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Transient quantum evolution of two-dimensional electrons under photoexcitation of a deep center

F. T. Vasko™
Institute of Semiconductor Physics, NAS Ukraine, Praspekt Nauki 41, Kiev 03028, Ukraine

A. Hernandez-Cabrera’ and P. Aceituno
Dpto. Fisica Basica, Universidad de La Laguna, La Laguna, 38206 Tenerife, Spain
(Received 4 September 2007; revised manuscript received 7 December 2007; published 11 February 2008)

We have considered the ballistic propagation of the two-dimensional (2D) electron Wigner distribution,
which is excited by an ultrashort optical pulse from a deep center into the first quantized subband of a
selectively doped heterostructure with high mobility. Transient ionization of a local state into a continuum
conduction band state is described. Since the quantum nature of the photoexcitation, the Wigner distribution
over 2D plane appears to be an alternating-sign function. Due to the negative contribution of the Wigner
function, the mean values (concentration, energy, and flow) demonstrate an oscillating transient evolution in

contrast to the diffusive classical regime of propagation.
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I. INTRODUCTION

In recent decades, intensive efforts were paid in order to
study the quantum coherent properties of different physical
systems.! During the development of the ultrafast spectros-
copy of bulk semiconductors and heterostructures,” both co-
herent oscillations between coupled states and different re-
laxation processes have been investigated (see Refs. 3 and
4). Some quantum peculiarities (e.g., in the transport of car-
riers in mesoscopic devices® or in the dynamics of electrons
excited at metallic surfaces®) were discussed recently. How-
ever, to the best of our knowledge, the coherent dynamics of
a free quasiparticle, which propagates over continuum states,
has not been measured directly in any solid state system. The
quantum process of quasiparticle formation in different
systems’~! has been observed for subpicosecond stage of
evolution. Under the theoretical consideration of such a kind
of measurements (see, for example, Ref. 11 and references
therein), one can model the photogeneration process using a
simple initial condition to describe the creation of carriers
during a femtosecond temporal interval. At the same time, in
the case of photoexcitation of carriers with low concentration
and with energy values below the optical phonon energy, the
collisionless regime of the response appears to be valid up to
a nanosecond time interval. This is because both the fast
relaxation, due to optical phonon emission, and the carrier-
carrier interaction are suppressed. Thus, a possibility is to
study the quantum nature of the ballistic transient evolution,
caused by the nonclassical character of photoexcitation.*!?

Modern high-mobility heterostructures are characterized
by a momentum relaxation time shorter than nanoseconds at
low temperatures.'? So that the mean free path appears to be
macroscopic (>100 um if the electron energy is about few
meVs). The photoexcitation of a single deep center under a
laser pumping focused up to submicron scale'* can be car-
ried out in a nondoped heterostructure with a low surface
concentration of centers [deep centers in bulk GaAs are un-
der consideration since the 1970s (Refs. 15)]. Below, we
consider the transient photoexcitation of electrons from a
deep local level and the quantum ballistic evolution of the
Wigner distribution in the two-dimensional (2D) plane over
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submillimeter distances during a nanosecond time interval.

In contrast to the transitions between local states, when
the Rabi effect (oscillations of population versus pumping
intensity*!?) takes place, the level population of a deep cen-
ter state under ultrafast photoionization decreases monotoni-
cally with the pumping intensity due to the delocalization of
the excited electron over the conduction ¢ band. Another
peculiarity of the process under consideration is the quantum
character of the transient evolution of the distribution excited
into the continuous spectrum. Due to this, the concentration
distribution, which decreases from the center, involves an
oscillating contribution and there are regions where the
Wigner distribution takes negative values. Such a distribu-
tion should be considered with the use of the quantum ki-
netic equation, written in the Wigner representation, due to
the following reasons: (a) the energy conservation law is not
valid during the photoexcitation process and (b) there is no
momentum restrictions on the excited distribution due to the
short-range local state involved in the phototransition.

