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A multiscale method, seamlessly combining semiclassical, effective-mass Schrödinger �EMS�, and tight-
binding �TB� theories, is proposed for electrostatic analysis of silicon nanoelectromechanical systems �NEMS�.
By using appropriate criteria, we identify the physical models that are accurate in each local region. If the local
physical model is semiclassical, the charge density is directly computed by the semiclassical theory. If the local
physical model is quantum mechanical �the EMS or TB model�, the charge density is calculated by using the
theory of local density of states �LDOS�. The LDOS is efficiently calculated from the Green’s function by
using Haydock’s recursion method where the Green’s function is expressed as a continued fraction based on
the local Hamiltonian. Once the charge density is determined, a Poisson equation is solved self-consistently to
determine the electronic properties. The accuracy and efficiency of the multiscale method are demonstrated by
considering two NEMS examples, namely, a silicon fixed-fixed beam with hydrogen termination surfaces and
another silicon beam switch with 90° single period partial dislocations. The accuracy and efficiency of the
multiscale method are demonstrated.
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I. INTRODUCTION

As significant progress is being made in various fields of
nanotechnology, predicting electronic and mechanical prop-
erties of semiconductor devices is a compelling challenge
from both the scientific and engineering viewpoints. In com-
plex physical systems, the length scales can vary from a few
nanometers to several hundreds of microns and predicting
the physical properties at all length scales accurately and
efficiently is a significant computational challenge. Multi-
scale computational methods aim to couple different length
scales into one single framework.1–7 Several multiscale
methods have been proposed in the literature to solve com-
plex problems in solid and fluid mechanics. For example, the
concurrent handshaking multiscale method has been shown
to successfully simulate crack propagation in silicon
nanostructures;1 heterogeneous multiscale methods, which
use molecular dynamics at the microscale and continuum
mechanics at the macroscale, have been used to compute the
mechanical properties of various silicon structures.2,7 In con-
trast, there has been comparatively little effort devoted to
multiple scale analysis of electrostatics, which is an impor-
tant energy domain for the analysis of nanoelectromechani-
cal systems �NEMS�. In this paper, we propose a multiscale
method for the electrostatic analysis of silicon nanoelectro-
mechanical systems.

Realistic silicon NEMS structures contain bulklike subdo-
mains, quantum confinement regions, and defect areas. Typi-
cally, bulklike subdomains can be accurately modeled by a
semiclassical theory, quantum confinement regions can be
accurately modeled by an effective-mass Schrödinger �EMS�
theory, and defect areas can be modeled by tight-binding
�TB� methods. The use of any one of these physical theories
to model the entire NEM structure can either be inaccurate or
computationally infeasible. As a result, development of a
multiscale method that can seamlessly combine various
physical theories is critical for the accurate and efficient elec-

trostatic analysis of NEMS. Our proposed multiscale scheme
is conceptually illustrated in Fig. 1. We deal with two-
dimensional electrostatic problems in this paper, but the ap-
proach can be easily extended to three-dimensional prob-
lems. The semiconductor device is first discretized into
points—these points are referred to as the Poisson points. At
each point, by using appropriate criteria, which will be dis-
cussed in detail later, we determine if the local region sur-
rounding the point can be treated by the semiclassical, EMS,
or TB model. When the quantum-mechanical models �the
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FIG. 1. �Color online� Illustration of the multiscale approach for
a typical NEMS example consisting a semiconductor beam struc-
ture and a bottom conductor. The semiconductor beam region is
discretized into Poisson grid points. The filled circles represent the
Poisson grid points. In the region where the quantum effects are
important, a sampling region �typically circular, but other shapes
can also be easily considered� is required to compute LDOS at the
Poisson point. The radius of the sampling region is denoted by RS.
The open circles in the EMS sampling regions represent the
Schrödinger grid points. The atomic structure in the TB sampling
regions represents the TB atom sites. The LDOS in the EMS and
TB regions are calculated from the EMS and the TB Hamiltonian,
respectively.
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EMS or TB model� are required, one cannot solve the EMS
or TB equation in a local region by direct domain decompo-
sition to determine the charge distribution, as the boundary
conditions on the wave functions are not known on the
boundaries of the local region. Instead, in our multiscale
model, the charge density is obtained from the local density
of states �LDOS�.8 To compute the LDOS, only a finite-size
sampling region �shown as a circular disk of radius RS in Fig.
1� centered at the Poisson grid point is required by applying
Kohn’s “nearsightedness” principle.13,14 As shown in Fig. 1,
if the sampling region intersects the physical boundaries of
the semiconductor, then the sampling region is appropriately
modified. The EMS sampling region is composed of
Schrödinger grid points and the TB sampling region is com-
posed of the real atomistic structure. The LDOS is computed
from the Green’s function of the Hamiltonian matrix by us-
ing a recursion method.15 As the number of recursion levels
computed is usually far less than the dimension of the
Hamiltonian matrix, the recursion method is an efficient ap-
proach to compute the LDOS and other electronic properties.

The multiscale method described above seamlessly com-
bines the semiclassical and heterogeneous quantum-
mechanical models. Quantum-mechanical effects are in-
cluded only in the regions where they are necessary. As a
result, semiconductor nanostructures which can be described
entirely by semiclassical or quantum models or by combined
semiclassical and quantum models are accurately modeled.
The rest of the paper is organized as follows. Section II
describes the theory and implementation of the proposed
multiscale model. Section III presents results for several ex-
amples demonstrating the accuracy and efficiency of the
multiscale method and conclusions are given in Sec. IV.

