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We discuss bias voltage effects on the elastic and the inelastic currents in the tunneling region. We have
derived and solved two self-consistent loops: one for electron-electron interaction within the Hartree-Fock
approximation, and another for the electron-intramolecular vibration coupling within the Born approximation.
The formalism is based on Keldysh Green’s function theory; numerical calculations were made in terms of ab
initio quantum chemistry techniques augmented with a model for the electrodes. While no remarkable voltage
effect on the vibronic currents was found in the low-bias voltage region, we found significant bias voltage
effect in the high-bias voltage region. The suppressive correlation between the elastic and the inelastic com-
ponents of the current is reduced because of the molecular orbital energy shift in the latter region.

DOI: 10.1103/PhysRevB.77.075110 PACS number�s�: 73.63.�b, 72.10.�d, 68.37.Ef, 73.63.Rt

I. INTRODUCTION

The transport problem of single molecules bound between
two electrodes �single molecular bridges� has become a mat-
ter of intense investigation.1–3 The basic problem, which may
bear serious importance at least partly due to the molecular
electronics activity, however, is surely related to the electron
transfer reaction studies in wet chemical environments that
date back to early 1960s.4 Although tunneling and hopping
mechanisms were proposed more than a decade ago, the ex-
ponential decaying length dependent conductance5,6 and the
vibronic inelastic effects on the electric current in single mo-
lecular bridge systems7–9 have received attention quite re-
cently. Despite the large differences in the experimental set-
ups required for these two problems, the problems
themselves appear to be strongly correlated.10 One benefit of
the transport studies is that great precision is possible, both
in theories and experiments, owing to the recent achieve-
ments in theoretical and experimental physics. The knowl-
edge obtained in transport studies is important not only for
the molecular electronics activity but also for solving basic
problems in chemistry. Electron transfer reactions have wide
application in important branches of chemistry, such as elec-
trochemistry and biochemistry.

Inelastic tunneling spectroscopy �IETS� experiments have
been applied to single molecules11 and atomic wires.12 Re-
cent investigation has shown that the line shapes of d2I /dV2,
i.e., the second derivative of the electric current taken against
the bias voltage �V�, as a function of V, for both these sys-
tems are quite different.13 Here, electronic structure theories
are modified to include the vibronic inelastic effect on the
electric current. Theoretical calculations have become appli-
cable for realistic single molecular bridges, atomic wires, and
clusters at various levels of approximations of the electronic
structure theory. The vibrational-mode assignments of IETS
peaks have been made semiquantitatively. Besides these
studies, investigations by Sergueev et al. address how a finite
voltage effect modifies �or does not modify� the vibronic
electric current.14 First to study the problem, they found a

strong bias voltage dependence of the dimensionless cou-
pling constant � for the electron-intramolecular vibration �e-
mv� interaction. This problem needs be solved before further
development of the electronic structure theory of the vi-
bronic current is possible. Here, we study the bias voltage
effects on the elastic and inelastic current in the tunneling
region, where the gap between the Fermi level of the elec-
trodes EF and the site energy is larger than twice of the
intramolecular transfer integral.6 We used Keldysh Green’s
function theory combined with ab initio quantum chemistry
techniques to study the bias voltage effect and the e-mv cou-
pling effect. Here, however, we have adopted a simple tight-
binding model for electrodes. The method, when it is applied
to the former effect, is often called as the nonequilibrium
Green’s function �NEGF� method.15–20 We adopt this nota-
tion for the bias voltage effect. The theory is applied to a
hypothetical system where a benzenedithiolate molecule is
suspended in the gap between the two electrodes. We have
neglected nonequilibrium effects on molecular vibrations
here, for simplicity. The effects may be expected to be small
for molecules which have good thermal contact with
electrodes.21

II. GENERAL THEORY

A. Keldysh Green’s function formalism of electric current

In the following section, we present the formula for
steady-state electric current through a single molecular
bridge between two electrodes, in terms of the Keldysh
Green’s functions.22 We denote the lesser Green’s function of
the center region, as shown in Fig. 1, by GC

��r�1 , t1 ;r�2 , t2�.
This will be described later, but it includes the contact effect
between the molecule and the electrodes, the electron-
electron interaction in the molecule, and the e-mv coupling
effect. The zeroth order lesser Green’s function is given by
GC

�0���r�1 , t1 ;r�2 , t2�� i��†�r�1 , t1���r�2 , t2��, where �† ��� is
the field creation �annihilation� operator, and r� and t denote
the position vector and time variable of an electron; a nu-
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meric subscript is the label for the electron. The total number
of electrons in the molecule is given by ne�t�
=1 /2�i�moleculeGC

��r , t ;r ,0�dr�, where the space integral is
taken over the molecular region. The electric current through
the single molecular bridge is defined by j�t��
−2e�d /dt�ne�t�, where factor 2 comes from spins. If we use
the equation of motion for the lesser Green’s function, the
microcanonical electric current j�E���j�t�eiEtdt is then
given by

j�E� = − 2
e

2�i
�

molecule

d

dt
GC

��r�,r�;E�dr�

= −
2e

h
�

molecule

�HCGC
��r�,r��;E� − GC

��r�,r��;E�HC	r�=r��dr� ,

�1�

where GC
��r� ,r�� ;E�=�GC

��r� , t ;r�� ,0�eiEtdt and HC is the
Hamiltonian of the center region, which satisfies the
relation23

�E + i� − HC�GC
R�r�1,r�2;E� −� dr�3�C

R�r�1,r�3;E�GC
R�r�3,r�2;E�

= ��r�1 − r�2� , �2a�

where GC
R�r�1 ,r�2 ;E� is the retarded Green’s function of the

center region, and �C
R�r�1 ,r�3 ;E� is the sum of the self-

energies due to the contact between the molecule and elec-
trodes, the electron-electron interaction in the molecule, and
the e-mv coupling, which will be described subsequently. E
is the energy and � is an infinitesimal positive constant. The
corresponding self-adjoint relation

GC
A�r�1,r�2;E��E − i� − HC� −� dr�3GC

A�r�1,r�3;E��C
A�r�3,r�2;E�

= ��r�1 − r�2� �2b�

is also satisfied by HC. By using these equations, the steady-
state kinetic equations23

GC
��r�,r��;E�

=� � GC
R�r�,r�1;E��C

��r�1,r�2;E�GC
A�r�2,r��;E�dr�1dr�2,

�3a�

GC
	�r�,r��;E�

=� � GC
R�r�,r�1;E��C

	�r�1,r�2;E�GC
A�r�2,r��;E�dr�1dr�2,

�3b�

and the identity relation �C
	−�C

�=�C
R −�C

A, the formula of
the energy dependent electric current is obtained23 as fol-
lows:

j�E� =
2e

h
� �

molecule

��C
	�r�1,r�2;E�GC

��r�2,r�1;E�

− �C
��r�1,r�2;E�GC

	�r�2,r�1;E�	dr�1dr�2, �4�

where �C
� and �C

	 are the lesser and the greater self-energies.
The remaining problem is to calculate the self-energies
which are also necessary to calculate the lesser and greater
Green’s functions. This will be addressed in the following
subsections.

