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Current fluctuations in the transient regime: An exact formulation for mesoscopic systems
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We report a theoretical analysis of current-current correlations in an arbitrary noninteracting mesoscopic
phase-coherent device connected to arbitrary noninteracting external leads, in response to the sharp turning off
of the bias voltage. Based on the Keldysh nonequilibrium Green’s function formalism, we provide an exact
analytical solution to the time-dependent current-current correlations in the far from equilibrium, nonlinear
response regime. An important feature of our theory is that it does not rely on the commonly used wideband
approximation so that the full electronic structure of the device leads is taken into account. As such, our theory
provides a way to perform calculations of transient current fluctuations from first principles on realistic
systems. We apply the exact formulation to a two-probe transport junction with the Lorentzian linewidth and
investigate the time-dependent behavior of the current-current correlations when the voltage bias is abruptly

turned off.
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I. INTRODUCTION

Electric current flowing inside a conductor can fluctuate
with time due to the granularity of the charge carriers. Such
fluctuation gives rise to the notion of shot noise that has been
measured in various experimental setups.'> The spectra of
current fluctuations contain useful information about the
charge carriers in the current, including electron kinetics,?
correlations of electronic wave functions,* and quasiparticle
charge.>0 In the experiment of Ref. 5 on the fractional quan-

tum Hall effect, both the power of shot noise S=2QI, and the

average charge current /, were measured simultaneously, and
the ratio gave O=e/3 which is the expected quasiparticle
charge of the v=1/3 fractional quantum Hall state, with e
the bare electron charge. Similarly, the measurements re-
ported in Ref. 6 of current-current correlations in a normal-
superconductor tunnel junction produced Q=2e, the charge
of a Cooper pair. The information gained by these measure-
ments, for example, the quasiparticle charge, is not contained
in the average current alone.! For a normal system, it is also
known that the current correlation between different measur-
ing probes (cross-correlation) is negative for fermions and
positive for bosons.”®!!

A classical conductor is characterized by the Poissonian
noise,” where the current fluctuation ((A/)%) in a frequency
range Av is proportional to the electrical current I: ((Al)?)
=2QIAv, where Q is the carrier charge. For a quantum con-
ductor, the fluctuations are also influenced by two other
physical factors: the Pauli exclusion principle and the Cou-
lomb interaction. The Pauli exclusion reduces the classical
noise by a factor proportional to (1-7) for each transmission
channel, assuming the transmission coefficient 7 to be insen-
sitive to carrier energy.!®!! The Coulomb interaction, on the
other hand, can contribute to reduce or enhance shot noise
depending on system details. Shot noise can be characterized

by the Fano factor =S/(2el,), which equals unity for clas-
sical conductors with completely uncorrelated transport of
particles.
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While most of the literature on current fluctuations and
noise in the quantum regime has focused on linear steady-
state transport, the fluctuations in the transient current are
also of great interest. An example of transient noise measure-
ment has been reported in Ref. 12 where noise at driving
frequencies up to 250 GHz has been detected in a two-
dimensional electron gas nanostructure. Indeed, a very seri-
ous challenge in mesoscopic device physics has been the
understanding of transient transport dynamics. This includes
such issues as understanding how fast or how slow a quan-
tum device can turn on and/or off a current. The importance
of transient phenomena is also highlighted by many high
frequency transport measurements, such as photon-assisted
tunneling,'®  electron  turnstiles,'*  real-time electron
dynamics,'> high frequency noise spectra,'?> quantum RLC
circuits,'®'®  parametric pumping,'®?* and ultrasensitive
electrometers.?!

The purpose of this paper is to report a theoretical inves-
tigation of the current-current correlations in the transient
quantum transport regime. In particular, we calculate current
correlations when the bias voltage of a two-probe quantum
device is abruptly turned off. Namely, we consider a situa-
tion in which at times #<<0, the device is in a steady state
under bias A, and at time ¢t=0, this bias is suddenly turned
off to zero. Under such a step-shaped bias, the transport cur-
rent / goes from a finite steady-state value I, for <0 to zero
for t>0. When the electronic structures of the leads and of
the device scattering region are taken into account, it is a
very difficult problem to calculate the time-dependent
current-current correlation. However, for a sharp step-down
bias pulse, we discover that the time-dependent problem can
be solved exactly for noninteracting systems. We report this
solution in the rest of the paper.

Our theory for the current-current correlation builds upon
a recently developed formalism for solving the time-
dependent current I(¢) in mesoscopic phase-coherent devices
driven by sharp step-shaped voltage pulses.?? The formalism
is based on the Keldysh nonequilibrium Green’s functions
(NEGFs) and it provides an exact analytical solution to the
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transport equations in the far from equilibrium, nonlinear
response and noninteracting regime. The essential feature of
the formalism?? is that it does not rely on the commonly used
wideband limit (WBL). The WBL assumes that the coupling
between device scattering region and electrodes is indepen-
dent of energy so that any electronic structure of the elec-
trodes is ignored. This is used for analytical work where the
WBL drastically simplifies mathematical derivations, but it is
a crude approximation for many practical situations and in-
deed, in nanoscale systems, electrode materials are charac-
terized by complicated band structures which lead to non-
trivial features in the density of states such as peaks, dips,
gaps, and the van Hove singularities.?® Since the formalism
of Ref. 22 provides a way to perform transient transport cal-
culations beyond the WBL, it is the starting point of the
present work.

