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We rigorously analyze the dispersion function and the curvature of the dispersion surface of a photonic
crystal to explore the fundamental limit of its angular sensitivities. With insight gained from group theory, we
find that symmetry induced degeneracy gives rise to a singular dispersion surface curvature and a nonvanishing
group velocity simultaneously. Near such a singularity, high angular sensitivities can be achieved at low optical
loss. This phenomenon exists generally in most common two-dimensional and three-dimensional photonic
crystal lattices, although it occurs only for certain photonic bands as dictated by symmetry. This symmetry-
induced effect is absent in one-dimensional crystals. Rigorous formulas of the sensitivities of the light beam
directions to wavelength and refractive index changes are derived. Individual contributions of the dispersion
surface curvature and group velocity to these sensitivities are separated. In the absence of the Van Hove
singularity, a singular dispersion surface curvature gives rise to ultrahigh dispersion � d�

d� ��103 deg /nm and
refractive index sensitivity � d�

dna
��104 deg without compromising optical transmission. The angular dispersion

value is significantly larger than those previously reported for the superprism effect and is not due to slow
group velocity. We also discuss how various parameters intrinsic and extrinsic to a photonic crystal may
suppress or enhance the angular sensitivities according to the rigorous formulas we obtain.
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I. INTRODUCTION

Photonic crystals provide high optical sensitivities not
achievable in conventional media. The high dispersion and
slow group velocity of photonic crystal waveguides help sig-
nificantly shorten the interaction length for optical
modulation.1–5 Critical to this advance is a clear-cut expres-
sion that gives the enhancement of the nonlinear phase sen-
sitivity of a photonic crystal waveguide mode in terms of the
group velocity.1 On the other hand, the high anisotropy and
angular dispersion of photonic crystals were found to cause
beam directions to have 500-fold higher sensitivities to
wavelength variation, which was named the superprism
effect.5 Such high wavelength sensitivities are frequently ac-
companied by high sensitivities to refractive index
perturbations.6,7 These high sensitivities have aroused wide
interest for potential applications in fiber optic communica-
tion, sensing, and nonlinear optics.5–17 However, a general,
quantitative relation between the anisotropy and these sensi-
tivities of photonic crystals is needed to determine the ulti-
mate limits of the sensitivities before we can fully uncover
the potential of these sensitive effects for a wide range of
important applications. For example, the sensitivity of the
superprism effect is often enhanced near a band edge at the
cost of a low optical transmission due to the slow group
velocity. Whether this sets a fundamental limit of the maxi-
mum achievable sensitivity for practical applications is an
interesting question to explore.

In this work, we rigorously show that high angular sensi-
tivities to wavelength and refractive index perturbations can
be achieved in the vicinity of a singular dispersion surface

curvature or the vicinity of a vanishing group velocity. Ex-
plicit analytical expressions are given to separate the effects
of the curvature and group velocity. Of particular interest is
the case where a singular curvature appears together with a
nonvanishing group velocity �and therefore high transmis-
sion� owing to symmetry-induced mode degeneracy. Such a
case is predicted prevalent in high symmetry two-
dimensional �2D� and 3D photonic crystal lattices, but absent
in 1D photonic crystals. Van Hove singularities, the singu-
larities of the density of states due to a vanishing group ve-
locity, have been proven to be an insightful concept for un-
derstanding some interesting effects in photonic crystals.18

The singularities of the dispersion surface curvature dis-
cussed here may occur at nonvanishing group velocities,
where Van Hove singularities are absent. Therefore this type
of singularity can lead us to some different effects or new
functional regimes of photonic crystals.

This paper is organized as follows. In Sec. II A, we will
first examine some analytic properties of the photonic crystal
dispersion function. This allows us to identify the correlation
and decorrelation of a singular curvature and a vanishing
group velocity, which highly depends on lattice symmetry
and mode degeneracy. An example based on an approximate
model is presented in Sec. II B. In Sec. III, we give key
rigorous formulas of the angular sensitivities of photonic
crystals. An example is used to illustrate the individual con-
trol of the curvature and group velocity so as to achieve large
sensitivities at low optical loss. Section IV discusses the con-
tributions of intrinsic and extrinsic parameters to photonic
crystal sensitivities, the effect of dimensionality and lattice
types, and the difference from Van Hove singularities.
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II. CURVATURE OF THE DISPERSION SURFACE AND
GROUP VELOCITY

A. Some key analytic properties and symmetry considerations

For simplicity, we illustrate our ideas with the TM polar-
ization �magnetic field in the plane� of a 2D photonic crystal.
The field equation, according to Bloch theorem, can be writ-
ten as

− �k + G�2E�G� + �2�
G�

��G − G��E�G�� = 0, �1�

where G and G� are reciprocal lattice vectors, k is the wave
vector, � is the dielectric constant, and E is the electric field
component normal to the plane. We have assumed the speed
of light c=1 for convenience. Generally, the zeros of the
secular determinant D�kx ,ky ,�� of the eigenvalue problem
Eq. �1� give the frequency � as an implicit function of k.
Starting from this implicit dispersion function instead of an
explicit ��k� is essential to linking the mode degeneracy to a
special type of curvature singularities of the dispersion sur-
face.