B. Self-energy due to contact between the molecule
and the electrodes

The self-energy �C
R�r�1 ,r�2 ;E� is given by the sum of the

following three contributions:

�C
R�r�1,r�2;E� = �contact

R �r�1,r�2;E� + �e-e
R �r�1,r�2;E�

+ �e-mv
R �r�1,r�2;E� , �5�

where the first, second, and third terms on the right-hand side
of the equation denote the retarded self-energies due to the
contact effect, the electron-electron interaction effect, and the
e-mv coupling effect, respectively. We use the atomic orbital
basis 
��r�� to express the matrix element of the Hamiltonian,
the overlap, Green’s function, and the self-energies for the
molecule and electrodes, as well as the coupling between
them, i.e., H��= �
��r��
H�r�

��r���, S��= �
��r�� 

��r���,
GR�r�1 ,r�2 ;E�=��,�
��r�1�G��

R �E�
��r�2�, and ���
R �E�

= �
��r�1�
�C
R�r�1 ,r�2 ;E�

��r�2��, respectively. The one-electron

Hamiltonian is given by

H�r�� = −
1

2

�2

�r�2 − �
A

ZAe2


r� − R� A

, �6a�

where ZA is the atomic number of nucleus A, and R� A denotes
its position vector. The total electronic Hamiltonian is simply
given by

Htotal = �
i

H�r�i� + �
i�j

e2


r�i − r� j

, �6b�

where the second term in the right-hand side of Eq. �6b�
denotes the electron-electron repulsions. In this paper, the

FIG. 1. Benzenedithiolate molecule and model electrodes. The z
axis is aligned such that it goes through the sulfur atoms of the
molecule, and the x axis is lying on the molecular plane.
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many-body effects due to electron-electron repulsions are ap-
proximated in terms of the Hartree-Fock self-energy, which
will be discussed later. For the moment, we will discuss the
problem in terms of noninteracting Hamiltonian. The re-
tarded Green’s function of system GR= ��E+ i��S−H	−1,
which consists of the molecule and the semi-infinite elec-
trodes, is described by the Hamiltonian and overlap matrices
decomposed into submatrices as

H = � Hp Hp,C 0

Hp,C
T HC Hq,C

T

0 Hq,C Hq
 , �7a�

S = � Sp Sp,C 0

Sp,C
T SC Sq,C

T

0 Sq,C Sq
 , �7b�

where HC is the Hamiltonian submatrix of the molecule, and
Hp�q� denotes that of the semi-infinite electrode labeled as
p�q�, shown in Fig. 1. SC is the overlap submatrix of the
molecule and Sp�q� denotes that of the semi-infinite elec-
trodes labeled as p�q�. HC,p�q� denotes the off-diagonal sub-
matrix of the Hamiltonian, which expresses the coupling be-
tween the molecule and the semi-infinite electrode p�q�.
SC,p�q� denotes the off-diagonal submatrix of the overlap be-
tween the molecule and the semi-infinite electrode p�q�.
However, there are no off-diagonal matrix elements between
the electrodes p and q, for either the Hamiltonian or the
overlap; that is, there are no direct interactions between the
electrodes. Because of the semi-infiniteness of the electrodes,
the matrix dimension of Green’s function for system GR is
infinite, and is therefore difficult to handle. This problem has
been solved by introducing the following retarded self-
energy of interaction between the molecule and electrode
p�q�.

�p�q�
R = �p�q�,C

T Gp�q�
R �p�q�,C, �8�

where Gp�q�
R = ��E+ i��Sp�q�−Hp�q�	−1, and �p�q�,C=Hp�q�,C

−ESp�q�,C.23 We usually use truncations for the range of the
coupling matrix �p�q�,C between the molecule and the elec-
trode because it is expected to decrease very rapidly inside
the electrode. The retarded Green’s function of the center
region, GC

R, which includes interactions between the mol-
ecule and the electrodes is obtained from the above self-
energy, as follows:

GC
R = ��E + i��SC − HC − �p

R − �q
R	−1. �9�

While the dimension of GC
R is finite, the semi-infinite nature

of the electrodes is included here through the self-energy.23

We may suppose that thermal equilibrium is achieved for
electrons in the electrode, and may impose the following
boundary condition on the time variable of the contact self-
energy �contact

� �t1 , t2���p
��t1 , t2�+�q

��t1 , t2�:

�p�q�
� �t1 = 0,t2� = − e�p�q��p�q�

	 �t1 = − i�,t2� , �10�

where p�q� is the chemical potential of the electrode p�q�
and �=1 /kBT is the inverse of the temperature, multiplied by
the Boltzmann constant kB.24 The chemical potential p�q�
may be determined by the voltage V, in terms of p�q�=EF

+�p�q�V, where EF is the Fermi level of the electrodes, and
�p�q� represents the voltage division factors that satisfy �q

−�p=1, i.e., q−p=V. In this paper, we have supposed that
two electrodes are identical and have followed arguments for
the voltage division factor of symmetric electrodes found in
literatures.18,25 Thus, we have set �q=0.5. It should be noted
that the molecule and the coupling between the molecule and
the electrode have to be symmetric in our case, because we
have put the boundary between the center region and its out-
side on the link between the terminal atoms of the molecule
and the outmost atom of the electrode. The chemical poten-
tials at the boundaries give the boundary conditions for the
NEGF self-consistent field �SCF�, and the electrostatic po-
tential and the level alignments within the center region are
self-consistently determined under the boundary conditions.
If we use the Fourier transform for the time variable, and the
identity relation �p�q�

	 −�p�q�
� =�p�q�

R −�p�q�
A , we obtain the fol-

lowing expression for the lesser and greater self-energies of
the thermalized electrodes:

− i�p�q�
� �E� = ifp�q��E���p�q�

R �E� − �p�q�
A �E�	 , �11a�

i�p�q�
	 �E� = i�1 − fp�q��E�	��p�q�

R �E� − �p�q�
A �E�	 , �11b�

where fp�q��E�=1 / �e��E−p�q��+1	 is the Fermi-Dirac distribu-
tion function for the electrode p�q�. The corresponding ma-
trix representation of these self-energies may be obtained
likewise. Note that finally the formula of the energy resolved
electric current in the matrix notation should be read as23

j�E� =
2e

h
Tr��C

	�E�GC
��E� − �C

��E�GC
	�E�	 . �12�

The total electric current is then given by

I = Ip + Iq =
2e

h
�

−�

+�

Tr��C
	�E�GC

��E� − �C
��E�GC

	�E�	dE ,

�13�

where Ip�q� is the terminal current of the electrode p�q�. The
trace appears in Eq. �13� because the current in this atomic
orbital representation is written by j�t�=−2�e /2�i��d /
dt�Tr�GC

�	 rather than that in the coordinate representation
given in Eq. �4�.

C. Hartree-Fock self-energy for electron-electron interactions

Here, we derive the equation for self-energy due to
electron-electron interaction �e-e

R �E�. The chronological self-
energy for the interaction in the Haretree-Fock approxima-
tion is given by26,27
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��HF
t �t1,t2�	�� = − i��t1 − t2��

��

���

���GC;��
t �t1,t1

+�

= − i��t1 − t2��
��

���

���GC;��
� �t1,t1

+� ,

�14�

where Greek letters denote the suffixes for atomic orbital
basis functions. t1

+� t1+�, where � is the infinitesimal posi-
tive constant. The chronological, noninteracting Green’s
function is defined in terms of the time-ordering operator Tt;
Gt�r�1 , t1 ;r�2 , t2��−i�Tt���r�1 , t1��†�r�2 , t2�	�. The correspond-
ing matrix element,GC;��

t �t1 , t2�, is calculated using the rela-
tion GC

t �r�1 , t1 ;r�2 , t2�=��,�
��r�1�GC;��
t �t1 , t2�
��r�2�. We use

similar notation for matrix elements of other Green’s func-
tions, i.e., GC

	����r�1 , t1 ;r�2 , t2�=��,�
��r�1�GC;��
	����t1 , t2�
��r�2�

and GC
R�A��r�1 , t1 ;r�2 , t2�=��,�
��r�1�GC;��

R�A��t1 , t2�
��r�2�. ���

���
is given in terms of the two-electron integrals

���

��� = 2���
��� − ���
��� , �15�

where we have used the standard notation used in quantum
chemistry books.28

���
��� =� 
a�r�1�
��r�2�
1


r�1 − r�2


��r�1�
��r�2�dr1dr2.

