separate treatment.

The purpose of this paper is to present a simple model of
classical rectification in ballistic chaotic cavities. We here
take a minimalist approach to the problem and make only the
following two assumptions: �i� Transport between lead and
cavity via the quantum point contacts �QPCs� is ballistic so
the Landauer formula applies. �ii� The mean level spacing in
the cavity is much smaller than the charging energy of the
cavity; therefore, charge neutrality of the cavity under non-
equilibrium conditions is imposed. From these two assump-
tions, we develop our model and demonstrate that when the
applied voltage is comparable to the Fermi energy, a strong
nonlinearity develops. Furthermore, we demonstrate that this
behavior is insensitive to the details of the model, showing
that this mechanism is generic and robust.

We now briefly summarize the basic physics that leads to
the strong nonlinearity in the transport characteristics. The
nonlinearity at the scale of the Fermi level is a consequence
of the basic assumptions that describe our model. It is essen-
tially connected to the fact that the potential landscape of the
conductor is determined by charge neutrality. At low volt-
ages �see Fig. 1�A��, the injected current is nearly compen-
sated by both carriers reflected from the sample and by car-
riers transmitted from the sink lead, leading to a linear
increase of the total current with applied voltage. However,
when the applied voltage is large compared to the Fermi
energy, carriers injected by the right contact can no longer
continue to compensate for the source lead. The total injected
current flowing from the source lead into the conductor de-
pends only on the Fermi energy �and the height of the saddle
point potential� and is actually independent of the applied
voltage. This state �see Fig. 1�B�� is signaled by the opening
of a gap in the electron distribution inside the sample, lead-
ing to the saturation of the total current as a function of bias.
When the probe lead is added with a voltage fixed at the
midpoint of the other two, the gap causes the cavity potential
to be below the probe voltage, leading to a rectified current
whose sign is independent of the sign of the applied bias due
to the symmetry of the geometry.
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The current saturation �and rectification� effect follows
since in the injecting reservoir the conduction band bottom
and the Fermi level move in synchronism with the applied
voltage. This is a consequence of charge neutrality. There-
fore, interactions must be accounted for to capture the depen-
dence of the current-voltage characteristic on the Fermi
energy.16 In contrast, if the potential landscape would be kept
fixed �for instance, at the equilibrium electrostatic potential�
when increasing the applied voltage, the nonlinearity de-
scribed here would not develop.

I. MINIMAL MODEL

We now describe the model in detail. A ballistic cavity is
connected via three QPCs to bulk leads. We assume that the
energy barriers of the QPCs �see Fig. 1�A�� are specified by
a potential energy V0. Electrical bias V is applied across two
of the leads. When the third lead is in the voltage probe
configuration, there are two basic dc-transport characteris-
tics: the dependence of the potential Vp on the third lead
�voltage probe�, as a function of V, and the I-V curve through
the left and right leads. When the third lead is electrically
fixed to be the midpoint voltage between the left and right
leads, there are then the three currents through the leads
linked by current conservation.

In the voltage probe situation, an even simpler model that
captures the basic physics is to truncate the third lead by
pinching off the third contact and to consider the dependence
of the internal cavity potential U versus V. We will first work
out this simplest case analytically in detail, and present only
the numerical results for more realistic extensions of this
model.

For a chaotic cavity, the occupation function is
isotropic36,37 and the main theoretical task is to find its de-

pendence on energy. The use of a chaotic cavity gives the
results of our minimal model a degree of universality, which
is absent in ballistic junctions with short geometry-dependent
trajectories.