In the next section, we present a detailed derivation of the
current-current correlation using NEGF. Since we can solve
the problem exactly, it should be useful to present the theory
in more detail to interested readers. In Sec. III, we apply our
theory to a two-probe transport junction where the device
scattering region is a single-level quantum well, and the elec-
trodes are characterized by a finite band Lorentzian line
shape. Finally, a short summary is presented in Sec. IV. Ap-
pendix can be found at the end where some derivation details
are presented for interested readers.

II. THEORY

To calculate the current-current fluctuations in the tran-
sient regime after the bias voltage is abruptly turned off, we
make use of the Keldysh nonequilibrium Green’s function
formalism.>* We consider a two-probe nanostructure de-
scribed by the following Hamiltonian:

H= E €ka(t)cltacka + 2 é_mn(t)djndn + E (tkanC;adn
ka

mn ka,n

*
+ tkandlcka) s (1)

where a=L,R indicates the left and right leads. Here, €,(¢)
is the energy of state k in lead « and ¢y, is the annihilation
operator for electrons there. Similarly, €,,,(z) is the Hamil-
tonian of the device scattering region in a given single-
particle basis {|n)} with d,, as the corresponding annihilation
operator. The first two terms in Eq. (1) describe the isolated
(unconnected) leads and scattering region, respectively. The
last term describes hopping processes between the leads and
the scattering region with the coupling matrix #y,,.

In our calculations, we assume that the single-particle en-
ergies follow adiabatically the time dependence of the exter-
nal fields.>*2% As pointed out in Ref. 25, this assumption
assigns an upper limit w, of roughly tens of terahertz to the
spectral content of the time-dependent perturbation. In this
work, we will consider external bias with a step function
time dependence (step-down bias), which corresponds
roughly to a pulse rise time 7~ 7/ w, which is on the order
of tens of femtoseconds. Since electron dynamics are usually
in the picosecond range, we can safely model the bias turn-
ing off by a perfectly sharp down step. Hence, the bias ap-
plied to the left lead A, (7) is given as
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A()=A60(-1), 2)

where A on the right-hand side is a constant and 6(r) is the
Heaviside function, 8(r<0)=0 and 6(>0)=1. Within the
adiabatic approximation, the energy levels of the left lead
become € (1)=€,.(0)+A, (7).

The electric current operator is readily obtained by the
equation of motion,* (1) =—edN,/dt, where e is the el-
ementary charge and Nd:zkcitacka is the number operator for
lead . Applying the equation of motion, one obtains®*

1(0) = = i 2 tyancia(Dd, (1) + Hec., 3)
kn

where we have fixed units such that e=A=1. From this op-
erator form, one obtains the time-dependent current ,(f) by
taking expectation values.

The current-current fluctuations defined as F,(7)
= (Ala(t)2>=(Ii(t))—(la(t))2 can be calculated using Eq. (3).
We obtain

FL(I) == E (tkLmtk’Ln(<cltLdmc]t'Ldn> - O~O')
kk'mn
koK i i
+ tkLmtk’Ln(<dkaLdnck'L> — 0.0.)
* il i
- tkLmtk’Ln(<cdemdan’L> - 0.0.)

- t:Lmtk'Ln(<dLCkLC|TyLdn> -0.0.)), 4)

where the notation o.0. stands for a two-by-two pairing of
the operators without changing their orders. For example, if

a, b, ¢, and d are operators, then [(Ghéd)—0.0.] stands for
[(abéd)—(ab)(éd)].

Applying Wick’s theorem,?’ it is not difficult to show that
all the o.0. pairings cancel and Eq. (4) becomes

i £
FL(t) == E (tkLmtk’Ln(cltLdnxdka'L} + tkLmtkan<d,:1Ck’L>
kk'mn

* % .
X <6’de2> = timtyr 1€ IKLC k’L><dde> = termtr Lol )

X{ct i ern))s

which, in turn, can be written in terms of the nonequilibrium
Green’s functions,

>
Fi)=- 2 (amti1aGraa (DG, 0y (8,1)
kk'mn

* * <
+ tip i 1, Grmer, (60 G, (81)
* <
- tkLm[k'LnGk/L,kL(t’ t) G;n(t’ t)

* >
- tkLmtk'LnGyfm(t’ t)GkL’er(ts t)) 5

where the time dependence is emphasized. The NEGFs that
mixes operators in the leads and in the scattering region are
defined as
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G (t,1') = i, (1) d, (1),

G;,k’L(t’t’) =- i<dm(t)clt']‘(t,)>. (5)

<
nm

The NEGFs for the scattering region and for the leads, G
< . o e
and G, Lkr are defined in similar manner,

G, (t.1") = ild),(1")d, (1)),

Gy (1) = iei (e (1), (6)