In this paper, we restrict ourselves to the local time ap-
proximation, which corresponds to the photoionization above
the c-band edge (Aw7,,> 1, where 7,, is the duration of the
photoexcitation and Aw is the detuning frequency with re-
spect to the photoionization energy), when only point (b) is
essential. Due to the violation of the momentum conserva-
tion law, the mean values (concentration, energy, and flow)
show an oscillating behavior in contrast to the diffusive clas-
sical regime. Moreover, although the concentration and en-
ergy distributions are positive functions, the flow distribution
is an alternating-sign one, i.e., the flow may be directed op-
posite to the concentration gradient. The peculiarities dis-
cussed can be verified by means of optical methods or scan-
ning tunneling microscopy, if the measurements can be
performed with submicron and subnanosecond resolutions.

The present work is organized as follows. The photoexci-
tation process, including the evolution of the deep center
population and the transient Wigner distribution over ¢ band,
is described in Sec. II. Section III presents the temporal de-
pendencies of the above-introduced functions. The transient
dynamics of the mean values is described in Sec. I'V. A list of
the assumptions used and the discussion of the methods for
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experimental verification of the peculiarities discussed are
given in the concluding section. Appendix contains the de-
scription of the classical regime of transient evolution under
a smooth interband excitation.

II. ULTRAFAST PHOTOEXCITATION

Under photoexcitation of electrons, transitions from a
deep local level into the first subband of ¢ band is described
by the density matrix p;, where the index j means ¢ band or
local state. Performing the averaging over the period of the
radiation E, exp(—iwt)+c.c., one obtains the quantum kinetic
equation,'?

i 0 A
éﬂ + %[hj’ﬁjt] =Gy, (1)

with the generation rate (j# '),

A e 2 ! .
Gj= <%> J_w dt’ emielt’=)

P “ N A N
X{Sjt’—t(Et, . V)jj’pj’t’Sj’[’—[(Et . V+)j/j

A

+ (B, - 1) 15087 Py (B - 9)8 by jr + Hee
)

Here, ﬁj is the Hamiltonian of the 2D state in the ¢ band
(j=c) or of the state at short-range center (j=h),
S j,,_,=exp[—iﬁ (' =1)/1] is the evolution operator of the jth
state, and (V) is the velocity matrix element for j« ;' tran-
sitions. For the case of a deep center connected to the va-
lence v band,'® we use in Eq. (2) the interband matrix ele-
ment of velocity v, multiplied by the overlap integral
between the plane wave of momentum p and the local state
IP=(p|h). The evolution of the Wigner distribution function
over the ¢ band, f;, , ,=(Pi|pu|P2), is governed by the equa-
tion
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with the right-hand side dependent on the population of the
local state, n,= (h|py,|h). The generation rate Gy, p,. 15 deter-
mined through the 2D kinetic energy €,= p?/m, with the ef-
fective mass of the ¢ band m, the form factor w,, introduced
by the relation E,=Ew,, and the detuning energy, 7A w.

We are using the initial conditions fplvpz»H—w=0 and
n,_._»=1, which correspond to the single-electron population
of the local level, so that the normalization condition takes
the form n,+22,f,,,=1. The evolution of the local state
population is governed by the integrodifferential equation,
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which is obtained from Egs. (1) and (2). Instead of Eq. (3),
one can describe the transient evolution of the ¢-band distri-
bution through the Wigner function, f}, q,=/fp-nq2p+ig2.
which is governed by the equation

J .
(5‘ +i1q - V)fp,q,t = Gp,q,n (5)

with the velocity v=p/m. Similarly, the generation rate
Gp 4.0 =Gp-tiq2.p+hqr2, 18 transformed into
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and the right-hand side of Eq. (5) is determined through the
evolution of n,. The solution of Eq. (5) takes the form f,
=J"..dt" exp[—iq-v(1—1")]Gp 4> s0 the description of the
transient evolution is reduced to the calculation of a multiple
integral and to the solution of Eq. (4).