II. THEORY

A. Physical models

To illustrate the multiscale approach for electrostatic
analysis of semiconductor nanostructures, we consider a gen-
eral semiconductor system shown in Fig. 2. We deal with

two-dimensional �2D� electrostatic problems in this paper,
but the approach can be easily extended to three-dimensional
problems. Consider a system of objects including semicon-
ductors ��1 ,�2 , . . . ,�N0

�, where N0 is the number of ob-

jects, embedded in a uniform dielectric medium �̄, as shown
in Fig. 2. Potential ��x� and its normal derivative q�x� are
given by g��x� and h��x� on portions of the boundary of each
semiconductor, �g� and �h�, �=1,2 , . . . ,N0, respectively,
where x= �x ,y�T is the position vector of any point. The gov-
erning equations for electrostatic analysis along with the
boundary conditions are given by8

� · ��s � ��x�� = − ��x� = − e�p�x� − n�x� + ND
+ �x�

− NA
−�x�� in ��, � = 1, . . . ,N0, �1�

�2��x� = 0 in �̄ , �2�

��x� = g��x� on �g�, � = 1, . . . ,N0, �3�

q�x� =
���x�

�n
= h��x� on �h�, � = 1, . . . ,N0, �4�

where ��x� is the charge density, p�x� and n�x� are hole and
electron densities, respectively, ND

+ �x� and NA
−�x� are the ion-

ized donor and acceptor concentrations, respectively, �s is the
permittivity of the semiconductor material, and e is the el-
ementary charge.

In the exterior domain �̄, the Laplace equation is satis-

fied, as shown in Eq. �2�. Note that the exterior domain �̄ is
an open domain. A boundary integral equation �BIE� of the
2D Laplace equation is used to treat the exterior electrostatic
problem,9 i.e.,

��x���x� = �
�=1

N0 �
��

��x��
�G�x,x��

�n�
d���x��

− �
�=1

N0 �
��

���x��
�n�

G�x,x��d���x�� + �	, �5�

�
�=1

N0 �
��

���x��
�n�

d���x�� = 0, �6�

where � is the corner tensor ��=1 /2 for smooth boundaries,
see Ref. 10 for details� and G�x ,x��= 1

2
 ln �x−x�� is the
Green’s function. In 2D problems, the potential at infinity is
the reference potential, �	. The boundary integral equations
�Eqs. �5� and �6�� are coupled with the Poisson equation �Eq.
�1�� through the interface conditions given by11

���x��BIE = ���x��Poisson on �g�, � = 1,2, . . . ,N0, �7�

�s� ���x�
�n

�
Poisson

+ �d� ���x�
�n

�
BIE

= �int on �h�,

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
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FIG. 2. �Color online� The electrostatic semiconductor
system.
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� = 1,2, . . . ,N0, �8�

where ���x��BIE and ���x��Poisson are the potentials from the
boundary integral equation and Poisson equation, respec-

tively, �
���x�

�n �BIE and �
���x�

�n �Poisson are the normal derivatives
of the potential from the boundary integral equation and
Poisson equation, respectively, �d is the permittivity of the
dielectric medium, and �int is the charge density on the ex-
posed surface of the semiconductor. In this paper, for the
purpose of illustrating the multiscale approach, the charge
density on the surface is assumed to be zero. However, non-
zero interface charge density �int can also be implemented
easily. The potential ��x� and the charge density ��x� are
obtained by solving Eqs. �1�–�8� self-consistently. In this pa-
per, the interior Poisson’s equation �Eq. �1�� is solved by
using the finite difference method12 and the boundary inte-
gral equations �Eqs. �5� and �6�� are solved by the boundary
element method.10

In the multiscale approach, the choice of a physical model
for a particular region is closely related to the accuracy and
efficiency of the physical model for that particular region.
There are a number of physical models for electrostatic
analysis such as the classical Laplace conductor model,
semiclassical Poisson model, effective potential model, EMS
model, TB model, density functional theory model, etc.8,16

Here, we only discuss three of these physical models, one for
each scale, namely, the semiclassical Poisson model for mi-
croscale, the EMS model for nanoscale, and the TB model
for atomistic scale.

1. Semiclassical model: Semiclassical Poisson equation

When the geometrical characteristic length of the device
is comparable to the Debye screening length,17 the semiclas-
sical model is necessary to compute the charge density dis-
tribution. In the semiclassical model, the electron and hole
density in the Poisson equation can be obtained as8

n�x� = NC
2

	

F1/2
EF − EC�x�

kBT
� , �9�

p�x� = NV
2

	

F1/2
EV�x� − EF

kBT
� , �10�

where NC and NV are the effective density of states of con-
duction and valence bands, respectively, F1/2 is the complete
Fermi-Dirac integral of order 1 /2, EC�x� is the conduction
band energy given by EC�x�=−e��x�+

Eg

2 , where Eg is the
energy gap, e is the elementary charge, EV�x� is the valence
band energy given by EV�x�=−e��x�−

Eg

2 , EF is the Fermi
energy, kB is the Boltzmann constant, and T is the tempera-
ture, which is set to be the room temperature in this work.
The main advantage of the semiclassical model is its simplic-
ity, but the model can suffer from inaccuracies when quan-
tum effects are important.