Following Ref. 25 and taking advantage of the Langreth ana-
lytical continuation theorem,”® the mixed NEGF [Eq. (5)]
can be expressed in terms of the NEGFs of the scattering
region and the leads [Eq. (6)],

sk
G,fii(l,l,) = 2 f dtl(G:zm(t’tl)tknglfL,>(tl,t,)
m

ES
+ Grt<r;1>(t5tl)tkngﬁL(ll’t,)) s

where the Green functions of the leads, g, (¢,'), are defined
as

gty == 0t — ") {err (D, e, (1) Do,

ngL(t’t,) = i<C;;(L(t')CkL(f)>o-

Here, the subscript “0” indicates that the average is taken
with respect to the ground state of isolated leads; therefore,
these Green functions are known. Similarly,
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Glfi;(f’t,) => f dti(gr;” (t, 1) mGa(t1,1")

+ gttt G (t1,1)),

and finally,
Glfl:j(’L(t’[,) = glfi>(tat,)5kL,k’L
+ > f dr, (G;L,n(t,tl)t:,Lng;’z(tl,t’)
p
+ G (618080 (111,

where the mixed retarded Green’s function is

Gio (1) =S, f A () Gt (7)
m

With the help of the following relations,

[G'(t,1)]"=G“(t'.1),

[G=~ ()] =-G=~(t'.1),

the time-dependent fluctuation F; () can now be expressed in
terms of the Green functions of the scattering region,

Fi (1) = Tr{— 2 Re{ (j dnG'(t,6)2] (t1,1) + G<(t,t1)22(tl,t)> (j dnG'(t,1,)2] (t1,0) + G>(t,t1)22(tl,t)>} +G7(1,1)

X {f dt, f dt[2i (2] (1,1)) G (t1,1,) 2] (t5,1)) + 27 (t,1)) G~ (t1,1,) 2 (£,0)] +E<(t,t):| +G=(1,0)

X {f dn, f dt[2i (2] (1,1) G (t1,1,) 3] (t2,0)) + 27 (t,4)) G~ (t1,1,) 2 (12,0)] + 2>(t,t)H, (8)

where the self-energies of the leads are defined as
P
2/(vz,mn(l‘l’l‘Z) = E tkamgia(tl’tZ)tkam
k

with x=(,),r,a. In terms of the linewidth function I" ,(€), the
self-energies can be written as??

So(tt) =if de exp[—ie(t—1")]
2

Xexpl— th Aa(’T)dT:| F(e)l' (e), 9)

and

(1) =—i0(t—t’)J ;l—w exp[—io(t—1")]

Xexp[—if Aa(r)dr}l—‘a(w), (10)

where F(e€) is the Fermi distribution function. In the rest of
the work, we consider the zero-temperature limit and can
always write Eq. (9) as
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Er ge
Ei(t,t'):if — exp[—ie(t—1")]
2

-0

Xexp{— ift AH(T)dT]Fa(E). (11)

In practical calculations (see below), the greater Green’s
function G~ (¢,t') is expressed via the lesser, retarded, and
advanced Green'’s functions. For the down-step pulse of Eq.
(2), Maciejko et al.?* has derived these Green functions ex-
actly in terms of the steady-state NEGF for the connected
lead-device-lead (LDL) system. In particular, taking the
time-independent pieces of the entire LDL Hamiltonian as
the unperturbed part of a perturbation theory, and taking the
time-dependent bias potential [Eq. (2)] as the perturbation,
the Dyson equation for G” can be written as*?

Gr(t,t')=é’(t—t’)+fdtlér(t—tl)ACH(tl)Gr(tl,t')

+fdt1fdtzér(t_t1)
x> {exp{—lf | dt,Aa(t,):| - 115201

—1,)G(tp,1"), (12)

where A.(r) and A,(7) are external bias fields in the device
scattering region and in the leads, respectively. In our case,
A (1)=A0(-1) is given by Eq. (2) and Ag(z) is set to zero.
Here, A (7) is taken to be half of A;(r) assuming a symmetri-
cal device structure. In Eq. (12), the quantity G'(t-1') is a
time-translationally invariant Green’s function, i.e., the equi-
librium Green’s function for the unperturbed LDL Hamil-
tonian. For a given device Hamiltonian, its equilibrium
Green’s function G'(1—¢') can be calculated in many ways
and an example will be given below.

The above Dyson equation [Eq. (12)] for a downward-
step pulse has been solved exactly in our previous paper [see
Eqgs. (13), (17), and (22) of Ref. 22]. Here, we quote these
results and rewrite that solution as

G'(t>0,' <0)=G'(t—1)
f __Gr(w Gr(w ) —iwt+iw't
X [—AC
w-o' —i0*

A (0" - A) -5 ()

(0 —w-A+i0") (0w —w+i0")

(13)

and the total Green’s function is
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G(t—¢) ift<Oandf' <0
Gy ift>0and s <0

é(t—t') ift>0andt >0

G(tt')= (14)

0 otherwise,

where 0" is a positive infinitesimal number, G’(w) is the
Fourier transform of steady-state retarded Green’s function
G'(t-1'), and G"(w) is the Fourier transform of the equilib-
rium retarded Green’s function G'(1—1'). In the following, all
tilded functions refer to equilibrium situation (zero bias) and
all barred functions refer to steady state situations (finite
bias). By setting /=0, one can readily check that the above
solution satisfies G’(0,¢')=G"(0—1'), and by setting ¢’ =0,
that G'(7,0)=G"(¢—0). These are the correct limits since for
times <0, the system is in a nonequilibrium steady state
under bias A, while after =0, the system is in equilibrium
without any bias voltage.

