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We study the t-J-V model beyond mean field level at finite doping on the triangular lattice. The Coulomb
repulsion V between nearest neighbors brings the system to a charge ordered state for V larger than a critical
value Vc. One-particle spectral properties such as self-energy, spectral functions, and the quasiparticle weight
are studied near and far from the charge ordered phase. When the system approaches the charge ordered state,
charge fluctuations become soft and they strongly influence the system leading to incoherent one-particle
excitations. Possible implications for cobaltates are given.
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I. INTRODUCTION

Strongly correlated electronic systems continue to be at
the center of interest in condensed matter, the t-J model be-
ing a paradigm for theoretical studies. Since the early days of
high-Tc superconductivity the t-J model on the triangular
lattice attracted a great deal of attention, since it was be-
lieved to be a candidate for realizing the resonating valence
bond scenario.1

Recently, the interest about electronic correlations on a
two-dimensional triangular lattice received a new motiva-
tion. Since superconductivity was discovered in hydrated
cobaltates2 �NaxCoO2·yH2O� an enormous amount of atten-
tion has been focused on this system. Cobaltates are
3d-electron systems having a quasi-two-dimensional struc-
ture of CoO2 layers, where the Co ions are located on a
triangular lattice. The interplay between electronic correla-
tions and the proximity to a charge density wave were pro-
posed recently as important ingredients for describing super-
conductivity in such materials.3–6 This proposal was
motivated by various experimental reports which suggest the
proximity of the system to charge ordering.7–9 A minimal
model for strongly correlated electronic systems close to
charge ordering is the t-J-V model on the triangular lattice,
where V is the Coulomb interaction between nearest neigh-
bor sites. The parameter V is responsible for triggering the
charge order instability.

In this paper we concentrate on the consequences of the
proximity to charge ordering on one-particle spectral proper-
ties. For this study we use a recently developed large-N
approach10,11 that leads to a systematic treatment of fluctua-
tions beyond the mean-field level, allowing thus the calcula-
tion of the self-energy. Related expansions were used in the
past in the frame of a slave boson formulation for the t-J
model.12 However, due to the gauge fields inherent to slave
bosons, such an expansion cannot be performed in a system-
atic way.13 Our formalism is based on X operators that do not
introduce gauge fields, such that the present treatment is free
of the above mentioned difficulties. In general, large-N ex-
pansions give preference to one kind of fluctuations over
others. In our case, the 1 /N expansion �with the same N
=� limit as in slave bosons� gives preference to charge fluc-

tuations over magnetic ones. Therefore, it fails to describe
the limit of zero doping of an antiferromagnet on a square
lattice, where antiferromagnetic long-range order should be
present, a difficulty that is shared also by the U�1� slave
boson formulation.13 However, in the present case we focus
on rather high doping ��30% � on a frustrated lattice, such
that, in fact, charge fluctuations are the dominant factor. For
the square lattice, as discussed in Ref. 11, our method is
better for large doping, corresponding to the overdoped re-
gion of high-Tc cuprates.

Our results show how, starting from an already reduced
value by correlation effects, the quasiparticle weight van-
ishes on approaching the charge ordering instability, leading
to a redistribution of the one-particle spectral weight. Fur-
thermore, the soft charge modes responsible for the phenom-
ena above are identified.

The paper is organized as follows. In Sec. II, a summary
of the formalism and details of the self-energy calculation
are given. In Sec. III, the charge instability is studied. In Sec.
IV, results on one-particle spectral properties �self-energy,
quasiparticle weight, and spectral functions� are presented. In
Sec. V, possible implications for cobaltates are discussed.
Section VI presents conclusion and discussions.

II. MODEL AND THE THEORETICAL FRAMEWORK

The t-J-V model on the triangular lattice is given by

H = − t �
�ij�,�

�c̃i�
† c̃j� + H.c.� + J�

�ij�
�S� iS� j −

1

4
ninj� + V�

�ij�
ninj ,

�1�

where t, J, and V are the hopping, the exchange interaction,
and the Coulomb repulsion, respectively, between nearest-
neighbor sites denoted by �ij�. c̃i�

† and c̃i� are the fermionic
creation and destruction operators, respectively, under the
constraint that double occupancy is excluded, and ni is the
corresponding density operator at site i.

As described in Ref. 6 the Hamiltonian �1� can be written
in terms of Hubbard operators14 as
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H = −
t

N
�

�ij�,p
�X̂i

p0X̂j
0p + H.c.� +

J

2N
�

�ij�;pp�

�X̂i
pp�X̂j

p�p

− X̂i
ppX̂j

p�p�� +
V

N
�

�ij�;pp�

X̂i
ppX̂j

p�p� − ��
i,p

X̂i
pp, �2�

where, in addition, in order to perform a large-N expansion,
the spin index � was extended to a new index p running
from 1 to N. In order to obtain a finite theory in the N-infinite
limit, we rescaled t, J, and V as t /N, J /N, and V /N, respec-
tively. We included in Eq. �2� the chemical potential �. The

operators X̂pp� are bosonlike while X̂0p and X̂p0 are
fermionlike.14

In Ref. 6 the large-N formalism was described in detail
and here a short summary is presented which will be useful
for the calculation of the self-energy and the spectral func-
tion. The Feynman rules of the method are summarized in
Fig. 1.