2. Quantum-mechanical model: Effective-mass
Schrödinger equation

When the critical size of the device approaches the na-
nometer scale, quantum effects such as the carrier quantum
confinement in the semiconductor structure become
significant.17 The quantum effects in the device can be ac-
counted for by solving the EMS equation in the entire semi-
conductor domain. The EMS equation is given by

H�n�r� = − 

2

2

�

�x
� 1

mx
*

�

�x

 +


2

2

�

�y
� 1

my
*

�

�y

��n�r�

+ e��r��n�r�

= En�n�r� , �11�

where H is the system Hamiltonian based on the effective-
mass approximation, 
 is the reduced Planck’s constant, mx

*

and my
* are the effective masses along the x and y axes,

respectively, r= �x ,y�T is the position vector of any
Schrödinger point, �n�r� is the nth eigen-wave-function, and
En is the nth eigenvalue of the Hamiltonian H. If mx

* and my
*

are electron masses, then the Hamiltonian, �n�r�, and En are
computed for electrons. If mx

* and my
* are hole masses, then

the Hamiltonian, �n�r�, and En are for holes. If we discretize
the domain into NS Schrödinger grid points and the grid
spacings along the x axis and the y axis are denoted by �xS
and �yS, respectively, then using the finite difference
method, the EMS Hamiltonian elements in Eq. �11� can be
rewritten as

Hi,j =�

 
2

m
x
*

1

�xS
2 +


2

m
y
*

1

�yS
2 + e��ri�� when i = j

−

2

2m
x
*

1

�xS
2 when points i and j are neighbors along the x axis,

−

2

2m
y
*

1

�yS
2 when points i and j are neighbors along the y axis

0 otherwise,

� �12�

where i, j=1, . . . ,NS.
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Once the Hamiltonian elements are obtained through Eq.
�12�, we can solve the EMS equation �Eq. �11�� numerically.
After solving the eigensystem, all the eigenenergies and
eigen wavefunctions are known. Then, the electron density
n�r� and hole density p�r� can be computed by

n�r� = Nn�
n

��n�r��2F−1/2�EF − En

kBT

 , �13�

p�r� = Np�
n

��n�r��2F−1/2�En − EF

kBT

 , �14�

where the coefficients Nn and Np are

Nn = gn
1



�2mn

*kBT


2 
1/2

, �15�

Np = gp
1



�2mp

*kBT


2 
1/2

, �16�

for the conduction band and valence band, respectively, F−1/2
is the complete Fermi-Dirac integral of order −1 /2, constants
gn and gp are the semiconductor conduction band degeneracy
and valence band degeneracy, respectively, mn

* and mp
* are

the density of state masses of electrons and holes, respec-
tively, and the summations in Eqs. �13� and �14� are over all
the energy levels. Note that the solution of the EMS equation
�Eq. �11�� requires an eigensolution in the entire semiconduc-
tor domain. This can be expensive and inefficient when
simulating large devices.

3. Quantum-mechanical model: Tight-binding approach

The EMS approach can be inaccurate when the critical
size of nanostructures is within a few nanometers or when
defects and other material inhomogeneities in nanostructures
become important. To overcome the limitations of the EMS
approach, more accurate quantum-mechanical models are re-
quired. Ab initio methods are typically accurate to predict
electronic properties of nanostructures. However, the high
computational cost prevents their widespread use. An alter-
native is to use TB methods, which are somewhat less accu-
rate but computationally more efficient compared to ab initio
methods. In this paper, we choose a nearest neighbor sp3d5s*

orthogonal TB approach18 as the atomistic quantum-
mechanical model for defects and surface states.

In the TB scheme, the electronic wave functions �n�r� are
expressed as a linear combination of atomic orbitals, �n�r�
=�i�ci�

�n��i��r�, where �i��r� is the �th atomic orbital wave
function at site i and ci�

�n� is the nth coefficient. The TB
Hamiltonian is defined in terms of parametrized matrix
elements.19–21 These parametrized matrix elements are usu-
ally constructed by fitting to experimental and/or first-
principles database of properties of both bulk systems and
clusters. The diagonal elements of the Hamiltonian matrix
�i� represent the on-site energies of atomic orbitals. The
atomic orbital �, for example, for the sp3d5s* TB model used
in this paper, can represent any of s, px, py, pz, dxy, dyz, dzx,
dx2−y2, d3z2−r2, or s* orbitals.18,19 The intersite elements Hi�,j�

0

describe the bond energies between the �th orbital of atom i
and the �th orbital of atom j, and these are determined by
using the tables of Slater and Koster.19 For example, His,jpx

0 is
given by

His,jpx

0 = lxVsp��rij� , �17�

where rij = �R j −Ri� is the distance between atoms i and j,
Ri= �xiyizi�T and R j = �xjyjzj�T are the position vectors of at-
oms i and j, respectively, lx denotes the x direction cosine of
the vector �R j −Ri�, and Vsp��rij� is the element correspond-
ing to the hopping bond energy of forming � bond between
the s orbital of atom i and the p orbital of atom j.19–21 In this
paper, these elements are taken to follow Harrison’s rule,21–24

i.e.,

Vsp��rij� = �sp�


2

m0rij
2 , �18�

where m0 is the electron mass and �sp� is one of the TB
hopping parameters. The TB parameters we use have been
optimized by Boykin et al.18 and Zheng et al.25 to accurately
reproduce the band gap and effective masses of bulk Si. All
the silicon hopping parameters and on-site-energy param-
eters of the sp3d5s* TB model are listed in Table I.18 When
simulating the nanostructure surfaces, the silicon surface at-
oms with dangling bonds are passivated with hydrogen at-
oms in this paper. The TB parameters for hydrogen atoms,
adopted from Zheng et al.,25 are also listed in Table I. The
TB Hamiltonian elements can be written in a general form
given by

TABLE I. TB parameters for silicon and hydrogen �Refs. 18 and
25�.