To go further and for lack of space, we refer interested
readers to Ref. 22 for explicit expressions of the NEGFs,

G'(t—t') and G=(z,1'). Here, we point out that all the Green
functions are calculated??>?* via a Green-function-like quan-
tity defined as

l/

A1) = JI dt" explie(t - t')]exp|:— if dTA(T)]Gr(Z,l').

The use of the function A ,(€,7) simplifies the derivations and
its explicit expressions for a downward-step pulse are

A ler<0)= G'(e+ A,

dw e—l(w—e)tGr(w)
2mw—€e—A,—i0"

A,
x| —a _
|:w—e—i0++(AC %ABYaﬂ(w,e)>

XC_}’(6+AQ):|, (15)

A et>0)= G’(e)+f

with

() = Sh(e+ A, — Ap)
w — G—Aa+ABt 10+ ’

Yoplo,€) = (16)

where the sign of the infinitesimal imaginary part 0" can be
arbitrarily chosen or the i0* discarded altogether.??

Finally, we rewrite the analytical expression [Eq. (8)] for
the current fluctuations in the following form, which will be
used for numerical computation in the next section of the

paper:
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2
F (1) =Tr{—2Re<f dnG'(t,6)25 (t1,0) + G<(t,t1)22(tl,z)) + G>(t,t){f dt, f dt[2i Im(3] (1,1))G'(t1,12) 2 (£2,1))

+20(6,1)G~(t1,6) 2 (t,1)] +E<(t,t)} + G<(t,t){f dt, f dt[2i Im(2] (1,1,) G (t1,15) 31 (£5,1)

=37 (1,1) G (1,1) 27 (tp,0)) + 2 (1,1) G~ (11,1) 27 (t5,0) + 20 Im(Z (1, 1)) G (1, 1) 27 (1, 1)) ] + 2>(¢J)] } ) (17)

where all the greater Green’s functions are substituted with
the equivalent expression,

G~ (t),1) = G=(t),15) + G'(11,1,) = G“(1,1,). (18)

One can check that Eq. (17) is exactly equivalent to Eq. (8).
Equation (17) is the main result of this work. With this pre-
liminary work, we can calculate Eq. (17) at zero-temperature
term by term. These are tedious calculations and we present
a detailed derivation of the first term in Appendix. The final
expressions for other terms are also listed there.

III. NUMERICAL RESULTS

In the following, we apply the exact analytical expression
[Eq. (17)] to a two-probe system where the scattering region
has a single energy level ¢,. The electronic structure of the
device leads is assumed to have a Lorentzian line shape,?

r,w?

Fa(e)_ 62+W2, (19)
where W is the bandwidth and I',, the linewidth amplitude of
lead a. The equilibrium and steady-state Green’s functions
for this model have been solved exactly in Ref. 22 and are
substituted into Eq. (17) to calculate the current fluctuations
driven by the step-down pulse. In the following numerical
evaluation of Eq. (17), the energy level ¢, is set to zero. The
time is measured in units of #/T", where I'=X_I",,, the cur-
rent in units of el'/#, and the energy in units of I". Also, all
results shown here are for the left lead, and we shall hence-
forth omit the L subscript. Experimentally, Fujisawa et al.>
achieved I'~1-5 ueV. Gabelli et al.'” further showed that
I' can be experimentally controlled by a gate potential.
Therefore, assuming I'~1 weV in a real experimental de-
vice, the time scale in our results corresponds to a frequency
of ~1.5 GHz which is achievable experimentally.

In Fig. 1, we plot the current fluctuations F(¢) versus time
t for several values of the bandwidth W when the Fermi level
of the leads E aligns with the resonant level €,. This is the
on-resonance situation. The external bias is chosen to be
10T". For times <0, the system is in a steady state biased by
a voltage A, and the fluctuation is a time-independent con-
stant. When the bias is abruptly turned off at =0, F(z) de-
creases abruptly to its minimum and then gradually goes
back to another constant for >0 which corresponds to fluc-
tuations at equilibrium. As one expects, we find that a larger
bandwidth W gives rise to larger steady-state fluctuations

F(t<0) (see main figure in Fig. 1). This is understandable
because a larger bandwidth corresponds to a higher number
of Bloch electrons incoming from the leads and traversing
the scattering region. The depth of the dip in F(¢) immedi-
ately after r=0 is found to be roughly proportional to W and
rather insensitive to A (see Fig. 2 below). The inset of Fig. 1
shows the time-dependent current I(z) for different values of
W. The current decays from a finite initial value /, to zero at
large times. For small bandwidths W, the instantaneous cur-
rent I(¢) can increase following the step-down pulse at r=0.
This peculiar behavior is truly a finite-bandwidth effect as
discussed before.??3!

In Fig. 2, we plot the current fluctuations F(r) versus time
t for several different bias step heights A with bandwidth
W=5T". Once again, for <0 and 7> 0, fluctuations take con-
stant values corresponding to those in steady state and at
equilibrium, respectively. For a nonequilibrium steady state,
the bias dependence of shot noise has been discussed in Ref.
32 where it has been shown that a finite bias can suppress
shot noise in steady state. Although F(z) is not directly shot
noise, its behavior in Fig. 2 shows a similar suppression for
t<0 compared with that for > 0. The inset of Fig. 2 dis-
plays the time-dependent current /() for several values of A.