To leading order in 1 /N, we associate with the
N-component fermion field fp a propagator connecting two
generic components p and p� �solid line in Fig. 1�

Gpp�
�0� �k,�n� = −

�pp�

i�n − Ek
, �3�

which is of O�1� and where Ek is

Ek = − 2�tr0 + ���cos kx + 2 cos
kx

2
cos

	3

2
ky� − � . �4�

k and �n are the momentum and the fermionic Matsubara
frequency of the fermionic field, respectively. The fermion
variables f ip are proportional to the X̂ operators �f ip

= 1
	Nr0

X̂i
0p� and are not associated with the spinons from the

slave boson approach.
The mean-field values r0 and � must be determined by

minimizing the leading order theory. From the completeness
condition,6 X̂00+�pX̂pp= N

2 , r0 is equal to x /2 where x is the
doping away from half-filling. On the other hand, the expres-
sion for � is

� =
J

2Ns

1

3�
k�

cos�k��nF�Ek� , �5�

where nF is the Fermi function and Ns is the number of
lattice sites. For a given doping x, � and � must be deter-
mined self-consistently from �1−x�= 2

Ns
�knF�Ek� and Eq. �5�.

k� is the protection of k over the different bond directions
�1= �1,0�, �2= � 1

2 ,
	3
2

�, and �3= �− 1
2 ,

	3
2

� of the triangular lat-
tice.

We associate with the eight-component boson field �Xa

= ��R ,�	 ,r�1 ,r�2 ,r�3 ,A�1 ,A�2 ,A�3�, the inverse of the
propagator, connecting two generic components a and b
�dashed line in Fig. 1�,

D�0�ab
−1 �q,
n� = N


�q x/2 0 0 0 0 0 0

x/2 0 0 0 0 0 0 0

0 0
4

J
�2 0 0 0 0 0

0 0 0
4

J
�2 0 0 0 0

0 0 0 0
4

J
�2 0 0 0

0 0 0 0 0
4

J
�2 0 0

0 0 0 0 0 0
4

J
�2 0

0 0 0 0 0 0 0
4

J
�2

� , �6�

where �q= �2V−J��x /2�2�� cos k�,15 and the indices a and b
run from 1 to 8. q and 
n are the momentum and the Bose
Matsubara frequency of the boson field, respectively.

The first component �R of the �Xa field is connected with

charge fluctuations via X̂i
00=Nr0�1+�Ri�, where X̂i

00 is the
Hubbard operator associated with the number of vacancies at

site i. �	 is the fluctuation of the Lagrange multiplier 	i
associated with the completeness condition. ri

� and Ai
� corre-

spond, respectively, to the amplitude and the phase fluctua-
tion of the bond variable �i

�=��1+ri
�+ iAi

��.
Fermions fp interact with the boson �Xa via three and four

leg vertices, namely, �a
pp� and �ab

pp�, respectively. The explicit
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expressions for these vertices can be found in Ref. 6.
Each vertex conserves momentum and energy and they

are of O�1�. In each diagram there is a minus sign for each
fermion loop and a topological factor.

The bare boson propagator D�0�ab �the inverse of Eq. �6�

is O�1 /N�. From the Dyson equation, Dab

−1=D�0�ab
−1 −
ab, the

dressed components Dab �double dashed line in Fig. 1�b�
 of
the boson propagator can be found after the evaluation of the
8�8 boson self-energy matrix 
ab. Using the Feynman
rules, 
ab can be evaluated through the diagrams of Fig. 1�b�
as shown in Ref. 6.

This formalism is used here for calculating self-energies
and one-particle spectral functions.11 The Green’s function
�3� corresponds to the N-infinite propagator which includes
no dynamical corrections; these appear at higher order in the
1 /N expansion. Using the Feynman rules, the total self-
energy in O�1 /N� is obtained adding the contribution of the
two diagrams shown in Fig. 1�c�.