Parameter Si-Si interaction Si-H interaction

�ss� �eV� −1.95933 −3.99972

�ss*� �eV� −1.52230 −1.69770

�sp� �eV� 3.02562 4.25175

�sd� �eV� −2.28485 −2.10552

�s*s*� �eV� −4.24135

�s*p� �eV� 3.15565

�s*d� �eV� −0.80993

�pp� �eV� 4.10364

�pp
 �eV� −1.51801

�pd� �eV� −1.35554

�pd
 �eV� 2.38479

�dd� �eV� −1.68136

�dd
 �eV� 2.58880

�dd� �eV� −1.81400

d0 �Å� 2.352 1.478

Si H

�s �eV� −2.15168 0.99984

�p �eV� 4.22925

�s* �eV� 19.11650

�d �eV� 13.78950

Zc�e� 4.0 1.0
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Hi�,j� = ���i� + e��ri�� when i = j and � = �

H��
0 �rij� when atoms i and j are nearest neighbors

0 otherwise,
� �19�

where H��
0 �rij� are directly obtained from the Slater and Ko-

ster’s table.19

Once the Hamiltonian is obtained, the electronic wave
functions and eigenenergies of the tight-binding system are
computed by solving the characteristic equation26,27

HC�n� = EnC�n�, �20�

where En is the nth eigenenergy of the system and C�n� is the
column vector comprising the ci� coefficients. After the wave
functions are known, the atomic electron charges can be
computed by

ne�r� = 2�
n,i�

�ci�
�n��i��r��2

e�En−Ef�/KT + 1
. �21�

In a self-consistent approach, the electrostatic potential
contribution to the on-site terms of the TB Hamiltonian ��ri�
is updated by solving the Poisson equation. An initial guess
of the potential is required to compute the total Hamiltonian
H. In this paper, we use the semiclassical potential distribu-
tion as the initial guess. After the total Hamiltonian is com-
puted, Eq. �20� is solved to obtain the eigenenergies and the
wave functions of the system. The wave functions are then
used to compute the charge density by using Eq. �21�. Next,
the Poisson equation is solved to update the potential distri-
bution. This process is repeated until the self-consistent so-
lution is obtained. Note that the direct solution of the TB
equation �Eq. �20�� requires an eigensolution in the entire
semiconductor domain, which can be costly and inefficient
when simulating realistic nanoscale systems.

B. Multiscale approach

Typical semiconductor nanostructures contain regions
where the semiclassical models are valid, but they also con-
tain regions where quantum effects are important. If a semi-
classical model is used for the entire device, the electronic
properties may not be predicted accurately in the region
where quantum effects are important. On the other hand, if
quantum-mechanical models are used for the entire device,
the extremely high computational cost limits the size of the
device that can be simulated. Multiscale models, which
seamlessly combine the semiclassical and quantum models,
can be accurate and efficient to predict the electronic prop-
erties of semiconductor nanostructures. The use of direct do-
main decomposition, where the TB, EMS, and semiclassical
models are employed in different regions and combined
through interface boundary conditions, can be hard to imple-
ment as the wave functions are nonlocal and imposition of a
wave function as a boundary condition between the semi-
classical and quantum regions can be difficult.

To overcome this difficulty, we develop a multiscale
model which seamlessly combines quantum-mechanical and
semiclassical models. In the region or at the Poisson grid
points where the semiclassical model is not valid, the Pois-
son grid point is represented by heterogeneous fine-scale
models or the quantum models �see Fig. 1�. A Hamiltonian is
first constructed by using the TB atoms or the Schrödinger
grid points. Using the Hamiltonian, the elements of the
Green’s function �GF� matrix are then computed by28–30

lim
�→0+

Gj,j��E + i�� = lim
�→0+

���E + i��I − H�−1� j,j�

= lim
�→0+

�
n

�n�r j��n
†�r j��

E − En + i�
,

j, j� = 1,2, . . . ,Nh, �22�

where i=	−1, I is the identity matrix, Gj,j� denotes the jth
row and j�th column entry of the Green’s function matrix G,
Nh is the size of the Hamiltonian, E is the energy, and �n

†�r j��
is the conjugate value of �n�r j��. The LDOS at position r j,
denoted by N�r j ,E�, can be expressed as the imaginary part
of the diagonal elements of the GF matrix �see, e.g., Ref. 28
for details�,

N�r j,E� = − 
−1 lim
�→0+

Im Gj,j�E + i�� . �23�

The LDOS can be efficiently calculated from the Green’s
function by using Haydock’s recursion method,15 where the
Green’s function is expressed as a continued fraction based
on the local EMS39 or TB Hamiltonian.

To get the charge density in the EMS region, the EMS
Hamiltonian elements for electrons and holes need to be con-
structed first. If the Hamiltonian of electrons is used in Eq.
�22�, then the LDOS �N�r ,E�� computed in Eq. �23� is that
of the electrons �denoted by Ne�r ,E�� and if the Hamiltonian
of holes is used in Eq. �22�, then the hole LDOS �denoted by
Nh�r ,E�� is computed. After Ne�r ,E� and Nh�r ,E� are
known, the electron density n�r� and the hole density p�r�
can be obtained by

n�r� = �
EC�r�

	

Ne�r,E�fe�E�dE , �24�

p�r� = �
−	

EV�r�

Nh�r,E�fh�E�dE , �25�

where fe�E� is the Fermi-Dirac distribution for electrons
given by
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fe�E� =
1

1 + e�E−EF�/kBT , �26�

and fh�E� is the Fermi-Dirac distribution for holes given by

fh�E� =
1

1 + e�EF−E�/kBT . �27�

Similarly, to get the charge density in the TB region, the
LDOS should be first computed using the TB Green’s func-
tion. The LDOS of the �th orbital at the TB atom site r j,
denoted by N�r j ,� ,E�, can also be expressed as the imagi-
nary part of the diagonal elements of the GF matrix,

Ne�r j,�,E� = − 
−1 lim
�→0+

Im Gj�,j��E + i�� . �28�

The corresponding atomic charge on atom j, q�r j�, can
then be computed by

q�r j� = − 
�
�
�

−	

	

Ne�r j,�,E�fe�E�dE − Zc� , �29�

where if atom j is a silicon atom, then ionic core charge Zc
=4.0, and if atom j is a hydrogen atom, then Zc=1.0.27 Thus,
the charge density ��r� can be obtained by

��r� = e
q�r�
VSi

+ ND
+ �r� − NA

−�r�� , �30�

where VSi is the effective volume occupied by a silicon crys-
tal atom.