�16�

Note that the definition of the chronological Green’s function
GC

t �t1 , t2�=��t1− t2�GC
	�t1 , t2�+��t2− t1�GC

��t1 , t2� has been
used to arrive at the final expression in Eq. �14�.22 The
Hartree-Fock self-energy is then given in terms of the den-
sity matrix, whose element is given by P��

�1 /2�i�−�
� GC;��

� �E�dE;

��HF
t �t1,t2�	�� = ��t1 − t2��

��

���

���
1

2�i
�

−�

�

GC;��
� �E�dE

= ��t1 − t2��
��

���

���P��, �17a�

where we have used GC
��t1 , t2�=1 /2��−�

� e−iE�t1−t2�GC
��E�dE.

Similarly,

��HF
t �E�	�� = �

−�

�

eiEt��HF
t �t�	��dt

= �
−�

�

eiEt��t��
��

���

���P��dt

= �
��

���

���P��. �17b�

It should be noted that the chronological self-energy �HF
t

does not have energy dependence. Its time dependence is
described exclusively by the delta function. In general,�t�t�
=����t�+��t��	�t�+��−t����t�, therefore it is clear that
�HF

��	�=0. Because �HF
R�A�=�HF

t −�HF
��	�=�HF

t is purely real,
the real value does not change whether it is the retarded or
advanced self-energy. Standard quantum chemical tech-
niques can be used to calculate �HF

R�A�.

Boundary conditions must be imposed at the interface be-
tween the molecule and the electrodes not only for the wave
function and the Green’s function but also for the electro-
static potential function �. The electrostatic potential func-
tion at the molecular edge must be coincident with that of the
electrode, which is linked to the molecular edge. Then the
molecule is exposed to the potential gradient �electric field�
given by ��p−�q� /L, where L is the length of the molecule
and �p�q� is the electrostatic potential function at the elec-
trode p�q�. If the electrodes are identical, the potential dif-
ference is given in terms of the applied voltage difference V
between the electrodes, i.e., �p−�q=V. Thus, the electric
field, which is applied along the molecular axis, is given by
V /L. The field gradient term must be included in the ex-
tended molecule calculation when V�0.17,29 The matrix el-
ement of the field gradient term is given by ��	��=

−E� · �x�
r�
x��. E� is the electronic field determined by the
boundary condition for the potential function, and is given
by E� =e�zV /L. e�z is the unit vector for the z direction, and the
molecular axis should align in the z direction, shown in Fig.
1. We put the origin of the coordinate on the center of the
benzendithiolate molecule, so the surfaces of electrodes p
and q are located at z=−0.5L and z=0.5L, respectively. More
details of the discussions related to the field gradient term
and the electrostatic potential are found in Ref. 20.

We frequently use the Hartree-Fock Hamiltonian matrix
F, rather than the original Hamiltonian matrix HC, i.e., F
�HC+�HF

R�A�+� as it includes the field gradient term. The
most important consequence here is that, because �HF

��	�=0,
electron-electron interaction effects do not play any dynamic
role in the kinetic equation,15,18 but they do play a static role
in modulating the potential inside the center region through
P���1 /2�i�−�

� G��
� �E�dE, which gives rise to voltage-

dependent occupations of electrons over the molecular orbit-
als. Green’s function theories applied to the electron-electron
interaction problem within the mean-field approximations,
i.e., the Hartree-Fock approximation and the local density
approximation �LDA�, are often referred to as the NEGF
method. We follow this notation. The LDA approach, how-
ever, derives no clear proof to show �LDA

��	�=0; thus an am-
biguity remains in the fundamental basis of the LDA-based
NEGF theory.

While the Hartree-Fock approximation overestimates the
energy gap between the highest occupied molecular orbital
�HOMO� and the lowest unoccupied molecular orbital
�LUMO� of molecules, the LDA underestimates the HOMO-
LUMO gap. By using some of the conserving
approximations,24 such like the random phase approxima-
tion, T-matrix approximation, for example, it may be pos-
sible to take into account of weak electronic correlation ef-
fects beyond the Hartree-Fock approximation and the LDA.
The conserving approximations, which are not very accurate,
may be useful to correct some of the errors in the Hartree-
Fock approximation and the LDA but not all of them. Some
of the sophisticated theories useful for equilibrium systems
do not satisfy the conservation law and hence it is not safe to
use them for the transport problem. Clearly, the accuracy
problem remains in the transport theory as far as the
electron-electron interaction is concerned. The problem has
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been thought to be one of the possible sources of the discrep-
ancy between the experimental electric current value and
their theoretical values whose ratio may be 102 or larger.

D. Total energy and the molecular vibrations

The total energy problem in our open bridge junction sys-
tems is a difficult but well known problem.30,31 It seems that
the full problem is still to be resolved. A treatise often
adopted in literatures is to use the total energy formula of the
isolated molecule or the extended molecule in the center re-
gion for the calculation of the total energy of the open bridge
junction system. The trick used there is to substitute the en-
ergy integrated lesser Green’s function of the open bridge
junction system 1 /2�i�−�

� G��
� �E�dE into the density matrix

terms P�� in the total energy formula.31 By doing that, non-
equilibrium effect for electrons in the open bridge junction
system is partly taken into account. The contact self-energy
effect has not been taken into account in the total energy
formula, explicitly however.

In this approximation, the bias voltage-dependent total en-
ergy is determined as follows:

EHF�V� = �
�,�

P���V�F�� −
1

2�
�,�

P���V�P���V����

���

+ Vnn + Vn-field, �18�

where F�� is the matrix element of the Fock matrix, Vnn is
the nucleus-nucleus repulsive energy, and Vn-field is the inter-
action energy between nuclei and the external electric field.
The Hartree-Fock total energy EHF�V� depends on the ap-
plied bias voltage through the density matrix contributions
P�V�, which is calculated from Eqs. �31a� and �31b�. A part
of the scattering state effects is taken into account through
the NEGF-based density matrix discussed in Sec. III. The
bias-dependent Hessian matrix and, hence, the normal vibra-
tions of the molecule are calculated from the second deriva-
tive of the EHF�V� with respect to the nuclear coordinates.

E. Electron-intramolecular vibration self-energy

In order to discuss the molecular vibration effect on the
electric current, we expand the molecular orbital energy parts

�a of the Hartree-Fock single particle Hamiltonian F̂
=�a�aĉa

†ĉa in terms of the normal coordinate q of the mo-
lecular vibration: �a��a�0�+ ���a /�q��0� ·q. The linear term

of F̂ with respect to q gives perturbation Hamiltonian of our
e-mv problem. Most standard treatise that derive the lesser
and the greater self-energies is to use the Langreth theorem32

for chronological self-energies in the time domain. If we use
the lowest-order perturbation theory for the contact self-
energy which will be discussed in the Sec. III A and Appen-
dix B, the lowest-order chronological self-energy for e-mv
coupling may be given by22

�e-mv
t �t,t�� =

i

2�
�

s

�sDs
t�t,t��GC

t�t,t�� , �19�

where the suffix s classifies the normal vibrational mode, �s

is the squared e-mv coupling constant which will be given by

Eq. �34� in Sec. III A, and Ds
t�t , t�� is the chronological

Green’s function of the molecular vibration, whose Fourier
transform onto the energy domain is given by