Low bias limit, V�EF−V0. We first assume zero tempera-
ture and elastic scattering. The current going into the cavity
from both leads is given by the Landauer formula,

I� =� dEj��E� = �e/h� � dET��E��f� − fC� , �1�

where �=L, R, j�E� is the energy-resolved current, T�E� is
the energy-dependent transmission, and fL,R,C are the occu-
pation functions of each region. We assume that the lead
occupation functions are completely specified by Fermi func-
tions with a single potential: EF+V and EF. The large energy
scales involved imply that the transmission of the QPCs may
be treated semiclassically, so only the coarse energy depen-
dence is kept,

T��E� =
�E − E��

��

��E − E�� , �2�

where we use a linear interpolation �valid for energies larger
than the conductance quantization scale�, and EL=V+V0 and
ER=U+V0 are the minimal energies required for carriers to
pass through the QPCs �see also Fig. 1�B��. The energy
scales �� characterize how open the contacts are. The limit
�→� corresponds to a closed contact. Other energy depen-
dence �such as the semiclassical 3 /2 transmission law� leads
to similar physics.

Imposing energy-resolved current conservation jL�E�
+ jR�E�=0 allows us to solve for the cavity occupation as a
function of energy,

f low =
E − V − V0

2E − 2V0 − V − U
, �3�

where EF�E�EF+V. Between U and EF, the cavity occu-
pation is 1. We can now calculate the charge in the cavity,

Q = �
�=L,R,p

C��V� − U� = eD� dEfC�E� , �4�

where D is the �constant� density of states, V� is the potential
of lead �, and C� is the capacitance linking the central cavity
to terminal �. For simplicity, we focus on the realistic case of
reasonably large cavities, where the cavity mean level spac-
ing, D−1, is much smaller than the charging energy of the
cavity, e2 /C. In this case, Eq. �4� is a charge neutrality con-
dition, and the left hand side may be replaced by the equi-
librium charge on the cavity, Q0=eDEF. Inserting Eq. �3�
into Eq. �4�, we find

Q/�eD� = EF = EF − U + V/2

− ��U − V�/4�log�2EF − V − U − 2V0

2EF − U + V − 2V0
� , �5�

giving a self-consistent �transcendental� equation for the un-
known potential U, which may be solved numerically.
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FIG. 1. The energy landscape of a chaotic cavity is plotted ver-
sus the position for the �A� low and �B� high bias cases. In case �A�,
transport is approximately linear, and the current-carrying electrons
have energies in the transport window. In case �B�, the electrical
bias V is sufficiently large that an energy gap opens between the
transport window and the filled Fermi sea of the right lead. The
energy gap is responsible for the strong nonlinearity in the transport
characteristics.
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Notice that the logarithm in Eq. �5� originates from keep-
ing the energy dependence of the transmission and integrat-
ing over the full energy range. Indeed, if we simply neglect
the logarithmic correction, we recover the usual linear result,
U=V /2. In Fig. 2�B�, we plot this solution for V�EF−V0
�the T=0 curve only�. In order to take out the usual linear
behavior and focus on the nonlinearity, we plot U−V /2 �all
other plots of cavity or probe potential will reflect this con-
vention�.

High bias limit, V�EF−V0. In this range of parameters,
the large applied bias lifts the energy barrier of the left QPC
up above the Fermi level of the right contact �see Fig. 1�B��.
This opens up a gap in the transport window, corresponding
to an energy range too low for the left current carriers to fill.
Here,

fhigh = 	1, U � E � EF

0, EF � E � V + V0

f low, V0 + V � E � EF + V .

 �6�

Inserting this into Eq. �4�, we find the equation

Q/�eD� = EF = EF − U + �EF − V0�/2

− ��U − V�/4�log�2EF − V − U − 2V0

2EF − U + V − 2V0
� . �7�

We observe that if the logarithmic contribution in Eq. �7�
is neglected, we obtain U= �EF−V0� /2, so U goes to a con-
stant as V continues to increase. This explains why Figs.
3�A� and 3�C�, as well as the experimental data11 �which plot
U−V /2� show transitions from a flat dependence to a shifted

line with slope −1 /2 at large bias V. The energy scale
EF−V0 is the crossover point. The numerical solution of U
as a function of V is given in Fig. 2�B� for V�EF−V0
�T=0 curve only�. Note also the spatial inversion symmetry,
V→−V ,x→−x, for a symmetric geometry gives the �trivi-
ally� symmetric negative voltage behavior as found in recent
experiments.11 For GaAs, the Fermi energy is around EF
�20 meV, which is of the same order of magnitude as room
temperature.