Comparing Eqs. �24�, �25�, and �30� with Eqs. �13� and
�14�, we note that the wave functions are not required explic-
itly in the LDOS approach to compute the electron and hole
density. In addition, for each sampling region, we only need
to compute the LDOS at the Poisson point �or the corre-
sponding Schrödinger point or the corresponding TB atom
site�, where the sampling region is centered.

In summary, in the multiscale model described above, in-
stead of directly coupling the semiclassical and quantum-
mechanical regions, in the regions where semiclassical
theory is not valid, the LDOS method is applied. This ap-
proach enables seamless coupling of the quantum-
mechanical theory into the semiclassical theory.

1. Size of the sampling region

As shown in the last section, the size of the sampling
regions directly determines the computational cost of the
multiscale method. The nearsightedness principle is a useful
concept that can guide the size of the sampling region. Ac-
cording to the nearsightedness principle,13,14 the local elec-
tronic properties such as the local charge density only de-
pend significantly on the effective external potential in the
nearby region. The changes of that potential, no matter how
large, beyond a distance RS, have a limited effect on the local
electronic properties, which rapidly decay to zero as a func-
tion of RS.14 Prodan and Kohn14 gave an approximate expres-
sion for the nearsightedness radius R�r0 ,�n� centered at r0

for an electronic system as

R�r0,�n� �
1

2qeff
ln

ñ

�n
, �31�

where qeff is the decay constant of the density matrix given
by qeff=

1
2
	Egm* /
2, m* is the effective mass of electrons

�holes�, ñ is the local density which can be approximated by
the equilibrium charge density at r0, ��r0�, and �n is the
finite maximum asymptotic charge density due to any pertur-
bation outside the circle of radius R. R�r0 ,�n� defines the
radius where the change in density at r0 as a result of any
perturbation outside of R does not exceed �n. For example,
from Eq. �31�, if we require the relative density error to
satisfy the condition �n

ñ �5�10−3, we obtain the nearsight-
edness radius for silicon to be approximately 6 nm. The
nearsightedness principle can guide the determination of the
size of sampling regions taking the accuracy level into ac-
count. In this paper, we choose the radius of the sampling
region RS to be equal to the nearsightedness radius for sim-
plicity.

2. Criterion for choosing tight-binding or effective-mass
Schrödinger models

If the silicon crystal structure within the sampling region
is not perfect, then the EMS theory is typically not valid, i.e.,
if there are defects, material inhomogeneities, or surface
states �non-bulk-like states� within the sampling region, then
the TB method is more appropriate at the sampling point.
Another consideration is, for sampling regions with no inho-
mogeneities, as long as the TB method gives approximately
the same local effective masses and band gap as the EMS
method, then the EMS approach is accurate enough to com-
pute the electronic properties in the local region. When the
critical size of the silicon nanostructure is smaller than a few
nanometers, the EMS approach can deviate from the TB
method. Several papers have addressed this issue.31,32 When
the radius of a silicon nanocluster is larger than 2.172 nm
�equivalent to 32 silicon layers within the sampling region�,
the deviation of the local effective mass and the band gap
obtained by the TB and EMS methods is smaller than a few
percent at the center region of the cluster.31,32 These results
are also consistent with the prediction from the nearsighted-
ness principle: if we choose sampling regions with radii of
1.629 nm �24 silicon layers�, 2.172 nm �32 silicon layers�,
and 2.716 nm �40 silicon layers�, the relative density errors
between the TB and EMS methods are within 15%, 7%, and
3% by using Eq. �31�. These conclusions then lead to our
criterion for determining an appropriate quantum-mechanical
model by considering a sampling region of radius 2.716 nm.
If the silicon atomic structure within the sampling region is a
perfect crystal structure �that is, no dangling bonds, defects,
impurities, dislocations, surfaces, etc., within the sampling
region�, then we can use the EMS method to compute the
local electronic properties without much loss of accuracy;
otherwise, the TB model is needed.

3. Criterion for choosing semiclassical or quantum-mechanical
physical models

Quantum-mechanical effects diminish when the quantum
confinement is negligible. In this case, semiclassical models
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can be employed to increase the efficiency and avoid the
complexity of quantum-mechanical methods.16 To determine
whether the local region is quantum-mechanical or semiclas-
sical, we use the quantum potential criterion.33–39 When the
electrons are the major carriers in the device, the quantum
potential �q�x� is given by

�q�x� = −

2

8 � �

�x

 1

mx
*

� ln n�x�
�x

� +
�

�y

 1

my
*

� ln n�x�
�y

�� .

�32�

When the holes are the major carriers in the device, n�x� is
replaced by p�x�, and the electron effective masses are re-
placed by the hole effective masses. To determine whether
the sampling Poisson point is semiclassical or quantum me-
chanical, we first calculate the quantum potential by Eq.
�32�. By comparing the quantum potential �q�x� with the
coulomb potential ��x�, the semiclassical model is used at
the sampling Poisson point if ��q�x�� /max���x����tol, where
�tol is the given tolerance; otherwise, the quantum-
mechanical model is used at the sampling Poisson point.