Ds
t��� =

1

� − �s + i� sgn���
−

1

� + �s + i� sgn���
. �20�

Because of the Langreth theorem, the product of the chrono-
logical Green’s function for the electron and the vibration
Ds

t�t , t��GC
t �t , t�� may give rise to those of the lesser and

greater Green’s function, Ds
��t , t��GC

��t , t�� and
Ds

	�t , t��GC
	�t , t��, respectively.32 Using the theorem, we may

obtain the following lesser and greater self-energies of e-mv
origin:

�e-mv
� �E� =

i

2�
�

s

�s� d�Ds
����GC

��E − �� , �21a�

�e-mv
	 �E� =

i

2�
�

s

�s� d�Ds
	���GC

	�E − �� , �21b�

we may suppose that the molecular vibration is in thermal
equilibrium, and therefore we impose the following bound-
ary condition for the time variable of the lesser Green’s func-
tion of the vibration:

Dp�q�
� �r�1,r�2;t1 = 0,t2� = Dp�q�

	 �r�1,r�2;t1 = − i�,t2� . �22�

This leads to the following relation between the lesser and
the greater Green’s function:

Dp�q�
� �r�1,r�2;�� = e−��Dp�q�

	 �r�1,r�2;�� . �23�

The spectrum function representation of the e-mv self-
energies is then given as

�e-mv
� �E� =

i

2�
�

s
� �sJs���GC

��E − ��d� , �24a�

�e-mv
	 �E� =

i

2�
�

s
� �sJs���GC

	�E + ��d� . �24b�

The vibrational spectral function Js��� is given by

Js��� = b��s���� − �s� + �1 + b��s����� + �s� , �25�

where �s denotes the vibrational frequency of the normal
mode s and the Bose distribution function is given by
b�
�
�=1 / �e�
�
−1	. Damping effects and the local heating
problem on the molecular vibration cause complications and
therefore they will not be discussed here.

F. Self-consistent theory

The previous subsections derived the self-energies due to
contact, electron-electron interaction, and e-mv coupling.
While the steady-state kinetic equations, Eqs. �3a� and �3b�,
that give the lesser and greater Green’s function include the
lesser and greater self-energies as inputs, the self-energies
are calculated in terms of Green’s function, shown in Eqs.
�21a� and �21b�. We therefore need self-consistent calcula-
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tions to determine both. However, this is true only for the
e-mv coupling contribution, and different for the contact in-
teraction. We do not need a self-consistent calculation to de-
termine the contact contribution to the self-energies, because
the interaction is accurately solved using Eq. �11b�. No ki-
netic equations need to be solved for contact self-energies.
For electron-electron interaction, however, we do need self-
consistent calculations to determine �HF

R�A�, despite �HF
��	�=0.

Because of this relation, there are no contributions from the
electron-electron interactions to the kinetic equation, but
�HF

R�A� must be consistent with GC
R�A�. While �HF

R�A� is given by
GC

R�A� because of Eq. �19� and the relation

P =
1

2�i
�

−�

�

GC
��E�dE

=
1

2�
�

−�

�

�fp�E�GC
R�pGC

A + fq�E�GC
R�pGC

A

− iGC
R�e-mv

� GC
A	dE , �26�

where �p�q��E�= i��p�q�
R −�p�q�

A �, and GC
R�A� is dependent on

�C
R�A�, which includes �HF

R�A� instead of �e-e
R�A� in Eq. �5�. We

therefore need to determine another self-consistent quantity.
We need two loops to get self-consistencies, one for e-mv
coupling and another for electron-electron interaction. Be-
cause of the last term in Eq. �26�, −iGC

R�e-mv
� GC

A, the two
loops are not independent. Nonetheless, we will separate the
loops for numerical calculations, which will be presented
later. If �e-mv

� is small compared with �p�q�, which is ex-
pected for molecules, this simplification may not change our
numerical results; however, it reduced the computational cost
significantly, and it is useful practically. Because of the con-
tact effect, both �HF

R�A� and GC
R�A� are dependent on the volt-

age.

III. IMPLEMENTATION THEORIES

A. Approximate Green’s functions

This section derives a practical theory, which will enable
further simplifications. In the previous section, we used the
direct inverse of a Hamiltonian based matrix to calculate the
retarded and advanced Green’s functions. Here, we use the
Lehmann representation of Green’s function, in terms of the
molecular orbitals, with some modification.29 The retarded
Green’s function may be given in terms of molecular orbital
coefficient vectors, Ca

R and Ca
A, of molecular orbitals of the

center region, defined on the dual space ��a�r��� and ��a�r���
as follows:

GC
R = �

a

M
Ca

RCa
A†

E − �a
, �27a�

�F + �contact
R + �e-mv

R 	Ca
R = �aSCa

R, �27b�

�F + �contact
A + �e-mv

A 	Ca
A = �

a
*SCa

A, �27c�

where the molecular orbital coefficient vectors are given by
eigenvectors of dual Schrödinger equations, Eqs. �27b� and

�27c�, for our open system. The subscript a is the molecular
orbital index. We use relations, i.e., GC

R�r1 ,r2 ;E�

=�a

�a�r1��a*�r2�

E−�a
, GC

R�r�1 , t1 ;r�2 , t2�=��,�
��r�1�GC;��
R �t1 , t2�
��r�2�,

and the linear combination of atomic orbital �LCAO� expan-
sion of the molecular orbital: �a=�C,a

R 
 and �a
=�C,a

A 
. Details are described in Appendix A. Because of
the non-Hermitian nature of the Hamiltonian F+�contact

R

+�e-mv
R , the molecular orbital energy �a takes a complex

value and the molecular orbitals ��a�r��� and ��a�r��� defined
on the dual space are also complex. They are orthonormal to
each other: ��a�r��

b
*�r�dr=�ab. One of the authors success-

fully used this expression to calculate the ballistic-electric
current through the benzenedithiolate molecule within the ab
initio Hartree-Fock nonequilibrium Green’s function scheme
augmented with a one-dimensional tight-binding model for
electrodes.29 The theory is fully consistent with that given in
terms of the inverse of a Hamiltonian-based matrix as it is
discussed in Appendix A. The advantage of using the mo-
lecular orbital is that it is amenable to simplification. The
non-Hermitian effect may be neglected for molecules whose
molecular orbital energy is separated by a large gap from the
Fermi level of the electrode. We suppose that �contact

R

+�e-mv
R is less important in the Schrödinger equation than F.

Thus, the following Rayleigh-Schrödinger perturbation ex-
pansion may be useful:29,33,34

�F + �contact
R + �e-mv

R 	�Ca
�0� + Ca

R�1� + ¯ �

= ��a
�0� + �a

�1� + ¯ �S�Ca
�0� + Ca

R�1� + ¯ � , �28�

where the superscript �0�,�1�,… denotes the order of the per-
turbation expansion; we have dropped the superscript R for
the zeroth order coefficient. Within the first order expansion,
the retarded and advanced Green’s functions may be given
by29,33,34

GC
R�E� = �

a

M
Ca

�0�Ca
�0�T

E − �a
�0� − Re �a

�1� − i Im �a
�1� , �29a�

GC
A�E� = �

a

M
Ca

�0�Ca
�0�T

E − �a
�0� − Re �a

�1� + i Im �a
�1� , �29b�

where FCa
�0�=�a

�0�SCa
�0�, Ca

�0�= �C1,a
�0� C2,a

�0�
¯ C�,a

�0�
¯ CM,a

�0� �T

and �a
�1�=Ca

�0�T��contact
R +�e-mv

R �Ca
�0�, and M is the number of

the molecular orbitals. The expressions in Eqs. �29a� and
�29b� do not include the overlap matrix. Details are dis-
cussed in Appendix A. Similarly, the lesser and greater
Green’s functions may be obtained as follows:

GC
��E� = i�

a

M
fp�E��a

p + fq�E��a
q − i�e-mv,a

�

�E − �a
�0� − Re �a

�1��2 + �Im �a
�1��2Ca

�0�Ca
�0�T,

�30a�
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GC
	�E� = − i�

a

M
�1 − fp�E�	�a

p + �1 − fq�E�	�a
q + i�e-mv,a

	

�E − �a
�0� − Re �a

�1��2 + �Im �a
�1��2

�Ca
�0�Ca

�0�T, �30b�

where �a
p�q�=Ca

�0�T�p�q�Ca
�0� and �e-mv,a

��	� =Ca
�0�T�e-mv

��	�Ca
�0�. Be-

cause Im��contact
R �E�	=�T Im�Gp

R�E�+Gq
R�E�	� is given by

the electrode state density, it may be small around the mo-
lecular orbital energy range when the gap is large. The
lowest-order argument discussed above is expected to work
well for molecules. The lowest-order calculation result for
the benzenedithiolate molecule agreed well with the full cal-
culation made using Eq. �27a�. Within the lowest-order
scheme, the density matrix may be written as

P�V� =
1

2�i
�

−�

�

GC
��E�dE = �

a

na�V�Ca
�0�Ca

�0�T, �31a�

na�V� =
1

2�
�

−�

� fp�E��a
p + fq�E��a

q − i�e-mv,a
�

�E − �a
�0� − Re �a

�1��2 + �Im �a
�1��2dE .

�31b�

This calculation is very stable numerically, and free from the
numerical fluctuations of the voltage dependence of the bal-
listic electric current often found in literature concerning the
NEGF calculations. In this paper, we neglect �e-mv,a

� in the
density matrix calculation, as it has already been explained.

Within the lowest-order expansion, the e-mv self-energies
may be given as

�e-mv,a
��	� �E� = �

a

SCa
�0��e-mv,a

��	� Ca
�0�TS , �32a�

�e-mv,a
� �E� = i�

s

�a
s�b��s��fp�E − �s��a

p + fq�E − �s��a
q − i�e-mv,a

� �E − �s��
�E − �s − �a

�0� − Re �a
�1��2 + �Im �a

�1��2

+
�b��s� + 1��fp�E + �s��a

p + fq�E + �s��a
q − i�e-mv,a

� �E + �s��
�E + �s − �a

�0� − Re �a
�1��2 + �Im �a

�1��2 � , �32b�

�e-mv,a
	 �E� = − i�

s

�a
s� �b��s� + 1���1 − fp�E − �s�	�a

p + �1 − fq�E − �s�	�a
q + i�e-mv,a

	 �E − �s��
�E − �s − �a

�0� − Re �a
�1��2 + �Im �a

�1��2

+
b��s���1 − fp�E + �s�	�a

p + �1 − fq�E + �s�	�a
q + i�e-mv,a

	 �E + �s��
�E + �s − �a

�0� − Re �a
�1��2 + �Im �a

�1��2 � , �32c�

where �a
s denotes the e-mv coupling constant between electrons on the molecular orbital a and the normal intramolecular

vibration s. Because of the identity relation,�e-mv
R −�e-mv

A =�e-mv
	 −�e-mv

� , the imaginary part of the retarded self-energy
Im��e-mv

R � is given by Im��e-mv
R �=−i /2��e-mv

	 −�e-mv
� �. Using the Hilbert transform, �e-mv

R �E�= P /�� Im��e-mv
R �E��� / �E

−E��dE�+ i · Im��e-mv
R �E��, where P�−�

� denotes the principal value of the integral, we obtain the retarded e-mv self-energy

�e-mv,a
R �E� = �

a

SCa
�0��e-mv,a

R Ca
�0�TS , �33a�

�e-mv,a
R �E� = �

s

�a
s� b��s� + 1

E − �s − �a
�0� − �a

�1� +
b��s�

E + �s − �a
�0� − �a

�1�

−� d�

2�

fp�E − ���a
p + fq�E − ���a

q − i�e-mv,a
R

�E − � − �a
�0� − Re �a

�1��2 + �Im �a
�1��2�

1

� − �s + i�

−
1

� + �s + i�
� . �33b�

The squared e-mv coupling constant �a
s is diagonal with respect to the molecular orbital suffix a. It is given approximately by

�a
s�V� �

1

2�s�V�� ��a
�0��V�
�qs

�2

, �34�

where the normal coordinate gradient of the molecular orbital energy may be given by35,36
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��a
�0�

�qs
= �

��

�C�,a
�0� F��C�,a

�0�

�qs

= �
��

C�,a
�0� C�,a

�0� � �H��

�qs
+ �

��
� �P���V�

�qs
�������

+ P���V�
��������

�qs
� − E� ·

���
r�
��
�qs

− �a
�0��S��

�qs
� ,

�35�

where qs is the normal coordinate of the molecular vibration
s. H��= �
��r��
H

��r��� and F��=H��+���P����� ����
−E� · ��
r�
��.28 Details will be discussed in Appendix B.

It might be interesting to discuss the symmetry selection
rule on the coupling constant. Because of the group theory,
the right-hand side of Eq. �34� takes a nonzero value only for
totally symmetric modes,37,38 while for other modes it van-
ishes. All the terms in the right-hand side of Eq. �35� are
necessary to keep the rule. If some terms, such as the deriva-
tive of the overlap matrix or the derivative of the density
matrix, are neglected in Eq. �35�, we may easily miss impor-
tant things, and arrive at unexpected results. We should pay
special attention to this.

A correction to the zeroth order estimate of the e-mv cou-
pling constant will be discussed. The correction appears be-
cause of the contact effect and it will accept lower symmetry
contributions. Then we may expect the propensity rule rather
than the selection rule at most in our real system. We prefer
to use the words “propensity rule” rather than “selection
rule” hereafter, because of this.

All the numerical results presented in this paper have
been obtained by using the equations given in this section
but not using the familiar resolvent calculations. One of the
advantages of the lowest-order calculation given here is that
it reduces the computational cost because we do not have to
take the inverse of the Hamiltonian matrix to calculate the
Green’s function. Another advantage is the numerical stabil-
ity in the density matrix calculation and subsequent self-
consistent-field calculations.

B. Elastic and inelastic currents

We separated the two self-consistent loops in the numeri-
cal calculations, as discussed in Sec. II E. The loop structure
adopted in this paper is summarized in Fig. 2. After achiev-
ing self-consistency, the electric current is calculated in
terms of Eq. �4�, using the lesser and greater Green’s func-
tions and self-energies. It might be interesting to decompose
the total electric current into the following two contributions:

Ielastic,p =
2e

h
� �fq − fp�Tr�GC

R�pGC
A�q	dE , �36a�

Iinelastic,p =
2e

h
� Tr��p

	GC
R�e-mv

� GC
A − �p

�GC
R�e-mv

	 GC
A	dE .

�36b�

We call the former elastic because the formula is analogous
to the Landauer form. We designate the remaining latter in-
elastic because the lesser and greater e-mv self-energies ap-
pear explicitly in the equation. In the elastic current formula,
the retarded and advanced e-mv self-energies are implicitly
involved in the retarded and advanced Green’s functions,
making it different from the ballistic current. The ballistic
current is defined by

Iballistic,p =
2e

h
� �fq − fp�Tr�GC

R�pGC
A�q	dE, �e-mv = 0.

�36c�

These definitions will be used in the following section to
discuss the numerical calculation results.