After performing the Matsubara sum and the analytical
continuation i�n=�+ i�, the imaginary part of � is

Im ��k,�� =
1

2Ns
�
q

ha�k,q,� − Ek−q�Bab�q,�

− Ek−q�hb�k,q,� − Ek−q��nF�− Ek−q� + nB��

− Ek−q�
 , �7�

where nB is the Bose factor, Bab is

Bab�q,
� = − 2lim
�→0

Im�Dab�q,i
n → 
 + i��
 , �8�

and the eight-component vector16 ha�k ,q ,
� is

ha�k,q,
� = �2Ek−q + 
 + 2�

2
+ 2��

�

cos�k� −
q�

2
�cos�q�

2
� ;1;− 2� cos�k�1

−
q�1

2
� ;− 2� cos�k�2

−
q�2

2
� ;

− 2� cos�k�3
−

q�3

2
� ;2� sin�k�1

−
q�1

2
� ;2� sin�k�2

−
q�2

2
� ;2� sin�k�3

−
q�3

2
�� . �9�

It is interesting to show Im � expliciting the terms BRR, B	R,
and B		 as follows:

Im ��k,�� =
1

2Ns
�
q

��2BRR�q,� − Ek−q� + 2�B	R�q,�

− Ek−q� + B		�q,� − Ek−q���nF�− Ek−q� + nB��

− Ek−q�
 + f�k,�� , �10�

where �= �Ek−q+�+2�� /2+2��� cos�k�−q� /2�cos�q� /2�.
In the function f�k ,�� the other terms of Eq. �7� have been
included. After performing numerical calculations for the pa-
rameters used in the present paper, f�k ,�� results at least an
order of magnitude lower than the other terms of Eq. �10�.

Using the Kramers-Kronig relations, Re ��k ,�� can be
determined from Im ��k ,�� �Eq. �7�
 and the spectral func-
tion A�k ,��=− 1

� Im G�k ,�� can be computed as

A�k,�� = −
1

�

Im ��k,��
�� − Ek − Re ��k,��
2 + �Im ��k,��
2 .

�11�

Notice that the self-energy is calculated using the propa-
gator G�k ,�� for the X operators, which are proportional to
the fermionic f operators, which cannot be related to usual
fermions.

III. CHARGE DENSITY WAVE INSTABILITIES

The inclusion of a nearest neighbors Coulomb repulsion V
favors a charge density wave �CDW� state. In this section we
will discuss the charge instability6 which will be of interest
for analyzing self-energy corrections.

The charge-charge correlation function �ij
c can be written

as10,17

a) Propagators and vertices

b)

c)

G =
(0)

D =
(0)

Λ =
a

p

p’

q,νn

k,ωn

k’,ωn’
Λ =

a p

p’

k,ωn

k’,ωn’
b

q,νn

q’,νn’

+

Σ Σ Σ= + =
(1) (2)

+

a

pp’

pp’ ab

a b

pp’

ab

Π =ab

D =
-1

= [D ] -
(0) -1 Π( )

-1

ab

p p’

ab ab

FIG. 1. Summary of the Feynman rules. �a� Solid lines represent
the propagator G�0� �Eq. �3�
. Dashed lines represent the 8�8 bo-
son propagator D�0� �Eq. �6�
 for the eight-component field �Xa.

�a
pp� and �ab

pp� represent the interaction between two fermions fp

and one or two bosons �Xa, respectively. �b� Irreducible boson self-
energy 
ab. Double dashed lines correspond to dressed boson
propagators. �c� Contributions to the electron self-energy ��k ,�� in
O�1 /N�.
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�ij
c ��� =

1

N
�
pq

�T�Xi
pp���Xj

qq�0�� . �12�

Using the completeness condition and the relation be-

tween X̂i
00 and �Ri �X̂00=Nr0�1+�Ri�
, in Fourier space,

�c�q,�� = − N� x

2
�2

DRR�q,�� . �13�

Then, in our formulation, the charge correlation function is
proportional to the component �1,1� �also called DRR� of the
dressed boson propagator Dab.

The divergence of the static charge susceptibility �13�
marks the onset for the CDW instability. For the triangular
lattice the charge susceptibility diverges at Q= �4 /3� ,0� for
V=Vc. This new phase is called 	3�	3 CDW.3,5,6 In what
follows all energies �V, J, etc.� are given in units of t.

Figure 2 shows the phase diagram in the Vc-x plane at
temperature T=0. As in Ref. 6, we will use J=0.2. The dif-
ferent phases are the homogeneous Fermi liquid �HFL�, the
	3�	3 CDW, the bond-order phase �BOP�, and a phase
separation �PS� region. However, in this paper we focus only
on the proximity to the HFL-CDW transition �see Ref. 6 for
details about the BOP and PS phases�. For the large doping
studied here results are very robust against different J values
as long as they are not considered to be unphysically large.
Only for unphysical large values J�1, the BOP and PS re-
gions approach the doping levels considered here. However,
for J�0.5, a value well beyond the physical ones in, e.g.,
cobaltates, the HFL and CDW phases are well defined be-
yond x�0.15.

Next, we study the charge dynamics on approaching the
	3�	3 CDW from the HFL. In Figs. 3 and 4 results for
Im �c�Q ,�� are presented for two commensurate doping val-
ues x=2 /3 and x=1 /3, respectively. The momentum was
fixed at Q= �4 /3� ,0�.