C. Dislocation theory

To demonstrate the accuracy and efficiency of the multi-
scale method for materials with inhomogeneities, we simu-
late a silicon nanostructure with 90° single period partial
dislocations. The 90° partial dislocation is one of the most
common types of dislocations found in silicon.40,41 It lies
along �110� directions in �111� slip planes and it has a Bur-
gers vector of the type 1

6 �112�.40,42,43 The 90° partial dislo-
cation is assumed to have a reconstructed core,45 and several
possible reconstructions have been suggested. The two which
have been shown by simulation to be stable46–48 are the
single period �SP� and double period structures. In this work,
we only focus on the 90° SP partial dislocation. The 90° SP
partial dislocation is believed to undergo reconstruction of
their cores to eliminate unsaturated bonds and restore four-
fold coordination to all atoms. In this 90° SP partial recon-
struction, the displacement breaks the mirror symmetry nor-
mal to the dislocation line, enabling threefold coordinated
atoms in the unreconstructed core �Fig. 3�a�� to come to-
gether and bond. This core reconstruction is shown in Fig.
3�b�.

The partial dislocation is associated with shallow states
above the valence band, i.e., the energy gap is reduced due to
the dislocation reconstruction.49 The reconstruction breaks
the symmetry of the crystal structure. As a result, the appli-
cation of the EMS method can be inaccurate, thereby neces-
sitating the use of the TB method. For the dislocation geom-
etry and positions of the atoms, we use the set of relaxed
atomic coordinates for the 90° single period partial disloca-
tions from Ref. 44 in our calculation.

D. Algorithm for the self-consistent multiscale model

Algorithm 1 �Table II� summarizes the procedure for the
self-consistent electrostatic analysis of semiconductor nano-
structures by using the combined semiclassical/EMS/TB
multiscale approach.

III. RESULTS

A. Two-dimensional fixed-fixed beam case

To illustrate the multiscale model, we first choose a 2D
fixed-fixed silicon beam, as shown in Fig. 4. The x axis of
the beam is chosen along the �100� direction and the beam
comprises �100� faces on all sides. The p-doped �1020 cm−3�
silicon beam is clamped above a ground plane. A voltage,
Vapp, is applied between the ground plane and the beam. The
silicon surface dangling bonds are terminated with hydrogen
atoms. The Schottky contact effect and tunneling effect are
ignored in this case for simplicity. The width W and the
length L of the beam are equal to 10.864 nm. The gap G
between the beam and the ground plane is set to 2.716 nm.
We assume that the beam and the bottom conductor are in-
finitely long along the z axis �the z axis is pointing out of the
paper�. To compute the charge density distribution, we first
discretize the domain to Poisson grid points. The Poisson
grid spacings along the x axis and the y axis are denoted by
�xP and �yP, respectively.

To understand how the various parameters in the multi-
scale model affect the accuracy, efficiency, and convergence

(a)

(b)[110]

[112]
_

_

FIG. 3. �Color online� Core structure of the 90° partial disloca-
tion looking down on the �111� slip plane. The dislocation �along

the broken line� is in the �11̄0� direction. �a� Unreconstructed core.
�b� SP reconstruction. Note that the bonding breaks the mirror sym-

metry normal to �11̄0� that existed in the unreconstructed core.

appVappV x
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Ground Plane
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L

FIG. 4. �Color online� A typical nanoswitch consisting of a
fixed-fixed semiconductor and a bottom conductor, where L=W
=10.864 nm and G=2.716 nm with an applied voltage Vapp

=−10.0 V.
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rate of the method, we first study the impact of the sampling
radius RS on the convergence rate. The effect of the EMS
sampling radius has been investigated in Ref. 39, which gave
an optimized EMS sampling radius of 6 nm. Here, we only
investigate the effect of the TB sampling radius. To check the
convergence rate of the multiscale method, we first model
the entire domain by directly solving the TB eigenproblem as
a reference and denote it as the full TB method. Figure 5�a�
shows the error between the multiscale method and the full

TB method as a function of the TB sampling radius RS,
where RS is varied from 0.5432 nm �equivalent to 8 layers of
silicon atoms within the sampling region� to 4.3456 nm �64
layers of atoms�. From Fig. 5�a�, we observe that the error
decays as RS increases. When RS is equal to 2.716 nm
�equivalent to 24 layers of atoms�, the error between the
multiscale model and the full TB model is below 4%.

Next, we study how the recursion levels NL influence the
convergence rate for a given RS=2.716 nm. Figure 5�b�
shows the error as a function of NL, when NL is varied from
10 to 40 levels. From Fig. 5�b�, we notice that the error
decays quickly as NL increases. When NL is 30, the error
between the multiscale model and the full TB model is less
than 5%. Because a larger sampling radius and a higher num-
ber of recursion levels do not significantly improve the ac-
curacy but demand significantly higher computational cost,
we choose RS=2.716 nm and NL=30 in this work.