A simplified consideration of the problem is possible un-
der the condition Aw7,,>1 (photoionization into a high-
energy state of the ¢ band) when w,n,, in Egs. (4) and (6)
can be replaced by wn, due to the fast oscillating factors (the
local time approximation). The integration over dt' in Eq.
(6), which is performed with an infinitesimal damping factor
in the exponent, 6— +0, gives

2
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Here, the kinetic energy of the inhomogeneous system
(q#0) is not conserved during the photogeneration process,
even for the long 7,, case, due to the violation of the mo-
mentum conservation law. Using Eq. (7) and performing the
Fourier transformation of the distribution function f} 4 ,, one
obtains
t
Joxi= > dr' %G
q

—0
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eEv,, \> " 2
gZﬁ,(ﬁ_Cl)) f dt,W,/nt’E Ip+ﬁq/21p—ﬁq/2

w e q

sin(q - X,_1)
9
Eping2 — A w

(8)

where we have introduced the time-dependent coordinate,

X |:775(8p+ﬁq/2 - ﬁAw)COS(q : Xt—f’) +
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X, =X-V(t—1"). The function f,, satisfies the conditions
Sop—xi=fpx,and f_p =fp x,» Which are verified by the ex-
change q——q in Eq. (8).

Within the local time approximation, Eq. (4) takes the

form
d 2
5 + yw; |n, =0,

ekEv, 2
y=47'r( hw’”) > |Ip|26(sp/ﬁ—Aw), 9)
p
where vy stands for the photoionization decrement. The ana-
lytical solution of Eq. (9),

t t
n=1- 7j dt’wlz, exp(— yf dt”w,%), (10)
—o0 t'

describes the transient population of the level.!” Thus, we
have obtained the Wigner distribution [Eq. (8)] and the popu-
lation [Eq. (10)] written in the integral forms which include
the overlap integral /;, and the form factor w,.

III. SHORT-RANGE CASE

To calculate the Wigner distribution [Eq. (8)] and the
population [Eq. (10)], we use below the overlap integral for
the short-range local state with the characteristic size /,, so
that I,=1[,/L if p<#i/l, and I,, tends to zero if p>7/l,;
here, L is the normalization length. Within the above as-
sumption, the decrement of photoionization in Eq. (9) takes

the form
eEvCU
Yy=\7 7 ﬁpzD
w

where p,p is the density of states, m, is the heavy hole mass,

wm | eEv,, h
( ho ) (1)

2mh AE’
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FIG. 1. Transient evolution of the population of the deep level
under the dimensionless pumpings y7,,/2=0.33, 1, 3, and 9.

according to AE=(#/1,)?/2m,,. The temporal dependencies
of n, under different pumping levels, which are determined
by the dimensionless parameter y7,,/2, are shown in Fig. 1
for the Gaussian form factor w,= exp[ 2(t/1,,)*]. The com-
plete ionization of the center appears under the condition
7,./2~72 and, when v increases, the photoionization takes
place during the front of the pulse. The full ionization regime
takes place under a pulse energy of ~0.2 uJ focused on an
area of ~100 um; this estimate is performed for the GaAs
parameters and does not depend on the pulse duration.
Next, we turn to the description of the photoexcited elec-

, and the angle p:x. We consider the long-duration excita-
tion case (the collisionless regime of the response takes place
for the nanosecond time scale) and demonstrate that the
Wigner distribution f, , is not a positive function. We cal-
culate below the distribution at the maximal pumping, =0,
for the cases pllx and p L x with the use of the notations f

and f respectively. Performing in Eq. (8) the 1ntegrat10n

and the level coupling energy AFE is expressed through [, over qJ_p, one obtains the distributions 'l as follows:
|
2(pi-p)
o ———(x+v1)
pe| 2 f dn f i) Phupi] [ h
= 1 /—
f;x T J o —oo Vpiw—pl 2x /— 2(Pl P)
cos| —Vpa,—Pi+—
f h
sin{ M(x + vt)}
, Api-pi,] ho 12
D1 = Pro 2 sl 2e=p)
eXp| — 5 VP1 — Pae |SIN
h | h
I
where €z] is the Heaviside step function, v=|v|, and py,, p=0; moreover, a nonzero contribution appears from the

=\2mhiAw is the characteristic momentum. The integrals
over t and p, can be factorized for the slow electron case,

first addendum only. The distributions for the || and L orien-
tations are coincident,
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FIG. 2. (a) Longitudinal and (b) transverse Wigner distributions
at maximal pumping (z=0) versus dimensionless momentum and
coordinate, p/pu, and xpy,,/fi. Parameters used are Aw7,, =10 and
YT/ 2=3, where 7,,=0.66 ps.