For x=2 /3 �Fig. 3� and for V=0 �solid line�, we clearly
see a collective peak at ��3.1t at the top of the particle-hole
continuum �inset�. With increasing V the collective peak be-
comes soft and accumulates spectral weight as shown for V
=2.0 �dotted line�, V=3.0 �dashed line�, and V=3.2 �dotted
dashed line�. At V=Vc�3.6, the collective peak reaches zero
frequency condensing a 	3�	3 CDW phase. Therefore, the
charge instability can clearly be seen as the softening of the
collective charge mode. For x=2 /3, charge dynamics is very
similar to the case of the square lattice at one quarter filling
where the softening of the charge mode was obtained and
discussed in the context of organic materials.18

For x=1 /3 �Fig. 4�, the situation is somewhat different.
For V=0 �solid line� the collective peak is located at �
�2.2t, above the particle-hole continuum. With increasing V
toward Vc�2.35, a transfer of spectral weight takes place
over a large energy range since the collective charge mode
spreads over the particle-hole continuum.

The reason for the different behavior between x=1 /3 and
x=2 /3 is due to the form of the particle-hole continuum for

0 0.1 0.2 0.3 0.4 0.5 0.6
doping x

0

1
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3

4

C
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C
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m

b
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l(

V
c

)
3 x 3 CDW

HFL

J = 0.2

B
O

P
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FIG. 2. Phase diagram in the Vc-x plane for J=0.2. The homo-
geneous Fermi liquid �HFL� is unstable against phase separation
�PS�, bond-order phase �BOP�, and the 	3�	3 CDW. BOP and PS
are discussed in Ref. 6 and are presented here only for a complete
description of the phase diagram. For a given doping x the static
charge susceptibility diverges at Vc where the onset to a 	3�	3
CDW occurs.
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V = 3.0
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0.3
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x = 2/3

FIG. 3. �Color online� Im �c�Q ,�� for x=2 /3, J=0.2 and for
different values of V approaching Vc�3.6. Q= �4� /3,0�, where the
static charge susceptibility diverges. For V=0, the collective charge
peak is formed at the top of the particle-hole continuum �inset�.
With increasing V the collective peak becomes soft and emerges
from the bottom of the continuum accumulating spectral weight.
For V=Vc�3.6 this soft collective peak reaches �=0 freezing the
	3�	3 CDW phase.
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FIG. 4. �Color online� Similar to Fig. 3 for x=1 /3 �Vc�2.35�.
Notice the different behavior with respect to x=2 /3 �see text�. In-
set: particle-hole continuum.
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each doping �insets in Figs. 3 and 4�. For x=2 /3 there is a
gap at low energy, since for x=2 /3 2kF�Q, and particle-
hole transitions are not possible for ��1. For V=0 the col-
lective peak is formed at the top of this continuum �Fig. 3
solid line�. When V increases, the collective peak softens
�Fig. 3� and for large V, near Vc, emerges from the con-
tinuum until it reaches �=0 exactly at Vc �see, for instance,
solid and dashed lines in Fig. 3�. In contrast, for x=1 /3 there
is no gap in the particle-hole continuum �inset Fig. 4�. When
the collective mode enters the particle-hole continuum, a
spread of spectral weight over a wide range takes place, and
for V approaching Vc, it emerges from the continuum as a
resonance.

Before closing the section, we present in Fig. 5 the T-V
phase diagram for x=1 /3 and x=2 /3. TCO is the temperature
for charge ordering. The obtained reentrant behavior of the
charge order transition was also predicted by several
calculations.19–23 Recently, it was proposed that a reentrant
behavior near charge order is necessary for describing
anomalous optical features in 1 /4-filling organic materials22

�see Sec. V for more details�.
In the next section, we will study self-energy corrections

approaching the 	3�	3 CDW phase and discuss the role
played by the soft modes mentioned above.

IV. ONE-PARTICLE PROPERTIES BEYOND MEAN-FIELD
LEVEL

A. Quasiparticle weight

The self-energy allows the calculation of the quasiparticle
�QP� weight Z=1 / �1− ��

��
� at the Fermi level. In Fig. 6, the

QP weight is plotted as a function of V for x=1 /3 �solid line�
and for x=2 /3 �dashed line�. The Fermi vectors are located
in the �-K direction of the Brillouin zone for both x=1 /3
and x=2 /3. As we will discuss below, our self-energy is very
isotropic on the Fermi surface �FS� such that Fig. 6 is repre-
sentative for all points on the FS. In both cases, when V
approaches the corresponding Vc, the QP weight decreases
suggesting that it tends to zero at Vc �see dotted arrows�.
Below, the analysis of spectral weight transfer at small en-
ergy will give additional support for this result.

The behavior presented in Fig. 6 indicates the breakdown
of the Fermi liquid �FL� at Vc. Therefore, our calculation

suggests a metal insulator transition where a rather isotropic
gap should exists for V�Vc. Our observation is based on the
fact that for V�Vc the QP weight Z is very isotropic on the
FS such that the FL breaks down for all points on the FS.