Finite temperature. At finite temperature, again imposing
energy-resolved current conservation and solving for the
cavity occupation, we find the well-known result,

fC = �TLfL + TRfR�/�TL + TR� , �8�

but this only applies for E�V+V0. For lower energies, cur-
rent can flow only from the right lead �or not at all�, so here
fC= fR, the equilibrium Fermi function.

Calculating the total charge in the cavity as before, we
find

Q/�eD� = �
U

V0+V

dEfR + �
V0+V

�

dE
fLTL + fRTR

TL + TR

= T log�1 + exp�EF/T�� . �9�

This gives a self-consistent equation for the cavity potential
U as a function of V ,T. The results are shown in Fig. 2�B�
for different values of temperature T. Higher temperature
tends to increase the cavity potential.

It is also interesting to look at the I-V curve for transport
between the left and right leads. From Eq. �1�, we can now
find the current as a function of applied voltage, now that we
know the internal potential U,

FIG. 2. �Color online� �A� Current I between left and right leads
is plotted versus applied bias V in units of EF for different tempera-
tures. We take V0=0.2EF, so the crossover is around EF−V0

=0.8EF. Increasing temperature raises the internal potential U for
large applied bias. �B� Cavity potential U−V /2 plotted versus ap-
plied bias V in units of EF, for different temperatures. Inset of �B�:
considered geometry. External bias is applied across left and right
leads, �L=�R+eV. The cavity voltage is measured with the help of
a third voltage probe.
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FIG. 3. �Color online� Rectification characteristics as the width
of the voltage probe �� /�p� is varied for ��A� and �B�� T=0 and
��C� and �D�� T=0.5EF. As in Fig. 2, V0=0.2EF, so the crossover is
around EF−V0=0.8EF. As the temperature increases, the crossover
is smoother for both �C� the probe voltage and �D� the current.
When the probe is turned on from closed �� /�p=0� to open
�� /�p=1�, the T=0 curves are essentially indifferent, while the T
=0.5EF curves have slightly more variation.
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IL =
e

h
�

V+V0

�

dETL�fL − fC� �10�

=
e

h
�

V+V0

�

dE
TLTR

TL + TR
�fL − fR� , �11�

where the transmission TR of Eq. �2� depends on the cavity
potential U. Figure 2�A� shows the I-V curve as the tempera-
ture is varied. Higher temperature tends to increase current
and smooth the transition. The current is an antisymmetric
function under voltage reversal.

II. VOLTAGE PROBE MODEL

We now open up the third lead on the structure. Adding
the third lead does two things: First, it allows a realistic
probe of the cavity voltage, which is the essence of the rec-
tification effect. Second, it allows a way of treating inelastic
processes in a phenomenological way. This latter effect oc-
curs because high energy carriers can enter the probe and be
reinjected at lower energies.38 In reality, charge redistribution
in energy occurs not only due to the voltage probe but
through various inelastic scattering mechanisms.39,40 In our
model, the probe can be turned on and off with a coupling
parameter.

The equations are similar to those of the previous section:
Now, there are three energy-resolved currents, jL, jR, jp,
where jp is the energy-resolved current entering the voltage
probe. We require

�i� energy-resolved current conservation, jL+ jR+ jp=0,
�ii� charge neutrality, Q=eD�dEfC�E�=eDEF, and
�iii� a new condition: no net current flow in or out of the

voltage probe, �dEjp�E�=0.
These equations determine both cavity and probe volt-

ages. We take jp�E�= �e /h���E−V0−Vp� /�p��fp− fC�. The
conductance of the probe lead can be smoothly turned on and
off by varying � /�p from 0 �the off configuration�, up to �
where it dominates over the other leads.