0
N
[l;jO’XZZ)/f dtwtzn,‘]()(#), (13)

and the coordinate dependence is given by the zero-order
Bessel function, Jy(z), which has an alternating-sign value
and decreases as a square root.

The distribution functions [Eq. (12)] depend on the di-
mensionless momentum and coordinate, p/py,, and xpa,/h,
the detuning parameter Aw7,,, and the pumping intensity y.
Using Eq. (10) with the dimensionless pumping y7,,/2=3
and performing the numerical integration in Eq. (12), we plot
the Wigner distribution for Aw7,,=10, as it is shown in Fig.
2. One can see a nonmonotonically dependence on p/py,,
and xp,,/h with pronounced negative contributions. Both
longitudinal [Fig. 2(a)] and transverse [Fig. 2(b)] cases show
a fast decrease with dimensionless momentum, although the
first case is not as fast as the other: fl),x becomes zero for
P/Pa,~ 1.5, whereas for the transverse case, p/pa,~0.5 is
enough to get f;xzo due to the exponential term in the
denominator of Eq. (12). However, we have extended the
dimensionless momentum axis up to 1.5 in Fig. 2(b) in order
to directly compare with Fig. 2(a). Moreover, oscillations
slowly decrease with dimensionless coordinate xp,,/#f due
to the spread of the distribution under propagation. However,
as p/pa, increases, the dependence on xp,,/h is opposite
for the two cases considered: for the longitudinal case, peaks
shift to higher xp,,/# values, whereas, in the other case,
peaks move toward smaller xp,,/# values. In other words,
propagations of the Wigner distribution are perpendicular in
the phase space for the two cases under consideration.

IV. MEAN VALUES

The transient dynamics of this Wigner distribution can be
verified by the treatment of spatiotemporal dependencies of
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the mean values (concentration, energy, and flow, ny,, &,
and iy, respectively) given by the standard formulas,

Ny 4 1

P
‘f:xz :2j W €p fp,x,Z' (14)
1y, v

Below, we analyze the spatiotemporal evolution of Eq. (14)
using distribution (8). Performing the integration over the
variable p = 7%q/2, one obtains the concentration and energy
distributions, which are isotropic over the x plane,

t 0
yf dt’wtz,n,,J dqJy(gx)q

2m7) 0

n N, q.1—t'

E

Xt

£, . (15)

q.t—t'
Here, the kernels N, . and E, ; are given by

€
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where P means the principal value of the integral, J,(z) is the
first-order Bessel function, vp,=pa,/m, and y=¢/hAw is
the dimensionless energy. The distributions [Eq. (15)] de-
pend on the pumping intensity through n,, given by Eq. (10),
and on the dimensionless coordinate and time, xp,,/% and
t'7,,.

Before numerical calculations, we consider the asymp-
totes of n,, (similar formulas can be written for £,, and the
flow distribution) for the case r> 7, and x>#/p,,. Using
the asymptotic expansion of the Bessel function for large
arguments and performing the integrations over ¢’ and ¢, one
obtains the explicit expression,

Y7 N ™ 2 T 2 T
M= =\ g S| | sin| e

—
Q2w Iy \xva,t VAot

+Pjoc dy |: (2 +’7T) . (2 +7T>:|
—=——|cos|z,_+— ) —-sin| z. + — s
o my(y-1) 4 g

(18)

where N'=[*, dtwin,/ 7, ly,=f/pa, and we have intro-
duced the dimensionless forms z.=(x* v t)pas/2fVAwL
and zy~=z. * (Vy—1)VAwt. Thus, the period of the oscilla-
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FIG. 3. Spatiotemporal evolution of concentration ny,. (a) 3D
graph near the peak and (b) contour plot showing the line corre-
sponding to the classical velocity. Parameters used are Aw7,,=5
and y7,,/2=1, where 7,,=0.66 ps.

tions of the concentration distribution, (f/2ps,)VAwt, does
not depend on Aw and increases as 1.