In both curves, when V increases the QP weight de-
creases, first relatively slowly, and then drops to zero close to
Vc. Therefore, near the CDW instability the QP carries very
small weight making the electronic dynamics very incoher-
ent. To clarify this point better we will present below results
for the spectral functions.

The QP weight for V=0 �far from the CDW instability� is
already reduced from one. This reduction is not related to the
CDW instability but it is due to electronic correlation effects
which our method is able to capture in the pure t-J model. In
fact, Fig. 6 shows that the QP weight for x=1 /3 is smaller
than for x=2 /3, as one expects, since correlation effects
should be weaker for a dilute system. For x→1 our method
predicts Z→1 which corresponds to the uncorrelated limit
�empty band�. On the other hand, in both cases, Z strongly
decreases on approaching the charge order instability.

B. Self-energy

The discussion above indicates that the HFL is strongly
modified near the CDW instability, where the carriers are
renormalized by interacting with soft charge fluctuations. In
order to discuss this point in detail, we will present results
for the self-energy ��k ,��.

In Fig. 7, self-energy results at k=kF are presented for
x=1 /3 and several values of V approaching Vc. Panel �a�
shows −Im � as a function of frequency. As discussed in Ref.
11, for V=0, Im � is strongly asymmetric with respect to
�=0 and behaves as ��2 at small �’s. The self-energy pre-

0 1 2 3 4
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T
/t CDWHFL
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T
C

O

T
C
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FIG. 5. T-V phase diagram for x=1 /3 �solid line� and x=2 /3
�dashed line�.
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FIG. 6. The quasiparticle weight Z for J=0.2 evaluated on the
Fermi surface as a function of V for x=1 /3 �solid line� and x
=2 /3 �dashed line�. With increasing V both curves show that, first,
Z decreases slowly and, it drops to zero close to Vc �Z→0 for V
→Vc�. Dotted lines are guides for the eyes which show the men-
tioned tendency �see text for discussions�. For V=0 the quasiparti-
cle weight for x=1 /3 is smaller than for x=2 /3 which means that
correlations are stronger for small than for large x. Inset: The QP
weight divided by the QP weight at V=0 �Z /Z0� versus V /Vc for
x=1 /3 �solid line� and x=2 /3 �dashed line�. With increasing V, the
decreasing of Z is somewhat faster for x=2 /3 than for x=1 /3. See
text for discussions.
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sents large contributions at large energy of the order of t
below the Fermi energy. With increasing V a redistribution of
the weight takes place and Im � develops structures at ener-
gies close to but above the Fermi energy. As Im � and Re �
are related to each other by a Kramers-Kronig transforma-
tion, the changes in Im � are reflected in Re � �panel �b�
.
For instance, the slope of Re � at �=0 increases with in-
creasing V leading to a decrease of the QP weight discussed
in Fig. 6. The inset in panel �b� shows this behavior in a
smaller scale near �=0. While for V�2.2 a gradual change
in the slope is observed, very close to Vc, a stronger increase
is observed, as shown by the thick solid line corresponding
to V=2.34.

C. Spectral functions and total density of states

Using Im � and Re �, the spectral function A�k ,�� can
be calculated as usual. Figure 8 presents results for A�kF ,��
for several values of V. The peak at �=0 corresponds to the
QP while the other features, for instance, at ��−3t and �
�2.5t, are of incoherent character. For V=0 �solid line� the
QP weight is Z�0.56 �Fig. 6� and the incoherent structure is
mainly concentrated in the pronounced feature at ��−3.5t.
Increasing V up to V=2.2 �dotted dashed line� the QP weight
decreases �Z�0.42� and, at the same time, spectral weight

appears at ��0.5t−2.5t �Fig. 8�. In addition, with increasing
V, the incoherent structure at ��−3.5t moves to the right
while loses some weight.

In Fig. 8 it was assumed, supported by the Luttinger theo-
rem, that kF does not change with the interaction V. On the
other hand, if we wish to compare with angle-resolved pho-
toemission spectroscopy �ARPES� experiments �see Sec. V�,
our input is a tight binding dispersion which reproduces the
measured FS which already contains the interactions. The
comparison between our approach and Lanczos diagonaliza-
tion presented in Ref. 11 gives an additional support for this
assumption �see also Ref. 18�.

D. Physical origin of the self-energy renormalizations: �2F„�…

In the following we discuss the interaction of the bosonic
excitations described by DRR �see Eq. �13�
 with electrons
that lead to the self-energy renormalizations discussed in the
previous section. In many body theory24 the quantity which
contains this information is �2F���, where F��� is the den-
sity of states of a boson which interacts with the fermions
with strength �. At T=0,25

Im ���� = �
0

�

d��2F��� , �14�

i.e., �2F���=� Im ���� /��. In Eq. �14� the average over all
momentum transfer q=k1−k2, where k1 and k2 are two
Fermi vectors, is assumed.24

In Fig. 9 we have plotted �2F for the same values of V as
in Fig. 7. As we mentioned above, our self-energy is very
isotropic on the FS such that �2F evaluated at kF is repre-
sentative for the average over the FS.