Off-resonance time-dependent current fluctuations (Eg
# €) also display interesting features. In Fig. 3, we plot F(¢)

i T T T T T T T T T T ]
s
-l
- - | | | B
Lo T 1 1 |
! 02k |
101~ § i — w=2sT | |
- s Ww=5T
< o So1sf —— W=IST [+ ]
©os- L2 B - w=loor| | |
5 PoE [
oL B0y 4 ]
g | =} S
g O Fo% J
S 6 . .
g 0.05 % |
= [ : 4
= L S |
4= 0 T SR R —
0 05 1 15 2
[ Time (/T 9
2 ':/, ————————————————————————————— -
v
OO ]
bt 71T
0 0.4 038 12 1.6 2
Time (/T

FIG. 1. On-resonance current fluctuations F(¢) versus time ¢ for
several values of the bandwidth W. The inset shows the correspond-
ing current /(¢) versus . The bias A is set to 10I".
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Time (/1)

FIG. 2. On-resonance current fluctuations F(¢) versus time ¢ for
several values of the bias A. The inset shows the corresponding
current /() versus t. The bandwidth W is set to 51"

versus ¢ for several values of W when Ep—e€,=-2I", for the
same bias A=10I". The time-dependent current 1(¢) is plotted
in the inset where it can dip to negative values after the
voltage is turned off but eventually approaches zero for 7
>0. Such a negative current following a voltage pulse has
also been found before.?>3! The fluctuation F(¢) has more
features than for the on-resonance case. This is more clearly
shown in Fig. 4 for different values of A. In particular, F(z)
dips to small values immediately after =0, and then it rises
to a maximum value before decaying to the equilibrium
limit. The inset of Fig. 4 shows the corresponding behavior
of the current /(). Finally, we comment that the sharp dips
immediately after time =0 in Figs. 1-3 come from the fact
that the bias voltage is sharply turned off at =0 in a step-

] T ] T ] T ] T ] T
T T T T
2 _
1 T T T T
! 02 ‘ ‘ ‘ m
1
L i 4
'~
oo S
= G
AR R -1 B
2 1 g
= 1
B =
£ 3
=1 L 4
=1
51
2
=~
41— -
:---I,,—"'“““"'"“““‘“""“""":
u
'
0 ﬁ;;—r_*i 1 1 1 1 T T T

0 0.4 0.8 12 1.6 2
Time (/T

FIG. 3. Off-resonance current fluctuations F(¢) versus time ¢ for
several values of the bandwidth W. The inset shows the correspond-
ing current /() versus z. The bias A is set to 10T
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=
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= i E
L o = B
[ Q
i
i
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I
1
- 1 —
| . | . | . | .
0 1 2 3 4
Time (A/T)

FIG. 4. Off-resonance current fluctuations F(¢) versus time ¢ for
several values of the bias A. The inset shows the corresponding
current /(¢) versus ¢. The bandwidth W is set to 5T".

function-like manner, i.e., Eq. (2). As explained in Sec. II,
such a sharp steplike turning off assigns an upper frequency
limit of tens of terahertz. The main features of our results,
including the dips of the correlators, are in the gigahertz
range using realistic experimental parameters as discussed
above. Therefore, these dips are real features of the electron
dynamics for the sharp bias turning off.

To observe the time dependence of F(r) more clearly, we
subtract the equilibrium fluctuations and define SF(z)
=—[F(t)-F()]. In Fig. 5, we plot 8F(f) on a logarithmic
scale versus ¢ for the on-resonance parameters of Fig. 1. This
plot shows that the time dependence of F(¢) under a down-
step pulse is not a simple exponential. A closer examination
of the analytical expressions for F(¢) (see Appendix) reveals

10 T

L1

(=]
=
T T T TTTT,”
Y
;
;
e
; P
I
W
=

T
. . . 22,2
Difference in Fluctuation (e T /%)

N 7 04 08 12 16 2
e N Time (#/T) ]

Difference in Fluctuation (¢’ T*/A°)

0 0.05 0.1 0.15 0.2
Time (W/T)

FIG. 5. Logarithmic-scale plot of &F(t)=-[F(t)-F(x)] for
short times after turn off. The inset shows the behavior at larger
times. The bias A is set to 10T".
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that the decay time is related to the parameters I" and W but
not in a simple form. Generally, a wider bandwidth W gives
a narrower peak in log 8F(¢) near t=0, which implies a
shorter relaxation time. This result is consistent with the
turnoff time of the current /(¢) itself.?> From the inset of Fig.
1, it is clear that the turnoff time is reduced with increasing
w.