The spatiotemporal dependence of the concentration is
shown in Fig. 3. Figure 3(a) shows the three-dimensional
(3D) graph near the peak at xp,,/f=0 for Aw7,=5 and
y7,./2=1. As can be seen, concentration falls quickly for
small dimensionless coordinate and oscillates for bigger
Xpae/f values. In order to appreciate oscillations, we have
removed xp,,/f <1 values from the figure because of the
high value of n,, maximum at x=0. Position of n,, maximum
in dimensionless time is shifted following the classical ve-
locity, as shown in Fig. 3(b), where the contour plot, together
with the line corresponding to the classical velocity, is pre-
sented. Concentration is normalized by ny=7y7,mAw/m7h,
which is equal to 2.82X 10" ¢cm™2 for AAw=5 meV, and
y7,,/2=1. This value corresponds to an excited electron lo-
calized over an area of the order of (%/py,)>.

Figure 4 shows the behavior of the energy distribution vs
dimensionless position and time. Energy distribution has
been normalized by &y=nyfiAw, which corresponds to
2.25X 1073 erg/cm? for the same values of iAw and y7,,/2
used for the concentration. Energy behavior vs xp,,/f is
similar to the concentration one. To say, a fast decrease fol-
lowed by oscillations. As in the former figure, we have re-
moved xp,,,/f <2 values from the figure because of the high
value of &, maximum at x=0.

Since the in-plane isotropy of the problem, one obtains
the flow density iy,=(x/|x|)I,,, where the scalar function I,,
takes a similar form to Eq. (15),

t o
Y /
I,= 2—] dt wtz,n,rf dqJ (gx)qF v, (19)
mJ)_» 0

with the kernel
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FIG. 4. Evolution of energy &,, for the same parameters of
Fig. 3.
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Performing the numerical integrations given by Egs. (19) and
(20), we plot the flow distribution for the above
parameters, as it is shown in Fig. 5. Flow distribution
has also been normalized by [Iy=ngp,,/m, being
I,=4.57 % 10" (cm/s)/cm? for the above values of AAw and
7,/ 2. The flow is identically zero at xp,,/A=0, having a
sharp peak for xp,,/fi<1, followed by oscillations in di-
mensionless coordinate, as shown in Fig. 5(a). Only the de-

i
(O
I

A
i

i

FIG. 5. Evolution of the flow I, (a) for the same parameters of
Fig. 3. (b) Curves for some xp,,/#% values in order to show nega-
tive part of the flow.
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scending slope of the peak appears in the figure because
dimensionless distance axis starts at 2. We have opted for
starting at this point because the high value of the first maxi-
mum would prevent to see the flow fluctuations. Moreover,
as can be seen, there are also oscillations in time and nega-
tive values of the flow distribution arise. With the purpose of
showing negative parts of flow, we represent in Fig. 5(b) the
flow vs dimensionless time for different xp, /A values (from
2 to 10).

V. CONCLUSIONS

In summary, we have suggested a scheme to investigate
the quantum peculiarities of the single-particle dynamics un-
der ultrafast photoionization of a single deep center. Due to
the negative contributions to the transient Wigner distribu-
tion of the c-band electron, the mean values (concentration,
energy, and flow) demonstrate an oscillatory behavior in con-
trast to the classical results (see Appendix). We have ana-
lyzed the conditions for visible quantum oscillations, when
an experimental mapping of the Wigner distribution should
be possible through the character of these oscillations.

Now, we turn to the discussion of possibilities for experi-
mental verification of the peculiarities obtained. The stage of
selective single-electron photoexcitation is based on the as-
sumption of a low concentration of deep centers: if a bulk
concentration less than 10! cm™ remains in the near-surface
region, one obtains an intercenter distance about 1 um. The
regime of a single-center excitation can be easily realized
with an ultrafast pump focused over a submicron scale. Re-
cently, similar measurements were performed with a single
quantum dot'® but the photoexcitation into continuum and
further evolution of the distribution was not examined. Per-
haps, it is due to the complicate problem of the registration
of the oscillating Wigner distribution. In spite of the sensitive
optical methods developed recently for optical control of a
single quantum dot (see Refs. 19 and 20 and references
therein), the spatial resolution remains a complicate task (we
use above fi/p,,,~ 10 nm). Note that the period of the oscil-
lations increases with time as V¢ [see Eq. (18) and Fig. 3(b)]
but the distribution value (and the response) decreases due to
spatial spread. Another possibility is to use the scanning tun-
neling microscopy?! which has nanometer resolution but has
to be adapted to time-resolved measurements with subnano-
second resolution. Note that we do not calculate any concrete
optical or tunneling response supposing that the observed
peculiarities will be of the same order of the mean values
considered in Sec. IV.