Low bias limit, V�EF−V0. Solving for the cavity occu-
pation from �i�, we find

fC = 	1, U � E � EF

fC
− , EF � E � EF + Vp

fC
+ , EF + Vp � E � EF + V ,


 �12�

where

fC
− =

E − V0 − V + ��/�p��E − V0 − Vp�
2E − 2V0 − V − U + ��/�p��E − V0 − Vp�

,

fC
+ =

E − V0 − V

2E − 2V0 − V − U + ��/�p��E − V0 − Vp�
. �13�

The first equation from �ii� is given by

Q/eD = EF − U + �
EF

EF+Vp

dEfC
− + �

EF+Vp

EF+V

dEfC
+ = EF.

�14�

The second equation from �iii� is then

�
EF+Vp

EF+V dE�E − V0 − Vp��E − V0 − V�
2E − 2V0 − V − U + ��/�p��E − V0 − Vp�

= �
V0+Vp

EF+Vp dE�E − V0 − Vp��E − V0 − U�
2E − 2V0 − V − U + ��/�p��E − V0 − Vp�

.

�15�

As before, these integrals may be expressed as logarithms,
but the equations are again transcendental, so they need to be
solved numerically.

High bias limit, V�EF−V0. Here also, the main feature is
the presence of a gap in the transport window. There are four
energy windows, two of which are nontrivial: E
� �U ,EF ,EF+Vp ,V+V0 ,EF+V�.

�1� Filled region: Between E� �U ,EF�, every state is oc-
cupied, so fC=1.

�2� Low energy region: In the range E� �EF ,EF+Vp�, the
voltage probe can inject carriers into the cavity. Solving for
the occupation in this range from energy-resolved current
conservation, we find

fC
LE =

E − Vp − V0

E − Vp − V0 + ��p/���E − U − V0�
. �16�

�3� Gap region: Between E� �EF+Vp ,V+V0�, the left
electrons are injected at too high an energy to fill this region,
so jL=0, while the energy of the right and probe electrons
is too low to fill it: jR= �e /h���E−U−V0� /���0− fC�, and
jp= �e /h���E−Vp−V0� /�p��0− fC�. Therefore, fC=0, giving
the gap.

�4� High energy region: In the range E� �V+V0 ,V+EF�,
there is injection from the left, and drain to the right. Current
conservation yields

fC
HE =

E − V − V0

2E − 2V0 − V − U + ��/�p��E − Vp − V0�
. �17�

Notice that � and �p have switched places from the low
energy region.

The first equation from �ii� is given by

Q/eD = EF = EF − U + �
EF

Vp+EF

dEfC
LE + 0 + �

V0+V

EF+V

dEfC
HE.

�18�

The second equation from �iii� is given by

�
EF

EF+Vp dE�E − Vp − V0��E − V0 − U�
E − V0 − U + ��/�p��E − V0 − Vp�

�19�

=�
V0+Vp

EF+Vp dE�E − Vp − V0��E − V0 − V�
2E − 2V0 − V − U + ��/�p��E − V0 − Vp�

.

�20�

Finite temperature. The analysis is somewhat simpler at
finite temperature, simply because there are fewer energy
regions to keep track of. Now, there are three energy regions
to attend to: E� �U ,V0+Vp ,V0+V ,��. Current conservation
gives three possible answers for the cavity occupation fC,
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depending on what energy region we are considering,