Since our calculation is carried out at zero temperature,
the only source of fluctuation must be the quantum shot
noise coming from the quasiparticle dynamics in the trans-
port current /(). When there is no time-dependent field, in
our problem, the quasiparticles are simply noninteracting
electrons. As discussed in Introduction, quasiparticles with
charges e/3 and 2e have been measured in the v=1/3 frac-
tional quantum Hall state’ and in superconducting tunnel
junctions,® respectively. In the present problem, electrons are
pushed to move forward by a bias voltage that is suddenly
turned off at r=0. Such a time-dependent external field
causes electrons to move in complicated time-dependent
manner. If we consider the electrons as being “dressed” by a
time-dependent potential, we may be able to analyze our
fully quantum-mechanical result for current fluctuations in
terms of an ideal classical Poissonian random process of
quasiparticles flowing under the step-down voltage. In the
following, we attempt such an interesting analysis.

For a homogeneous classical Poissonian random process
X, we can write its average as’>>

<X>=>\jd(7), (20)

and its fluctuation as

(o%) =\ f dh*(7), (21)

where 7 is the time parameter. Here, we may consider A(7) to
be the particle current contributed by one event, i.e., one
particle going through the device. For our time-dependent
problem, it is convenient to consider the probability param-
eter A in the above equation as a function of time A=A(z),
such that (X) and (0'}2(> both become functions of ¢.

Next, we model the event h(z) with a square function of
constant height # and width 7,. Namely, in the classical Pois-
sonian process, there are many square-shaped ‘“particles”
randomly traversing the device. Later, we will see that we do
not need 7, for any practical purposes, but we do need to
specify the parameter 4. Having fixed the particle current
with the parameter % this way, we attach to each particle an
effective charge x() (in units of the bare charge ¢) so as to
obtain a charge current. Therefore, we replace (7) in Egs.
(20) and (21) with x(¢)h(7). Again, x(z) represents the effec-
tive charge of the quasiparticles in the time-dependent cur-
rent at time ¢, and we wish to fit this classical Poissonian
process to the full quantum results presented in Figs. 1 and 2
to determine x(¢). The output of this analysis can be thought
of as a time-dependent version of the Fano factor.>*
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FIG. 6. Effective carrier charge x(r) versus ¢ at several band-
widths W for A=10I". The sharp peak at =0 is cut off for clarity. In
particular, x(0) reaches a value of 11 for W=100TI". The inset shows
x(t) for several biases A with W=5TI".

The parameter & is determined by fitting our quantum
result for the steady state (r<<0). In particular, we replace
x(t) with the Fano factor u, and from Egs. (20) and (21), we
obtain

— = puh. (22)

The Fano factor u can be interpreted as the effective charge
and it has been calculated in steady state’’ from the trans-
mission coefficient. Here, {I) is the average steady-state
current obtained from our quantum analysis above, i.e., the
values of the current at t=07 in the insets of Figs. 1 and 2.
The quantity o2 is just 6F(t)=-[F(t)— F(«)] defined above
for +<<0 (in Fig. 5, we plot &F at =0). Fitting these expres-
sions yields the parameter /.
Next, for finite times >0, Eq. (22) is changed to

()
_<I(t)> =x(t)h. (23)
We therefore obtain x(7) as
_ @)
x(1) = i)’ (24)

where x(¢) describes the effective charge of dressed particles
in the time-dependent current considered as a classical Pois-
sonian random process. Namely, if the classical particles
have charge x(), then the classical fluctuations equal to the
corresponding quantum result.

In Fig. 6, we plot the effective charge x(r) versus ¢ for
different values of the bandwidth W. The inset shows x(¢) as
a function of ¢ for different values of the bias A. The param-
eters are chosen to be the same as in Fig. 1. For r<0, the
effective charge x(7) is just the steady-state Fano factor’? as
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described above. At =0, x(¢) has a sudden jump, well cor-
related with the current fluctuations F(r) (see Fig. 1). This
drastic increase of x(f) can be understood as follows: classi-
cally, the charged particles “bunch up” at the moment when
the bias is turned off. For t>0, i.e., when ¢ is of several tens
of /T", we have checked that x(r) approaches zero which is
the equilibrium Fano factor for resonant transmission®> (not
shown in Fig. 6). For finite times 7, x(¢) has a rather smooth
but nonmonotonic time dependence.

IV. SUMMARY

We have derived an exact formula for analyzing current
fluctuations in the transient regime for two-probe systems
when the time-dependent current itself is driven by a bias
voltage that is suddenly turned off. Our theory is valid for
arbitrary noninteracting mesoscopic phase-coherent devices
connected to arbitrary noninteracting external leads, in the
far from equilibrium, nonlinear response regime. Our main
result, Eq. (17), is the analytical solution of the time-
dependent current fluctuations in the transient regime. Impor-
tantly, our theory does not rely on the commonly used wide-
band approximation which neglects the electronic structure
of the leads. As such, the exact formula [Eq. (17)] can be
applied to realistic systems where the electronic structure of
both leads and scattering region needs to be taken into ac-
count. This is especially useful as first principles methods for
calculating equilibrium, and steady-state Green’s functions
are now available3®3” for two-probe nanoelectronic devices.
Therefore, our theory presented in this work can be applied,
in principle, to analyze transient current-current correlations
of realistic device structures including microscopic details of
the system.