Let us discuss first the case for V=0 �solid line�. We can
see two structures, at ��−2t and ��2t �solid arrows�
which are related with collective charge excitations �see be-
low�. The features at ��−3t and ��2.5t �dotted arrows�
are due to the fact that Im � �Fig. 7� is concentrated in a
finite range of energy �between the borders �−4t and �3t�
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FIG. 7. �Color online� Self-energy ��kF ,�� for x=1 /3 and J
=0.2 for several values of V approaching Vc�2.35. �a�
−Im ��kF ,�� versus �. It presents large structures at energies of the
order of t and shows a ��2 behavior around �=0. With increasing
V a redistribution of the weight takes place. �b� Re ��kF ,�� versus
� for the same values of V as in panel �a�. Inset shows that, with
increasing V, the slope of Re � near �=0 increases leading to a
decrease of the quasiparticle weight.

-4 -3 -2 -1 0 1 2 3
ω/t

0.00

0.25

0.50

0.75

1.00

1.25

A
(k

F
,ω

)

V = 0.0
V = 1.0
V = 2.2

x = 1/3
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weight decreases �Fig. 6�, weight is transferred to the range �
�0.5t–2.5t.
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so that, when performing the derivative � Im ���� /�� to ob-
tain �2F���, these two features are created at these two bor-
ders. In Fig. 10 we have plotted the average of the
Im �c�q ,�� for all q such that q=k1−k2 where k1 and k2 are
two Fermi vectors. For V=0 �solid line�, the well defined
peaks �solid arrows� at ��−2t and 2t are due to collective
charge excitations while tails are due to the particle-hole
continuum �see solid line in Fig. 4�. Clearly, the two struc-
tures marked with solid arrows in Fig. 9 are correlated with
the corresponding ones in Fig. 10 showing that these struc-
tures in �2F are related to collective charge fluctuations
while tails, are due to the particle-hole continuum. The rea-
son why �2F��� does not trace exactly the average of the
charge correlations of Fig. 10 is the following. �2F contains
information of both the density of states of the interacting
boson and its coupling with fermions but, in a mixed form.
For instance, the only way that �2F follows exactly the same
shape of the boson density of states occurs if the coupling
does not depend on � or momentum. This condition is not
satisfied in our case which can be seen by looking at the

expression �10� for Im �. On the other hand, only in the first
term of Eq. �10� the charge-charge correlation is explicitly
present. The other terms which contain D	R and D		 are
proper of our method, and they are due to the nondouble
occupancy constraint.

With increasing V, the features marked with solid arrows
in Fig. 9 become soft and, at the same time, spectral weight
appears at lower energies �dashed arrows�. This behavior is
clearly correlated with that depicted in Fig. 10 which shows
the soft charge dynamics discussed in Sec. III �see Fig. 4�.

It is well known24 that

−
� Re �

��
=� d�

�2F���
�

. �15�

Therefore, the presence of low energy excitations in �2F
leads to an increase of � Re � /�� and, hence, to a decrease
of the QP weight Z. Notice that near Vc, �2F��� shows,
besides the low energy features, structure at high energy in
agreement with the behavior presented by charge correla-
tions �Figs. 4 and 10�. The fact that not all the spectral
weight is concentrated at low energy is the cause for the slow
decrease of Z. The inset of Fig. 6 shows that Z decreases
somewhat faster for x=2 /3 than for x=1 /3 which is consis-
tent with the fact that softening of the charge collective mode
is more clear for x=2 /3 �see Figs. 3 and 4�.

To conclude, we think that we have given clear arguments
which show that the charge collective soft modes near the
CDW are responsible for the incoherent motion of the carri-
ers near charge ordering. In addition, the charge soft modes
reach �=0 at Vc which means that −� Re � /��→� �Eq.
�15�
 and then Z→0 as indicated in Fig. 6.

E. E-k structures

When discussing the spectral functions we have shown
the presence of coherent QP peaks and incoherent structures.
In Fig. 11 we show the energy position of the main visible
structures for V=0 and V=2.2 at x=1 /3 along the main di-
rections of the Brillouin zone �inset in Fig. 11�. Dashed lines
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FIG. 9. �Color online� �2F��� for the same values of V as in
Fig. 7. The features marked with solid arrows are related with col-
lective charge fluctuations which become soft with increasing V
and, at the same time, �2F��� acquires structures at low energies
�dashed arrow� which lead to the decreasing of Z �see text�.
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mark the spectral functions at kF. For V=0 �panel �a�
, we
can see that the QP band �near the FS� and a dispersing
incoherent band at ��−3t dominate the spectra.