By using the quantum criteria, three kinds of regions are
identified in the silicon beam, as shown in Fig. 6. The TB,
EMS, and semiclassical regions are displayed by circles, �
symbols, and dots, respectively. The big and small circles
represent the silicon and hydrogen atoms, respectively. The
outermost atoms of the silicon beam influenced by the sur-
face states are identified as the TB region by using the TB
criterion. In this case, the y component of the electric field in
the middle region of the beam is so strong that the quantum
confinement region is pushed deep into the beam, where the
characteristic length of the quantum confinement region
is larger than the characteristic length of the surface states.
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FIG. 5. �Color online� Comparison of error between the multi-
scale approach and the full TB model as a function of RS and NL.
Error is defined as error=1 / ����max

ref �	1 /NP�i=1
NP ��ref�xi�−�a�xi��2,

where �ref and �a are the reference full TB solution and the multi-
scale solution, respectively, obtained by using �xP=�yP

=0.2716 nm. When computing the error by varying NL in subplot
�b�, the sampling radius RS is set equal to 2.716 nm.
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FIG. 6. �Color online� Illustration of the multiscale domain and quantum potential for the fixed-fixed silicon beam with dimensions of
L=W=10.864 nm and G=2.716 nm. The semiclassical model is applicable at the sampling Poisson point if ��q�x�� /max�����tol, where �tol

is the given tolerance �a value of 5�10−2 is used here�. �a� The circles, the �, and the dots indicate the TB, EMS, and semiclassical regions,
respectively. The big and small circles represent silicon and hydrogen atoms, respectively. The TB, EMS, and semiclassical regions occupy
about 72%, 12%, and 16% of the beam, respectively. Plot �b� shows the quantum potential along the y axis at x=0. Because the quantum
potential is almost negligible in the central region, the semiclassical model is used. In the other regions, where the quantum potential is
significant, the quantum mechanical models are required. Near the surfaces, where the surface states are important, the TB method is applied;
otherwise, quantum-mechanical region is identified as the EMS region.
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Furthermore, the y component of the electric field in the
middle region is much stronger compared to that at edges. As
a result, two semielliptic EMS regions are identified by the
quantum potential criterion, as shown in Fig. 6.

Figure 7 shows the tight-binding LDOS of five atoms �de-
noted as a to e in Fig. 4� at or near the surface of the silicon
beam. Because the LDOS near the edges of the conduction
bands and the valence bands contributes most to the charge
density due to the Fermi distribution, we focus on the LDOS
comparison there. Although the surface states generated by
Si-H bonds are mainly located outside the energy gap,50 they
can still significantly change the LDOS near the edges of the
valence and conduction bands when compared to the LDOS
of silicon atoms in the interior region. The difference in the
LDOS between the surface and interior states induces the
nonzero partial charges. The surface states only exist for the
first few surface layers and decrease quickly as we move into
the interior region.

A comparison of the detailed solutions for the electron
density and potential obtained by the EMS, TB, and multi-
scale methods is presented in Fig. 8. The potential and
charge distributions along the y axis for x=0 cross section
and along the x axis for y=0 cross section obtained with the
EMS, TB, and multiscale models are compared in Figs.
8�a�–8�d�. From these results, we find that the charge density
with the EMS method close to the boundary is much differ-
ent from that of the multiscale method �see Figs. 8�c� and
8�d�� because the EMS method simply ignores all the surface
states. Although the nonphysical surface states are removed
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FIG. 7. �Color online� The tight-binding LDOS of various atoms
near the edge of a silicon beam. The thin lines represent the LDOS
of a central silicon atom in the beam. The thick lines are the LDOS
of the various surface atoms shown in Fig. 4. �a� LDOS of the
surface hydrogen atom a shown in Figs. 4. ��b�–�e�� LDOS of sili-
con atoms b–e shown in Fig. 4. The surface states decrease quickly
as we move into the inner region from the surface.
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by terminating dangling silicon bonds with hydrogen atoms,
the nonzero Mulliken partial charges at silicon surface atoms
and hydrogen atoms still significantly influence the surface
electronic properties. The smoothly varying EMS electron
density near the boundary results in a different potential dis-
tribution compared to the multiscale method �see Figs. 8�c�
and 8�d� insets�, in which the electron density oscillates due
to the surface partial charges. Due to the different density
distribution, the potential distribution obtained from the
EMS and multiscale methods is also different �see Figs. 8�a�
and 8�b��. From these results, we observe that the EMS
model does not correctly predict the electronic properties
near surface regions, whereas the multiscale model can re-
produce the results of the full TB model. For this example,
although the TB region occupies about 72% of the beam, the
multiscale method is still about 40 times faster compared to
directly solving the TB model.

B. Two-dimensional fixed-fixed beam with dislocations

To further explore the effectiveness of the multiscale
method, we simulate a silicon beam with two 90° SP partial
dislocations and study the influence of dislocations on elec-
tronic properties. The silicon structure is shown in Fig. 9.
The width of the beam is denoted by W, the length is L, and
the gap is G. The doping density is the same as in the first
case and the Schottky contact effects and tunneling effects
are also ignored in this example. The two dislocations lie
near the center of the beam along �110� separated by 1.27 nm
in the �111� slip plane with opposite Burgers vectors of the
type 1 /6�112�.

By using the criteria discussed in Sec. II B 3, three kinds
of quantum regions are identified, as shown in Fig. 10. The
first quantum region is formed by the surface states which
surround the entire nanostructure. The second kind �the two
EMS regions denoted by � in Fig. 10� is the quantum con-
finement region formed by the applied electric field where

the electrons are confined and the energy levels are quan-
tized. The third quantum region is formed by the dislocations
where the stacking fault is located and the EMS approach is
not accurate. The TB quantum region is about 41% of the
entire domain in this case.