IV. CALCULATIONS

A. General details of calculations

We apply the theory discussed hitherto to a hypothetical
system where a benzenedithiolate molecule is suspended in
the gap between the two electrodes. We adopted standard
quantum chemistry techniques to calculate the matrix ele-
ments of the center region. A Gaussian basis set is used to
expand the Slater-type atomic orbitals whose linear combi-
nations �LCAO� give rise to molecular orbitals. We adopted
the STO-6G basis set. While the molecular part is treated in
a fully ab initio quantum chemistry manner, we used simpli-
fications for the electrodes.39 The nearest-neighbor approxi-
mation is used for �. We adopted a one-dimensional, single-
band tight-binding model �equivalent to a simple Hückel
approximation� for the surface density of state, and hence the

FIG. 2. Self-consistent-field �SCF� loops in NEGF-based
Hartree-Fock method and self-consistent Born approximation.
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surface Green’s function of the electrode; gsurface;p�q�
R �E�

=exp�ikc� /�, where kc is obtained by solving E=�
+2� cos�kc� for a given E. The parameter values are given
by �=−4.77 eV and �=−3.0 eV. The Fermi energy for the
model electrodes is set to be EF=−4.77; these parameter val-
ues are the same with those used in Ref. 29. The most im-
portant thing here is that the energy dependence of the elec-
tron density of states �DOS� of the electrode is very gradual.
Strong energy dependencies of the DOS give large voltage
dependences of the background of the IETS, i.e., d2I /dV2.
The background may make our discussions on IETS very
complicated. We expect this is not the case for the gold elec-
trodes. It should be noted that IETS depends considerably on
EF in the sense that the energy difference between the Fermi
energy and the molecular orbital energy is one of the most
important parameters which controls the suppression of the
elastic current which will be discussed in Sec. IV E. The
contact self-energy at the electrode p�q� should be read as

�p�q�
R �E� = �p�q�,C

T gsurface;p�q�
R �E��p�q�,C

= �
tp�q�,1tp�q�,1 tp�q�,1tp�q�,2 ¯ tp�q�,1tp�q�,M

tp�q�,2tp�q�,1 � ]

] � ]

tp�q�,Mtp�q�,1 ¯ ¯ tp�q�,Mtp�q�,M


�gsurface;p�q�

R �E� , �37�

where �p�q�,C= �tp�q�,1 tp�q�,2¯ tp�q�,�¯ tp�q�,M�. We further
supposed that tp�q�,�=0.0 for all atomic orbitals 
�, except
the 3py orbital �� type� of the sulfur atom of the
p-benzenedithioone diradical molecule. tp�q�,3py of sulfur=
−1.0 eV.29 All calculations are done at the ground state �T
=0 K�. It should be noted that our interest here is to clarify
the physical effect of the bias voltage on the inelastic electric
current problem, rather than to visit every chemical detail of
the benzenedithiolate molecule. The simplifications adopted
should not affect the understanding of the physics involved
in the problem. The simplifications have practical benefits,
for instance, the self-consistent calculations for �HF

R�A� and
�e-mv

	����E� are free of instabilities due to inaccurate modeling
of the electrodes, such as the effects of finite size on the
lateral degrees of freedom, often found in the literature.

B. Electron-intramolecular vibration coupling
constant

The normal mode vectors and frequencies are obtained by
diagonalizing the NEGF-based Hessian matrix, which is
evaluated after the self-consistency of the NEGF is achieved
at every value of V sampled. Rather than the squared e-mv
coupling constant, �, the following dimensionless coupling
constant, derived from �, is sometimes seen in physics
literature:40–46

�a
s = �

p

q dE

eVbias
DOS�E�

�a
s

��s
. �38�

Sergueev et al. studied the dimensionless coupling constant

� �Ref. 14� and found a very strong bias voltage dependence,
which might be suggestive of anomalous inelastic current
behavior. Before we discuss the finite bias voltage effect on
both the elastic and inelastic currents, we first compare our
calculations of the dimensionless coupling constant with
those obtained by previous authors. �a

s is calculated only for
the purpose to compare our results with the preceding ones.
�a

s given by Eq. �34� is used throughout the paper except this
subsection. Our results are shown in Fig. 3�a�. Also shown in
the inset of the figure is the voltage dependence of the
squared e-mv coupling constant �a

s�V�. The bias voltage de-
pendences of the dimensionless coupling constant � for some
vibrational modes obtained in our calculations are qualita-
tively in fair agreement with those obtained by previous
authors.14 They increase when the voltage becomes larger
than 1–2 V. It is clear from the figure, and its inset, that the
bias voltage effect on � comes mostly from the density of
state part �DOS�E�	. The bias voltage dependencies of the
squared coupling constant �a

s�V� and vibrational frequencies
are very weak. Figure 3�b� shows three normal vibrational
modes of the benzenedithiolate molecule. The three totally
symmetric modes of the extended molecule in the C2v con-
figuration have significant contributions to e-mv coupling.

(a)

(b)

FIG. 3. �a� The dimensionless coupling constant � as a function
of bias voltage. � increases as the bias voltage increases. The inset
shows the voltage dependency of the squared e-mv coupling con-
stant �. � does not show clear bias voltage dependency. The num-
bers marked near the plots denote the energy of the corresponding
molecular vibrations. �b� Normal vibrational modes of the benzene-
dithiolate molecule, which take finite values of the electron-
intramolecular vibration �e-mv� coupling constants. The normal
modes shown here as examples are calculated at Vbias=0.1 V.
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C. Equilibrium Green’s function and non-equilibrium Green’s
function calculations

In Sec. II, we discussed the elastic and inelastic e-mv
coupling effects on the electric current, based on the non-
equilibrium Green’s function method, where electron-
electron interaction is considered within the Hartree-Fock
approximation. The bias voltage-dependent density matrix is
accompanied by rearrangement of electron charge distribu-
tion in the center region. It is also closely related to charge
transfer between the electrode and the molecule, which may
result in a change of the total molecular charge. It may be
interesting to freeze the rearrangement for clear understand-
ing. This may be achieved by keeping the occupation number
of the molecular orbitals independent of V; that is, we freeze
F to the value obtained when V=0. The bias voltage depen-
dence of the electric current is calculated using this F within
the linear response scheme. This is analogous to the tight-
binding calculation, but the mean-field potential, which is
decided at V=0, is now included. We call this method the
equilibrium Green’s function �EGF� method17,29 as opposed
to the full calculations based on the nonequilibrium Green’
function �NEGF� method. In this method, no self-consistent
calculation is made for the electron-electron interaction, ex-
cept at V=0, and we assume �HF

R�A��V�0�=�HF
R�A��V=0�. We

use the notations NEGF and EGF to specify whether self-
consistent calculation for the electron-electron interaction for
every V, including V�0, is made before the self-consistent
Born calculation for e-mv coupling or not. This procedure is
applied to EGF calculations of the e-mv coupling constants
and the normal molecular vibrations as well.

It should be emphasized that EGF calculation results will
be presented here just as references to exaggerate how the
bias voltage and the electron-electron interaction affect the
NEGF results of the vibronic current. Because of this, we
have frozen all the bias voltage-dependent changes of the
electronic structure of the center region in the EGF calcula-
tions including the field gradient and the charge-transfer con-
tributions to the changes. It should be noted that the charge-
transfer effect has much larger contributions to the energy
level shift than the field gradient effect in the NEGF calcu-
lations of the benzenedithiolate molecule.