When V increases to V=2.2 �panel �b�
 the QP coherent
band becomes less dispersing consistently with the reduction
of the QP weight. The incoherent band at negative � be-
comes also less dispersing. Interestingly, an incoherent band
is formed in the region �0.5t–2.5t. Notice that no kink is
showed by the coherent QP band. This is because the kink, if
it exist, should be located at energies of the order of the
interacting boson �which in this case is related to the soft
mode� and, at V=2.2, it is still located at energies of �0.2t
�Fig. 4� which is of the order of the QP bottom energy.

V. COMPARISON WITH COBALTATES

In previous sections we have discussed one-particle spec-
tral predictions of the large-N approach for the t-J-V model
on the triangular lattice without making emphasis on any
particular system. In this section we will discuss previous
results and their possible contact with cobaltates. First-
principles calculations in cobaltates26 predict, besides a large
hole Fermi surface around �, the existence of six small pock-
ets near the corners of the Brillouin zone. Until now, all
ARPES experiments both in hydrated27,28 and unhydrated
cobaltates9,29–34 do not show the presence of these small
pockets. The absence of pockets in ARPES can be under-
stood by the renormalization of the bands due to strong elec-
tronic correlations.35 In fact, a reduction of the bandwidth
and large electronic effective masses are observed in
ARPES.31,32 In addition, in a very recent work36 it was
pointed out that cobaltates are close to a Mott insulator in the
limit x→0.

Following these ideas, a one-band t-J model on the trian-
gular lattice, as proposed in the present paper, seems to be
appropriated for studying cobaltates. For this purpose, c̃i�

†

and c̃i� in Eq. �1� must be associated with the creation and
destruction of holes, respectively, as in Refs. 3, 5, and 37.
Then, in this context, the doping x is the electron doping
away from half-filling. Considering the bare hopping t
�150 meV �Ref. 38� and Udd�3.0–5.5 eV,39 we obtain
J / t�0.1–0.2, similarly to the value used in previous sec-
tions. In addition, we will mainly focus the comparison with
our results for x=1 /3, which is close to the doping where the
maximum superconducting critical temperature Tc is found
in cobaltates. For x�0.5 our results predict a Pauli paramag-
net as observed in cobaltates. On the other hand, as cobal-
tates exhibit a Curie-Weiss behavior in the region x�0.5, we
will not relate our results in x=2 /3 with experiments. How-
ever, it is important to mention that it is not clear if this
Curie-Weiss behavior is due to the fact that electronic corre-
lations are more important for x�0.5 or other effects, as, for
instance, Na order, are predominant �see Ref. 40 and refer-
ences there in�.

According to results in previous sections we have two
factors which reduce the Fermi velocities from the bare one.
The first one occurs already at mean field level where the
effective hopping is �x /2�t instead of t. The second one,
which is obtained only after evaluating fluctuations beyond

mean field, is the quasiparticle weight Z. Therefore, the
Fermi velocity is vF��x /2�ZvF

LDA where vF
LDA is the bare

Fermi velocity extracted from local density approximation
�LDA� calculations. Using the parameters for cobaltates and
our results for x=1 /3 up to 0.9Vc we obtain vF
�0.21 eV Å. This value is close to the value vF
=0.30�0.05 eV Å found in Refs. 31 and 32. This small
value was considered32 as an indication for the presence of
strong correlations and, the ratio between Tc and the Fermi
velocity was found to be close to the same ratio for cuprates.
In agreement with these experiments, our calculation shows
also a rather isotropic Fermi velocity over the Brillouin Zone
�see Fig. 11�. Another interesting and qualitative agreement
between experiments and our finding is the following: in
Ref. 32 it was found that the scattering rate behaves as ��2

near the Fermi surface which agrees with results in panel �a�
of Fig. 7.

In our previous papers,5,6 for describing superconductivity
in cobaltates we proposed, like other works,3,4,37 that the sys-
tem is close to 	3�	3 charge order. The charge order sce-
nario is supported by some experiments.7–9 In addition,
ARPES experiments31 show a Fermi surface topology, very
close to our FS, which favors charge instabilities. We have
proposed that the interplay between electronic correlations
and phonons are relevant for describing superconductivity
with triplet NNN-f pairing as predicted by some
experiments.41–45 For this scenario we need that, with in-
creasing water content, the system comes closer to charge
ordering. Recent ARPES experiments27,28 have shown that
the Fermi velocity does not vary very much with the water
content. These experiments seem to be in contradiction with
our result of Fig. 11 where it is possible to see that very close
to the charge instability the band dispersion becomes flat.
However, we think that it is possible that for the water con-
tent reached in the experiments the system is still far from
the static charge order state, i.e., in the regime where Z does
not change very much. This could explain the reason why
nuclear magnetic resonance �NMR�46 does not show the
charge order because it is fluctuating faster than the time
scale accessible by NMR. We remember that for obtaining a
robust description of superconductivity we do not need to
place the system very close to the charge order being enough
a V�80% –90%Vc.