fC = 	 fR, U � E � V0 + Vp

f int, V0 + Vp � E � V0 + V

fhigh, V0 + V � E � � ,

 �21�

where

f int =
Tpfp + TRfR

Tp + TR
, �22�

fhigh =
Tpfp + TLfL + TRfR

Tp + TL + TR
. �23�

This gives the charge in the cavity as

Q/eD = �
U

Vp+V0

dEfR + �
V0+Vp

V0+V

dEf int + �
V0+V

�

dEfhigh

= T log�1 + exp�EF/T�� . �24�

The no-net-current probe condition �iii� then reads

� dE Tp�fp − fC� = 0 + �
V0+Vp

V0+V

dE Tp�fp − f int�

+ �
V0+V

�

dE Tp�fp − fhigh� = 0. �25�

Taking fp to be a Fermi function with unknown energy Vp,
these two equations may be numerically solved to give U
and Vp as functions of the parameters T, V, �, and �p.

The results are given in Fig. 3. We see that the basic
rectification features remain, and changing the model param-
eters does not alter the basic picture, indicating a robust volt-
age rectification effect.

III. CURRENT RECTIFICATION

Current rectification occurs whenever there is a net dc
produced by an external ac voltage source. We now consider
this situation in the three-terminal geometry, where the ac

voltage signal has a frequency slower than the RC time of
the cavity. This situation may be analyzed by investigating
dc transport with chemical potentials �L=V /2, �R=−V /2,
and �p=0 and how the probe current depends on V. When
V→−V, the left and right leads will switch roles, but because
of the reflection symmetry in the problem, the finite probe
current produced by the strong nonlinearity will remain un-
altered. Under repeated sign changes, the system will sustain
a net dc from the probe out into the left and right leads. To be
consistent with the previous results, we add V /2 to all poten-
tials and define all currents as positive when they enter the
cavity.

It is instructive to estimate what is the theoretical upper
limit of the speed of a ballistic rectifier. This is controlled by
the RC time ��RC� of the cavity which control the relaxation
of the cavity charge: If the external ac frequency is slower
than �RC, then current rectification will occur because the
cavity has time to establish a �nonequilibrium� steady state,
while in the opposite limit, rectification is expected not to
occur. Recent measurements for the capacitance of a mesos-
copic cavity found C�1fF.41 Taking on the order of ten
open channels gives a resistance R�1 k	. We then estimate
the charge relaxation time to be �RC�10−12 s. These param-
eters give rectification on a terahertz scale.

Making use of previous results, everything is essentially
the same, except that the probe voltage is now fixed, Vp
=V /2, and the current through the probe needs to be calcu-
lated. The cavity occupation fC�E� written in Eq. �21� is the
same, as is the charge in the cavity �Eq. �24��, but now with
Vp=V /2 in both Eqs. �21� and �24�. These conditions set the
potential U. We find that the current through the left lead is

IL =
e

h
�

V+V0

�

dE
TL�Tp�fL − fR� + TR�fL − fR��

TL + TR + Tp
, �26�

the current through the right lead is

(A) (B) (C)(A) (B) (C)(A) (B) (C)(A) (B) (C)

LLLLµµµµ
RRRR

µµµµ

PPPP
µµµµ

FIG. 4. �Color online� Current rectification effects in each of the three leads for T=0. Different curves vary the opening of the probe lead.
For small applied bias, ��A� and �B�� the I-V curves start out linear, while �C� the probe lead carries no current. At large bias, the probe lead
begins to carry current �so long as it is open, � /�p�0�, and this current comes primarily by increasing the current carried by the right lead
�the one with low-energy carriers�. Currents from the three leads sum up to zero. Clearly, the influence of the probe lead plays a much
stronger role here than in Fig. 3. Inset of �A�: Geometry of the current-rectification setup. The left, probe, and right leads have applied biases
�L=V, �p=V /2, and �R=0.
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IR =
e