D. Elastic and inelastic currents in the low-bias voltage region

We discuss here the elastic and inelastic currents in the
low-bias region. The total current is given by a sum of elastic
and inelastic currents. We calculated these currents based on
both EGF and NEGF methods and summarized our results in
Fig. 4. The bias voltage dependence of the differential con-
ductance dI /dV’s obtained using both EGF and NEGF meth-
ods are shown in Fig. 4�a�. The corresponding counterparts
for d2I /dV2 obtained using both methods are shown in Fig.
4�b�. All intramolecular vibrational modes are considered si-
multaneously in the calculations. We find three steps of the
differential conductance, dI /dV, at V=0.17, 0.18, and
0.24 V in both EGF and NEGF results, shown in Fig. 4�a�.
These peaks come from e-mv coupling to the three normal
vibrational modes, given in Fig. 3�b�. The magnitudes of the
gaps at every step are comparable between the EGF and the

NEGF results, but the dI /dV value itself is found to be larger
in the EGF results than in the NEGF results. The difference
is mostly determined at a bias voltage region smaller than the
first step. The finite value of the differential conductance
dI /dV at V=0 appears because of the small tails of the elec-
trodes’ electronic density of state. However, we cannot find a
clear difference between d2I /dV2’s obtained by the EGF and
NEGF methods, as shown in Fig. 4�b�. The two plots for
d2I /dV2, given in Fig. 4�b�, coincide and seem to merge into
a single curve, other than some small fluctuations due to the
finite-difference methods used in the calculations. The peaks
of d2I /dV2 appear at the same voltage as the steps of dI /dV,
i.e., at V=0.17, 0.18, and 0.24 V. These peaks correspond to
the totally symmetric modes of the benzenedithiolate mol-
ecule, whose symmetry is reduced to C2v, because of the
presence of the external electronic field along the molecular
axis. There is virtually no difference between the EGF and
NEGF results because the molecular vibration frequencies
�s�V� and the squared coupling constants �a

s�V� do not de-
pend much on applied bias voltages. The finite bias effect
does not play an important role in the low-bias region, where
experimental measurements of IETS are often made.

E. Elastic and inelastic currents in the high-bias voltage region

Here, we discuss the calculation results in the high-bias
region. The calculation results of the I-V curves obtained
using the EGF and NEGF methods are summarized in Fig. 5.
The EGF results are shown in Fig. 5�a�, and the NEGF re-
sults are shown in Fig. 5�b�. The total electric currents are
plotted in both figures, as well as their decomposition into

FIG. 4. �a� dI /dV and �b� d2I /dV2 curves. The solid and dashed
lines denote the NEGF and the EGF calculation results,
respectively.
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elastic and inelastic contributions. Also plotted as references
are the ballistic currents calculated using the two methods.
The EGF calculation results are discussed first. We find in
Fig. 5�a� that while the inelastic current increases as the volt-
age increases, the total current is suppressed in the high-bias
region compared with the ballistic current. This is because
the retarded e-mv self-energy increases as the bias voltage
exceeds 2 V. The increase results in the suppression of the
retarded Green’s functions, which leads to the suppression of
the elastic current. The total current is reduced because the
decrease in the elastic channel is larger than the increase in
the inelastic channel. In this case, an increase of the e-mv
self-energy enhances the inelastic channel, but works to sup-
press the elastic channel to a greater degree, resulting in the
reduction of the total current. It should be noted that the bias
voltage range where the suppressive correlation between the
elastic and the inelastic channels appears depends on the en-
ergy difference between the molecular orbital energy and the
Fermi energy of electrodes.

Next, we discuss the NEGF calculation results, where the
results are quite the opposite. We do not observe suppression
of the total and elastic currents at high-bias voltage at all in
Fig. 5�b�. Note that the magnitudes of the electric currents
obtained by the NEGF method are several times smaller than
those of the EGF. This may come from the energy level shift
due to the voltage, which is considered only in the NEGF

calculation, through the change of the molecular charge. The
correlation between the elastic and inelastic channels is
found to be overestimated when we do not consider the
charge of self-consistency between the molecule and the
electrodes. It is therefore very important to consider this ef-
fect before we discuss the vibronic corrections made to the
electric current in the high-bias voltage region. The differ-
ences between the NEGF and the EGF results involve some
important information on the vital role played by bias volt-
age and the electron-electron interaction in the vibronic cur-
rent at high-bias voltage. They will be discussed in Sec. V B.

V. DISCUSSIONS

A. Small gap cases

When the gap is small, we might have to include the
higher-order correction terms of the Rayleigh-Schrödinger
expansion, given by Eq. �28�. The leading correction term to
the e-mv coupling constant may be given by �a

s,�1�= �1 /2�s�
����Ca

�0�T��contact
R �Ca

�0�	 /�qs�2. The correction term may ac-
cept lower symmetry contributions. This lowest-order cor-
rection may be involved in the e-mv coupling constant,
which may play a similar role as the scattering state effect
discussed in Ref. 14. In both cases, the coupling constants
are not real, but complex. This is a serious problem for the
theory. Even worse, because the inelastic current is depen-
dent on the electronic local density of state, the vibrational
local density of state, and the coupling constant, competi-
tions and correlations among them make the arguments on
vibration mode dependence very complicated in the small
gap region. To make a clear assignment of the mode depen-
dence, both theoretically47–50 and experimentally,51,52 the
large gap region is the place to start the discussion. Here the
electronic density of state of the electrodes may not play an
important role, because the density of state may fall off rap-
idly in the important energy region. When the gap is large,
�a

�0� is a very good estimate of the molecular orbital energy,
hence the e-mv coupling constant given by Eq. �34� should
work well.

It should be pointed out here that a unique calculation
given by Troisi and Ratner may include contact effects on the
e-mv coupling constant to some extent effectively.47 It is,
however, quite difficult to find any correspondence of their
Taylor expansion in our Keldysh Green’s function theory.
Quantitative comparison between our theory and their theory
is hence difficult to make.

B. Charge-transfer effect

In the NEGF method, the molecule is allowed to respond
to bias voltages by changing the occupation numbers, hence
the density matrix. The molecule is allowed to change the
molecular charge. In the case of benzenedithiolate molecule,
a hole transfers from electrodes to the molecule that destabi-
lizes the molecule and pushes the HOMO energy down to
accept the incoming electrons as seen in Fig. 6. The total
number of electrons in the molecule is reduced as we in-
crease the voltage, as shown in the inset of Fig. 6. The en-
ergy shift may be confirmed from another figure, which

(a)

(b)

FIG. 5. Current vs voltage plots, denoted from �a� the EGF and
�b� the NEGF calculation results. The solid lines denote the total
current, which is given as the sum of the elastic and the inelastic
currents. The dashed lines denote the ballistic current. The dotted
and the double-dotted lines represent the elastic and inelastic cur-
rents, respectively. The filled circles are obtained from the EGF
calculation supplemented by the HOMO energy shift whose value is
estimated from the NEGF calculation results.
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shows the voltage dependence of the energy-dependent
transmission probability. The peak of transmission probabil-
ity for ballistic current, shown in Fig. 7, shifts down as the
voltage increases. Because of the shift, the suppression at
high-bias voltage, found in the EGF result, is not found in
the NEGF result. The suppression, and hence the increase of
the e-mv self-energy, appear in the EGF result because the
chemical potential of the electrode p is reduced as we in-
crease the bias voltage, to fall close to the HOMO energy.
This does not appear in the NEGF result since the gap be-
tween the chemical potential and the molecular orbital en-
ergy is not filled because of the reduction of the HOMO
energy. The energy and the potential do not come near each
other within the voltage region studied. In fact, the total elec-
tric current obtained using the NEGF method can be simu-
lated by the EGF calculation if we consider the HOMO shift
as demonstrated by the circle in Fig. 5�b�. While the charge
transfer modulates both spatial expansions of molecular or-
bitals and the molecular orbital energy level structure, Fig.
5�b� shows that the latter is more important to reduce the
suppressive correlation. The shift of molecular orbitals works
as if it screens the bias voltage effect. For example, electric

current behavior around 3 V in the NEGF result seems simi-
lar to that obtained at about 2 V using the EGF method. It
should be noted that the NEGF method, in principle, may not
exclude the suppressive correlation between the elastic and
inelastic components of the current in the higher-bias voltage
region than studied here. It may appear sooner or later at
higher-bias voltage because the rate of the HOMO energy
shift is expected to be different from that of the chemical
potential, in general.