5,6 However, for V�0.9Vc, Z is strongly
reduced and two competing effects can be expected. From
one side, the decreasing of Z may cause an increasing of the
electronic density of states and then a reinforcement of su-
perconductivity. On the other side, when Z decreases the
quasiparticle losses coherence, thus, superconductivity may
be diminished. A careful study of this competition requires
the calculation of superconducting pairing in O�1 /N2�.

It is interesting to compare our results with a very recent
ARPES experiment on a series of Bi cobaltates.47 These
compounds contain the same triangular Co planes as Na co-
baltates. Besides a flat QP band with similar Fermi velocity
as in Na cobaltates, incoherent features were observed at
high energy in the Bi cobaltates. In that paper it was dis-
cussed that these incoherent features are created with weight
transferred from the QP band, a mechanism similar to that
discussed in Sec. IV �notice the analogy, for instance, be-
tween Fig. 2 of Ref. 47 and our Fig. 11�. On the other hand,
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the center of the incoherent band in Fig. 2 of Ref. 47 is at
�−0.5 eV, close to the center of our incoherent band �Fig.
11� which, using t=150 meV, is about −0.45 eV. Similar
high energy features were recently observed in cuprates �see
Ref. 47 and references there in� and, the present approach
was used48 for discussing those features occurring in the
overdoped side where, as mentioned before, our method is
expected to be reliable.

Optical conductivity experiments49,50 show a different be-
havior to usual metals where, besides a Drude peak at low
energies, a broad absorption centered around �250 meV is
observed and interpreted as a pseudogap50 behavior. Similar
features are observed in organic materials and discussed in
term of the charge order proximity.51 From our results in Fig.
8 we expect that, near the charge order, transitions from the
Drude peak to the broad structure formed between �75 and
375 meV �where we used t=150 meV� are possible leading
to the optical absorption as in the experiments.

Recently, optical conductivity experiments in organic
materials52 have also shown an anomalous increasing of the
effective mass with temperature. In Ref. 22, a reentrant be-
havior in the T-V phase diagram, as the one discussed in our
Fig. 5, was found to be responsible for the increase in effec-
tive mass. If for cobaltates 0.7Vc�V�Vc, we think that an
increase in effective mass with temperature can also be ex-
pected in these materials. From Fig. 5, depending on the
value of V, the effective mass increase may occur for T
�800 K. It will be interesting to perform this kind of experi-
ments.

VI. CONCLUSION AND DISCUSSIONS

In this paper, the t-J-V model at finite density was studied
on the triangular lattice. V represents the Coulomb interac-
tion between nearest neighbors and it is the parameter re-
sponsible for triggering a charge order phase for V�Vc. Vc is
the critical Coulomb repulsion whose numerical value de-
pends on doping �Fig. 2�. Studying charge correlation func-
tions, it was shown that near Vc charge dynamics becomes
soft and, at V=Vc, charge modes collapse to zero frequency
freezing a 	3�	3 CDW phase �Figs. 3 and 4�.

By evaluating fluctuations beyond the mean field level,
one-particle spectral properties were computed. Far away

from charge ordering, i.e., for zero or small V, the QP weight
Z is reduced from one due to pure t-J model correlations
effects. With increasing V, Z decreases slowly until V
�90% of Vc. Beyond this value Z decreases faster approach-
ing zero at Vc �Fig. 6�. Therefore, near Vc the electronic
dynamics becomes very incoherent. For V�Vc, the scatter-
ing rate behaves as Im ���2 �Fig. 7�a�
 which is character-
istic for a Fermi liquid behavior. In addition, when the sys-
tem approaches charge ordering, Im � accumulates spectral
weight at low energy. Due to this fact, the slope of Re � at
�=0 increases �Fig. 7�b�
 leading to the decrease of Z dis-
cussed above.

From Im � and Re � the spectral function A�k ,�� was
calculated. With increasing V, approaching Vc, the most im-
portant changes are present at energies close but larger than
the Fermi energy ��=0�. While the weight of the QP peak
decreases �Z decreases�, spectral weight appears at small
positive energy in the range �0.5t–2.5t �Fig. 8�.

The calculation of �2F��� allows us to identify the exci-
tations responsible for the self-energy effects. Computing
�2F��� as a function of V approaching Vc, it was shown that
its behavior can be, without ambiguity, correlated to charge
spectra �Figs. 9 and 10�. Therefore, the charge soft modes,
responsible for the charge instability, lead to an increase of
�2F at small frequencies with the corresponding decrease of
Z.

In Sec. V, we mainly confronted our results with recent
ARPES experiments in cobaltates. We found our results to be
in agreement with experiments presented in Refs. 31, 32, and
47.

Finally, we would like to point out that while our results
were obtained for a purely two-dimensional system, we ex-
pect only quantitative differences in our results when passing
to a corresponding anisotropic three-dimensional system,
since we are dealing here with a spontaneous symmetry
breaking of a discrete symmetry, as corresponds to a com-
mensurate CDW. Certainly critical exponents may change,
but they are beyond the scope of our treatment.
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