The LDOSs of several silicon atoms near the dislocation
core �see Fig. 9 for the location of the atoms� are plotted in
Fig. 11. The thin lines represent the LDOS of a reference
silicon atom far from the dislocation and the surface. The
thick lines represent the LDOS of the representative atoms
�denoted by 1–10 in Fig. 9� near the dislocation core. From
the figure, the dislocation induces a shallow state above the
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FIG. 9. �Color online� A silicon beam with two opposite 90° SP partial dislocations is clamped above a ground plane, where L
=39.9024 nm, W=19.7505 nm, and G=2.1945 nm with an applied voltage Vapp=−10.0 V. The two partial dislocations located near the

center of the beam have opposite Burgers vectors with a separation of 1.27 nm. The plane of the page is �11̄0�. The stacking fault is located
between “�” and “�.” The dislocation lines are perpendicular to the paper plane. The atomic coordinates of the reconstructed dislocation
cores are taken from Ref. 44. Each 90° SP partial dislocation is characterized by the intersection of a fivefold and a sevenfold ring. For
example, for the dislocation on the right side, the fivefold ring is composed of atoms 2-3-4-5-6-2 and the sevenfold ring contains atoms
1-2-6-7-8-9-10-1. The key feature of the relaxed geometry is that all the atoms are now truly fourfold coordinated, i.e., all four neighboring
atoms are within a few percent of the ideal bond length and there is no dangling bond in the dislocation core �Ref. 44�.
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FIG. 10. �Color online� Illustration of the multiscale domain for
the fixed-fixed silicon beam with dimensions of L=39.9024 nm,
W=19.7505 nm, and G=2.1945 nm. The Poisson grid spacings are
�xP=0.6650 nm and �yP=0.3135 nm. The semiclassical model is
applicable at the sampling Poisson point if ��q�x�� /max�����tol,
where �tol is the given tolerance �a value of 5�10−2 is used here�.
The circles, the �, and the dots indicate the TB, EMS, and semi-
classical regions, respectively. The big and small circles represent
silicon and hydrogen atoms, respectively. The TB, EMS, and semi-
classical regions occupy about 41%, 16%, and 43% of the beam,
respectively.
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valence band and reduces the energy gap. The dislocation
core results in nonzero partial charges along the dislocation
line. The dislocation effects decay quickly when the atoms

are far away from the core. The dislocation reconstruction
due to stacking fault breaks the symmetry of the crystal
structure, thus making it necessary to use the TB method.

TABLE II. A complete algorithm for self-consistent multiscale electrostatic analysis of semiconductor nanostructures.

1: Discretize the domain of the semiconductor beam into NP Poisson grid points for solving the Pois-

son equation and discretize the boundary of the domain (if any) into grid points for solving boundary

integral equation (BIE).39

2: Set k=0, solve the semiclassical Poisson model and obtain the initial potential distribution φ(0), electron

density n(0), and hole density p(0).

3: repeat

4: for each Poisson grid point, i=1 to NP do

5: use the criteria to choose the appropriate physical model at the Poisson grid point

6: if the physical model is TB then

7: define the local sampling region by Eq. (31) according to the desired accuracy level and construct the

entries of the local TB Hamiltonian matrix using φ(k). Compute the LDOS and ρ
(k+1)
i at the TB atom

site (rj=xi) using Eqs. (28-30)

8: else if the physical model is EMS then

9: define the local sampling region by Eq. (31), discretize the sampling region into Schrödinger grid points,

construct the entries of the local EMS Hamiltonian matrix by using φ(k), and compute the LDOS and

n
(k+1)
i and p

(k+1)
i at the Schrödinger point (rj=xi) using Eqs. (24-25)

10: else if the physical model is semiclassical then

11: compute the charge density n
(k+1)
i and p

(k+1)
i using Eq. (9) and Eq. (10)

12: end if

13: end for

14: solve the coupled BIE/Poisson equations to update the potential distribution φ(k+1)

15: k = k + 1

16: until a self-consistent solution is obtained when max|n(k)
i − n

(k−1)
i | < θρ

tol, max|p(k)
i − p

(k−1)
i | < θρ

tol

and max|φ(k)
i − φ

(k−1)
i | < θφ

tol, where θρ
tol and θφ

tol are the error tolerances for the charge density and

potential, respectively.

17: Output the results.

Algorithm 1
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Since the conduction band energy and electron density
near the dislocation core are the interesting features, we fo-
cus on the distribution along the positive x axis for y=0 cross
section obtained by the EMS, TB, and multiscale models
�see Fig. 12�. The charge density deviation between the mul-
tiscale and EMS models indicates that the EMS approach is
not accurate near the dislocation and surface regions and the
TB model is needed. The multiscale method is about 8 times
slower compared to the full EMS method but over 600 times
faster than the full TB method. The additional cost of the
multiscale method compared to the EMS method is due to
the fact that the TB quantum region occupies 41% of the
beam. From these results, we can conclude that the multi-
scale method is an accurate and efficient tool to compute the
electronic properties of silicon nanostructures.

IV. CONCLUSIONS

A heterogeneous multiscale model combining semiclassi-
cal, effective-mass Schrödinger, and tight-binding ap-

proaches has been presented in this paper for the electrostatic
analysis of silicon nanoelectromechanical systems. Quantum
criteria are used to identify semiclassical, EMS, and TB re-
gions. In the regions where quantum effects are significant,
the charge densities are computed by considering sampling
regions and the LDOS. The LDOS is efficiently calculated
by using Haydock’s recursion method. The multiscale
method has been shown to be accurate by comparing with
the full TB method. When the TB regions are significant, the
multiscale method has been shown to be several orders of
magnitude faster compared to the direct solution of the full
TB method. When the quantum regions are small, the multi-
scale method approaches the efficiency of the semiclassical
method. By considering examples of silicon NEMS with hy-
drogen surface termination and 90° SP partial dislocations,
we have also shown that the multiscale method efficiently
and seamlessly coupled the different physical models into
one framework without loss of accuracy.
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