An application of the exact result [Eq. (17)] to a two-
probe transport junction, where the leads have a Lorentzian
linewidth shape, reveals interesting time dependence in the
current fluctuations. Most notable is that when the bias volt-
age is abruptly turned off, the fluctuations do not follow a
simple monotonic relaxation from their steady-state value at
times <0 to their equilibrium value at #>0. Rather, the
fluctuations follow more complicated dynamics character-
ized by a very sharp dip immediately after =0 before the
eventual relaxation toward #>0. The detailed relaxation dy-
namics are also dependent on various factors such as whether
or not transport is on resonance, the bandwidth W in the
leads, and the initial bias A. For the on-resonance case, we
found that it is possible to interpret the transient quantum
current fluctuations in terms of a classical random Poissonian
process if the effective carrier charge in the classical current
is a function of time.
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APPENDIX

In this Appendix, we present a detailed derivation of the
final expression of the first term in Eq. (17). Other terms can
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be obtained in the same manner. The first term of Eq. (17) is
the following integral:

f dnG (6,125 (1,0 + G=(1,1)25(t.1). (A1)

—00

We are interested in times # > 0 after the bias is turned off.
Using Eq. (11) for X<, the first integral in expression (A1)
becomes

f dt,G'(t,1)2 7 (1,1)

-0

0 - Er de .
:j dth(t’tl)f _l.e_e(tl_t)e_lA,I‘L(f)
o o 2T

© Er de
+f dth(t—tl)f —ie™ 7T, (e), (A2)
0 o 2T

where é’(t,tl) is the Green function for >0 and 7, <0, as
defined in Eq. (13). It is a part of the total Green’s function

[Eq. (14)]. Since the equilibrium Green’s function G'(¢—1')

and steady-state Green’s function G’(r—f') have time-
translational invariance, they can be Fourier transformed,

Glt—t)= f ‘Zl—we-iw@-”é(w). (A3)

The first term on the right-hand side of Eq. (A2) becomes

0 - Er de .
f dth(t,tl)f _ie_e(tl_t)e_lAtFL(G)
—0 2

—oo

0 Er de [ do ~ , ‘
:J mJ._Ef_EWWMH&k4WWAw&MI
e w27 ) 2w

j f d(l) d(l)l
+ dt,
27 27

Xe[(wl—e—A)t|e—i(w—e)t

o Gr(w)Gr(wl)rL(f)

AGH(w, - A) - 31 (w) )
—w-A+i0")(w;—w+i0") /)’
(Ad)

x( Ac
+
w-w, —i0" (o

The #; integration on the right-hand side can be carried out to
give

i(w—e—A-i0")

and

1
i(w, — e=A—i0%)’

for the two terms of Eq. (A4), respectively. Therefore, the
first term of Eq. (A4) becomes
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—i(w—e)t
f f —zG (w)FL<e>%

, AS
A—-i0* (45)

which cannot be simplified further if the Green function
G’(w) and linewidth function I';(€) are left unspecified. In
the numerical example of Sec. III, the equilibrium Green’s

function G’(w) is known exactly in closed form*3! for the
linewidth function I';(€) in Eq. (19), hence Eq. (A5) can be
calculated explicitly.

After the 7, integral, the second term in Eq. (A4) reads

—i(w—e)t

dodo, JEF de iG'(0)G"(w)l,

27 2mi) . 27i(w) — €e— A —i0%)

X( A, AGHw-8)-Sw) )
w-w —-i0" (0,-0-A+i0") (w0 —w+i0")/

The w, integration can be carried out by contour integration
in the upper half-plane where there are no unknown poles in
w;. By the residue theorem, the last expression becomes

do (7 de ~ o
f J —G'(w)G'(6+A)FL(6)e i(w-e)t

X{ A AGKY-Siw) ]
w-€-A-i0" (e—w+i0")(e+A-w+i0")
(A6)

Again, this expression cannot be simplified further without

PHYSICAL REVIEW B 77, 075302 (2008)

the knowledge of the equilibrium Green’s function G and
the linewidth function I';. This completes the calculation of
the first term of Eq. (A2).

We now calculate the second term of Eq. (A2). In this
case, integration over f; generates —1/(w—e+i0%) and the
second term of Eq. (A2) becomes

f f Fde ey —Gr(w)FL(f) (A7)

" 277 (w—€e+i0%) "

Using the Plemejl formula 1/(w=i0")=P(l/w) ¥ imdw),
this last expression becomes

—i(w—e)t 0
f f _lGr((I))FL(E) d e +J j_;iér(f)FL(f),

(A8)

so that all the poles in the lower w half-plane are those of the
equilibrium Green’s function. No further simplifications can

be made in Eq. (A8) unless G’ and I'; are known. This com-
pletes the calculation of the second term in Eq. (A2). Sum-
ming up Egs. (A5), (A6), and (A8), we obtain the final result
for Eq. (A2),

AG' ()T (e)e™ "

Jdth’(t )2 (1,0 = f [G’(e)FL(e)+fd—w

27 (w—€—A-i0")(w— e—i0%)

+ f gﬁér(w)ér(e+ A)FL(e)e‘i(“"f)’(

N AS; (- Sy(w) )]
oe b0 (e i0Na—e-a-i07) ] 4

(w—€-

By a similar procedure, the second term of expression (A1) is found to be

EF ®
f At G (0,1 3%(10,0) = J S B AT (GO + [ & s

A ()T ()G (e+ AQ)EZ(w)

l(w—e

—A AT, (e)G“(e)E (w)

i(w1—€)t

d_wE ei(w—e)t
277,

€e+A,—w-A-i0*

+ S iA (€0 (e) f do do,_e

611
27 27 w — wy + i0F (@)

A, AE(E () - S4(e+ A, -Ap) <
X[ +<AC Eﬁ w—€e=-A,+Ag*i0" ) +A)] (@)

w—€e+i0*

(A10)

Finally, summing up expressions (A9) and (A10), we obtain the final result for expression (Al). In practical calculations, we
first evaluate the equilibrium (tilded) and steady-state (barred) quantities of the two-probe device. These quantities are then
inserted into Egs. (A9) and (A10), so that together with Eq. (15), the first term of Eq. (17) can be obtained.