Next, we discuss the assumptions used in our calculations.
The main approximation is the local time approach, so that
the edge photoexcitation is beyond of our consideration. A
more complicate numerical simulation is required for this
case as well as to take into account the Coulomb correlations
(excitonic effect). The interaction of the electron with the
localized hole is essential for a near-center region but it
should decrease with x. Thus, the short-range model used in
our calculations of Egs. (9) and (11) is enough in order to
estimate the photoionization decrement. Finally, only the av-
eraged Wigner distribution has been considered and a full
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counting statistics of photoionization and subsequent tran-
sient propagation of electrons?® requires a special investiga-
tion.

In conclusion, a similar theoretical analysis may be devel-
oped for other cases like photoexcitation of a single quantum
dot or near-field photoexcitation,'*!'® where a similar quan-
tum behavior should take place. We hope these results will
stimulate experimental efforts toward a mapping of quantum
peculiarities in the transient Wigner distribution.
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APPENDIX A: CLASSICAL EVOLUTION

This appendix contains the description of the classical re-
gime of transient evolution when the momentum and coordi-
nate dependences of the generation rate can be factorized in
contrast to Eq. (7). Such a regime appears for a smooth in-
terband excitation, with the inhomogeneity scale /,, exceeds
h/\2me,,, where €,, is the excitation energy. Following Sec.
53 of Ref. 12, we approximate the generation rate by the
factorized expression,

Gpqu & 5A8(8 - Sex)e_(qlm')zwzz- (A])

Here, Sp,(e—¢,,) is the peak energy distribution with the
half-width Ae and w, is the above-introduced form factor.
After the integration over the q plane, the distribution f}, y,
takes the form

FIG. 6. Evolution of the classical distributions (a) n,, and (b) I,
given by Egs. (A3) and (A4) for a=6.
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t 2
;2 L[ Xy
fp,x,t o 5Aa(8 - Sex) dt W, €Xp| — 5 I >

80 fp x>0 because of the positive functions under the inte-
gral. At t>17,, one obtains the distribution as a moving
Gaussian peak: fy % O (e—¢,)exp[—(1/2)(x,/1,,)*]. The
explicit expressions for fp‘i introduced in analogy to Eq. (12)
can be written through the probability integrals and they
have a single-peak behavior.

Restricting ourselves to a narrow energy distribution,
Aeg<eg,,, and taking the integrals over p plane according
definition (14), one obtains the concentration distribution as

follows:
1 2 T,
nnocexp{—5<i> ]J_m dre ™

X el T%[“i(i } T)] ,
lex TE.X

where [,(z) is the zero-order Bessel function of imaginary

(A2)

(A3)

PHYSICAL REVIEW B 77, 075310 (2008)

argument. Here, we have introduced the dimensionless
parameter a=v,,7,,/l,., with v,,=\2¢,,/m. Within the above
approximation, the energy distribution is given by
€= &,y Similar to Egs. (19) and (20), one obtains the
flow density iy,=(x/|x|)I,, where the scalar function I, is
written as follows:

1/ x 2 T,y ~
Ixtocvexexp[— E(;) ]f_x dre 4z
Xe—a(t/Tex— 7')2]1|:a,i<i _ T>:| )
lex TEX

where I,(z) is the first-order Bessel function of imaginary
argument.

Performing a simple numerical integration of Egs. (A3)
and (A4), one obtains the concentration and flow distribu-
tions versus the dimensionless coordinate and time, x//,, and
t/ 7, as it is shown in Fig. 6 for a=6. Since there are no
oscillations of the classical distribution [Eq. (A2)], the mean
values appear to be spread monotonically.

(A4)
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