The bias voltage effect is found to play an important role
in the high-bias voltage region. The energy shift accompany-
ing the small change of the molecular charge, which is con-
sidered appropriately only when the NEGF SCF loop is fully
solved, plays a very important role in correcting the overes-
timation of the suppressive correlation between the inelastic
and elastic channels. Similar behavior to that of the EGF
results for the high-bias voltage region has been observed in
the resonant case, namely, atomic wires. When the gap is
small, the elastic and total currents decrease when the bias
voltage exceeds the phonon energy, while the inelastic cur-
rent increases as the bias voltage exceeds the phonon energy.
Then the peak and dip structure in the resonant region, as a
function of the bias voltage, behaves quite oppositely from
the tunneling region.53 Because a charge transfer between the
molecule and the electrodes is not expected in the zero-gap
case, it may not be likely that the charge transfer modifies the
zero-gap results much. However, when the gap is marginal, it
may be interesting to determine if the change in charge re-
duces the suppressive correlation between the elastic and in-
elastic channels. The model adopted here for the electrodes is
not capable of including details of the interactions between
the molecule and the electrodes in the resonant case. It may
be far too simplified to address the problem. The problem in
the resonant regime remains an open question.

VI. CONCLUSIONS

We have studied the bias voltage dependence of the elas-
tic and inelastic currents of the e-mv origin in the tunneling
region, where the gap between EF and the site energy is
larger, compared with twice of the intramolecular transfer
integral. Two self-consistent loops, one treat the electron-
electron interaction within the Hartree-Fock approximation
and another to treat e-mv coupling within the Born approxi-
mation, are derived and solved. It was found that the bias
voltage effect does not produce an essential change in the
elastic and inelastic currents in the low-bias voltage region.
In the experimentally accessible voltage region, however, the
bias voltage effect on the vibronic current problem is ex-
pected to be very small. A small change of the molecular
charge, induced by a high-bias voltage, however, reduces the
suppressive correlation between the elastic and inelastic
channels. In the high-bias voltage region, the e-mv coupling
effect on the current is strongly modified by the voltage.

APPENDIX A: MATRIX REPRESENTATIONS
OF THE GREEN’S FUNCTION

Here we discuss two matrix representations of the re-
tarded Green’s function based on atomic orbital �AO�. One is

FIG. 6. The HOMO energy shift according to the applied bias
voltages. The voltage dependence of the total charge in the ben-
zenedithiolate molecule is shown in the inset. The HOMO energy is
pushed down as the voltage increases, which increases the total
charge on the molecule. The total charge is defined by −�r2Prr

+�AZA.

FIG. 7. Transmission probability of the HOMO. The peak of
transmission probability shifts down as we increase bias voltage.
The solid, dashed, and dotted lines denote the transmission prob-
abilities at 0, 2, and 3 V, respectively.
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given in terms of the Lehmann representation and the other
in terms of the inverse of a Hamiltonian-based matrix. The
former is given by

GC
R�r�1,r�2;E� = �

a

M
�a�r�1��

a
*�r�2�

E − �a
. �A1�

The retarded Green’s function satisfies the following equa-
tion:

�E + i� − F�r�1�	GC
R�r�1,r�2;E� −� dr���contact

R �r�1,r�3�

+ �e-mv
R �r�1,r�3�	GC

R�r�3,r�2;E� = ��r�1 − r�2� , �A2�

which is equivalent to Eq. �2a�. After making the LCAO
expansion of the molecular orbitals ��a� and ��a� involved in
GC

R, we multiply 
�r�1� from the left-hand side and 
��r�2�
from the right to Eq. �A2�, then take the integrals over r�1 and
r�2 as follows:

�
a

�
�,�
� 
�r�1��E + i� − F�r�1�	
��r�1�dr�1

�
C�,a

R C
�,a
A*

E − �a + i�
� 
��r�2�
��r�2�dr�2 +� � 
�r�1�

���contact
R �r�1,r�3� + �e-mv

R �r�1,r�3�	
��r�3�dr�1dr�3

��
a

C�,a
R C

�,a
A*

E − �a + i�
� 
��r�2�
��r�2�dr�

=� � 
�r�1���r�1 − r�2�
��r�2�dr�1dr�2. �A3�

Thus we obtain

�
�,�

��E + i��S� − F� − �contact;�
R

− �e-m�;�
R 	�

a

C�,a
R C

�,a
A*

E − �a + i�
S�� = S�. �A4�

Multiplying S−1 from the right, we obtain the equation

��E + i��S − F − �contact
R − �e-mv

R 	GC
R = I . �A5�

Because the retarded Green’s function given by Eq. �A1�
satisfies Eq. �A5�, Green’s function, given in terms of the
Lehmann representation, is equivalent to that given by the
inverse.

APPENDIX B: ELECTRON-INTRAMOLECULAR
VIBRATION COUPLING CONSTANT AND THE

GRADIENT OF THE MOLECULAR ORBITAL ENERGY

In this appendix, we derive Eqs. �34� and �35�. We denote
the following one-body Hamiltonian:

F̂0 = �
a

�a
�0�ĉa

†ĉa, �B1�

where ĉa
† is the creation operator of an electron on the mo-

lecular orbital a. Within the linear expansion of �a
�0�, in terms

of the normal coordinate, the one-body Hamiltonian may be

expressed by F̂=F0
ˆ + F̂e-mv, where F̂e-mv

=�k�a���a
�0� /�qk�ĉa

†ĉaqk. If we use creation and annihilation

operators for molecular vibration, b̂k
† and b̂k, noting qk= �b̂k

†

+ b̂k� /�2�k, then we have

F̂e-mv = �
k

�
a

1
�2�k

��a
�0�

�qk
ĉa

†ĉa�b̂k
† + b̂k� . �B2�

Because the lowest self-energy due to the e-mv coupling has
two vertices, the e-mv coupling constant � given by Eq. �20�
in the molecular orbital representation may be written as the
square of the coefficient �1 /�2�k����a

�0� /�qk�, which is
equivalent to Eq. �34�. The gradient of molecular orbital en-
ergy is given as

�

�qk
�a

�0� =
�

�qk
�
�,�

C�,a
�0� C�,a

�0� F��

= �
�,�
�C�,a

�0� C�,a
�0� �F��

�qk

+ F��� �C�,a
�0�

�qk
C�,a

�0� + C�,a
�0� �C�,a

�0�

�qk
��

= �
�,�
�C�,a

�0� C�,a
�0� �F��

�qk

+ �a
�0�S��� �C�,a

�0�

�qk
C�,a

�0� + C�,a
�0� �C�,a

�0�

�qk
�� . �B3�

If we notice the following relation:

�
�,�
� �C�,a

�0�

�qk
S��C�,a

�0� + C�,a
�0� �S��

�qk
C�,a

�0� + C�,a
�0� S��

�C�,a
�0�

�qk
� = 0,

�B4�

which is derived from the normal condition for the molecular
orbital, ��,�C�,a

�0� S��C�,a
�0� =1, we obtain Eq. �35�.
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