For the sake of completeness, in the following, we give explicit expressions for the remaining terms in Eq. (17). These are

derived following the procedure presented above. We have
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f dt,G'(1,1)) %7 (1,,1)

_{ dodo, A" (0)3](0)
- 27 27 (0 — w— A —i0")(w, — w—i0")

A
f—G'(w) Si(w) + j ’(’”2_ "G ()G (w, + AT (wz){—cdr
w-—w,—A-i0
M) = Silwn) ] "
(wy— 0+ i0%)(wy + A — 0 +i0%)
f dtd, % (1,6)) G (11, 1,) 24 (1, 1)
— %@ i wz—wl)tzr( )< Gr(wZ + A)+ _ Gr(wl) ' +) ~a(w2)
i 2 w—wr— 0" ) —w+i0
doydoydo  Sj(0)G(@I[(@) o,
271 27i 27 (0 — w; — i0%) (0 — wy — A — i0F)
o[ et S0 000 0T 0 A)[ A A -Si)
271 27 27 w-w —i0" w-—wy—A—-i0" (wy—w+i0")(w,+ A - w+i0")
(A12)
f dnydy 37 (,0) G (11,1) 2 (1,1)
brde| [ doy (G(w +4) G'(wy) )~
— == i(wy)—wy) 2 1 T
J_w 277|if 27nle i) —i0* w; — w, +i0* (e
ﬂd_&) iz(wl)ér(w)fL(E) eileor 4 f ﬂd_wei(e—an)tiz(w])fL(f)ér(w)ér(f+ A) ( A
2727 (w—w; —i0")(w—e—A-i0") 27i 27 w=-w, —i0" w-€e—A-i0*
NG
(S0~ Siiw) )} )
(e—w+i0%)(e+A - w+i0%)
J dt dt, 2 (1,1))G=(t,,1,) 25 (1,1)
) fEF de f do, dow, z<w2—w1>r2 SH(@)G (e + A )T (G (e + A )S“(wz) it f do, do,
o 2T 2 2771 (w0, +A-€e-A,-i0"(e+A,- w, — 0") 2ri 2
i S(0)G (T (G (e + AT} (w)) do, < 21(G (T (G (e + AN (w) ;-
_ lez(wz w])tE + =2, et(w2 €)t
= (0 —€e-i0"(e+ A, — 0wy, — A —i0%) 2 €e+A,— w,— A-i0"

) f&&d_wiz ()G (@) [ A, ( L3 A ySpw) - zg(e+Aa—AB)))5,(E+ Aa)]

2mi 2w 2w <, w—e—A,—i0" w—e—i0" w—€-A,+ A+ i0"

L (G e+ A,) S wye' @t do,dw, . ) EL(wl)G’(e)F (e)G”(e)E (w,)
o (w; — €+ i0%)(e — w, + i0%)

+
0 —w+i0" e+A,—w,—A-i0" 271 2770

f 00 40 3 0y S0)G (0)F o0, I G T ()

2qri 2mi 2ai <, (w—€e-A,—i0") (w0, — o+ i0%)(e - w, +i0%)
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S ()G (T () GUQ)F(Q, 3 (wy)
(w; — e+ i0M)(Q-€e-A,+i0)(Q - wy +i0%)

_ f ﬂﬁﬁl; ei(wz—wl)t
271 271 277

o

S (wy) GUQ)FL(Q, )
(Q =, +i0H(Q-—e-A,+i0") |’

f do, dw, dQ do

S5 ()G (@) F o w, €)' @20
A . I' (e
2ari 2711 2711 2770

Al4
(w; — 0+ i0)(w—€-A,—i0") (AL14)

o

where we have defined

() = S(e+ Ay~ Ap)
w—€e=A,+Ag* 0"

Fa(w,e)5%+<Ac—EAB )(_;r(6+Aa).

w-€e—i0 B

Although expressions (A9)—(A14) appear to be very complicated, the right-hand side of these expressions involves only
steady-state (barred) or equilibrium (tilded) quantities. Therefore, for any given two-probe device, these quantities can be
calculated first from a conventional dc transport analysis and then inserted into expressions (A9)—(A14) for the analysis of
transient current-current correlations given by Eq. (17). Equilibrium and steady-state Green’s functions and self-energies can
be calculated from well-developed first principles methods*®37 that include all atomistic degrees of freedom. The theory
presented in this work can be therefore used, in principle, to analyze transient current-current correlations in realistic device

structures including microscopic details of the system.

*Present address: Department of Physics, Stanford University, Stan-

ford, CA 94305-4045, USA.
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