h
�

V+V0

�

dE
TR�Tp�fR − fp� + TL�fR − fL��

TL + TR + Tp

+
e

h
�

V0+V/2

V+V0

dE
TRTp�fR − fp�

TR + Tp
, �27�

and the current through the probe is

Ip =
e

h
�

V+V0

�

dE
Tp�TL�fp − fL� + TL�fp − fR��

TL + TR + Tp

+
e

h
�

V0+V/2

V+V0

dE
TRTp�fp − fR�

TR + Tp
. �28�

We can now use the charge equation to find the potential
U, put this into Eqs. �26�–�28�, and find the currents in all
leads. The results are shown in Figs. 4 and 5, varying the
temperature and the width of the probe contact. At small
bias, the I-V curves are linear in both the left and the right
lead, with no current passing through the probe lead. This is
the expected situation for linear transport. For larger volt-
ages, as the probe lead is gradually opened, the current
through the left lead is essentially unchanged, but the cur-
rents through the probe and right leads both increase. This is
the direct analog of the probe voltage Vp and cavity voltage
U following the lower right voltage in the probe configura-
tion.

Hot-electron regime. One weakness of the above analysis
is that the gap produced in the energy window is unrealistic
at high temperatures. As electrons collide with one another
and with phonons, they will redistribute themselves in en-
ergy when any inelastic processes are introduced. One essen-
tial point that must be demonstrated is that the nonlinearity
we have discovered is not fragile to a reshuffling of electrons
in the energy space. To this end, we will now consider the
“hot-electron regime,” an effective model of electron trans-
port when there is conservation of both charge and energy
currents.42,43 In the limit where electron-electron interactions
are very strong, �ee��C, the cavity comes to a local nonequi-
librium steady state described by a Fermi function with two
parameters, �c and Tc. These parameters are determined self-
consistently by imposing current conservation and energy
conservation for transport through the cavity. The two con-
straints may be written as

� dE�
�

j��E� = 0, � dE�
�

Ej��E� = 0. �29�

Once the parameters �c and Tc are found as a function of the
tunable parameters of the system, the current through all
leads may be found �in the current rectifier mode�, or the
voltage of the probe may be found �in the voltage probe
mode�.

The current rectification results are shown in Fig. 6 for the

(A) (B) (C)(A) (B) (C)(A) (B) (C)(A) (B) (C)

LLLLμμμμ RRRR
μμμμ

μμμμ
PPPP

FIG. 5. �Color online� Same as Fig. 4, for the case where T=0.5EF. Apart from smoothing the transitions a little, finite temperature also
increases the overall scale of the effect.

(A) (B) (C)(A) (B) (C)(A) (B) (C)(A) (B) (C)

LLLL
µµµµ

RRRR
µµµµ

PPPP

HOTHOTHOTHOT

µµµµ

FIG. 6. �Color online� Current rectification for the �A� left, �B� right, and �C� probe leads, using the hot-electron model for T=0.5EF.
Despite the fact that the energy distribution of the cavity electrons is completely altered from the noninteracting case, the curves are still very
similar to Fig. 5.
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hot-electron regime. We note that the trends in the data are
the same, and the only discernible difference is a slight
change of shape in some of the curves. This indicates that the
model described here is robust and not sensitive to changes
in the cavity occupation function.

IV. CONCLUSIONS

We have proposed a model of ballistic rectification for a
three-terminal geometry. The model is minimal in the sense
that we have only included the most important effects, and it
should therefore be considered a benchmark theory, rather
than designed to predict detailed experimental features. The
most important feature of our model is a crossover from a
weak to a strong nonlinearity when the bias voltage is com-
parable to the Fermi energy. This effect has already been
observed in experiments.11 The origin of the strong nonlin-

earity is the opening of a gap in the transport window. This
happens when the applied bias elevates the left QPC energy
barrier above the Fermi energy of the right contact. In this
situation, the total current saturates as a function of the ap-
plied voltage. We have demonstrated that varying parameters
in the model as well as considering inelastic effects do not
alter the basic features of the model. Taken together, this
theory indicates that three-terminal ballistic cavities provide
robust rectification that may be used in the development of
ballistic nonlinear elements such as rectifiers and diodes.
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