To study the curvature, it is necessary to find the second-
order expansion of D around an arbitrary point k0. A full
Taylor expansion of D in terms of �kx, �ky involves many
terms. We choose a local coordinate system �u ,v� that gives
a simpler expansion and a clear physical picture.19

Consider the expansion of the determinant D�kx ,ky ,�� for
a fixed frequency �,

D�kx0 + u cos � − v sin �,ky0 + u sin � + v cos �,��

= �
j=0

	

f j�u,��v j = 0, �2�

where the v axis of this local coordinate system is tangent to
the dispersion contour at an arbitrary k0, i.e., du /dv=0; and
� is the angle between the u and x axes. Also, the u axis is
parallel to the normal vector of the dispersion contour. Then
the dispersion surface curvature,


 �

d2u

dv2

�1 + �du

dv
�2	3/2

,

is simplified to


 =
d2u

dv2 .

It is a simple exercise to show �see Appendix A�

du

dv
= � �u

�v
�

�

= −
f1

�f0/�u
= 0, �3a�


 = � �2u

�v2�
�

= −
2f2

�f0/�u
, �3b�

at k0 �i.e., u=v=0�, hence f1�0,��=0 in this coordinate sys-
tem. The group velocity components are given by

vg =
��

�u
= −

�f0/�u

�f0/��
, �4a�

��

�v
= −

f1

�f0/��
� 0. �4b�

Comparing Eqs. �3b� and �4a�, it is apparent that in the
neighborhood of certain kc where ��f0 /�u�kc

=0, a large cur-
vature 
 and a slow group velocity vg would appear simulta-
neously. For convenience of discussion, we introduce the
group index ng=c /vg. The large values of 
 and ng are gen-
erally correlated to each other through a common factor
��f0 /�u�−1 in this neighborhood.

However, physically it is often undesirable to have a slow
group velocity because it may cause high optical loss �details
discussed later�. Further inspection of Eq. �4a� indicates that
a simultaneously vanishing �f0 /�� could break the afore-
mentioned correlation between 
 and ng and give an arbi-
trarily large 
 without entailing a vanishingly small group
velocity. At first glance, to simultaneously achieve �f0 /��
=0 and �f0 /�u=0 may require a photonic crystal to have
specially designed structure parameters. However, we note
that since the group velocity cannot exceed c due to causal-
ity, a vanishing �f0 /�� always leads to a vanishing �f0 /�u
according to Eq. �4a�, though not conversely. To trace the
origin of �f0 /��=0, we note an identity at v=0,

f0�u,�� � D�kx0 + u cos �,ky0 + u sin �,�� = 0.

Now one readily shows that �f0 /��=0 �hence a singular 
 at
vg�0� can be achieved if the dispersion function D has a
degenerate mode at k0, i.e.,

D�kx0,ky0,�� = c0�� − �0�n,

where the degree of degeneracy n�1.
It is well-known that degenerate eigenmodes will appear

at certain high symmetry points of the Brillouin zone �BZ�
where the associated little groups have at least one irreduc-
ible representation �IRREP� whose dimension is two or
higher;20,21 and the dimensionality of irreducible representa-
tions is known to play important roles in determining the
physical properties of some photonic crystal structures of
wide interests.20–22 The K point of a triangular lattice is as-
sociated with a little group C3v, which has two 1D irreduc-
ible representations A1, A2, and one 2D irreducible represen-
tation E.20 Therefore the above analysis predicts that a
singularity of 
, together with a nonvanishing vg, may appear
at K for certain photonic bands.

B. Example and some approximate forms of the curvature on
the BZ boundary

As an example, we study the dispersion surface curvature
for a triangular lattice with parameters na=3.8, nb=1.33, and
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r=0.3a. Intuitively, the dispersion contour depicted in Fig.
1�c� shrinks as � approaches �E; its curvature 
 �roughly the
inverse of the radius� grows toward infinity for smaller and
small contours. A close-up examination of the ��k� curves in
Fig. 1�a� shows that their slopes approach a nonvanishing
value as � approaches �E; this indicates nonvanishing vg
values. These intuitive pictures facilitate the qualitative un-
derstanding of the phenomena in this particular example.
However, to prove that these effects mathematically follow
from the theory given in the preceding section and therefore
are a particular instance of a general effect proposed herein
requires more detailed study.

In this section we employ a degenerate perturbation tech-
nique �DPT� involving three dominant Fourier components23

to analytically compute 
 for this 2D triangular lattice. The
numerical form of this DPT has been studied in detail.23 Here
we find that this DPT turns out to give some heuristic ana-
lytic forms of the curvature. As a by-product, we also find
some interesting analytic forms of other physical quantities
such as the frequencies at the band edge of high symmetry
points. Note that this approximate DPT theory is used in this
section �Sec. II B� only.

We have verified that this DPT method agrees well with
the rigorous plane wave expansion �PWE� method for eigen-
frequencies of the lowest band, as shown in Fig. 1�a�. We
define �0

2=�2��0�, �1
2=�2��b1�=�2��b2�=�2��b3�, where

b1, b2, and b3 are the three shortest reciprocal lattice vectors
and ��G� can be given in Bessel functions.20 For this section

only, we consider coordinates �u ,v� with the origin fixed at
the K point and �=0, which allows for a simple analytic
expression of 
 on the BZ boundary. The determinant D of
Eq. �1� for the three leading Fourier components is given by

D = 
�0
2 − k2 �1

2 �1
2

�1
2 �0

2 − k1
2 �1

2

�1
2 �1

2 �0
2 − k2

2 
 = 0,

where k=kc+uex+vey, k1=k+b1, and k2=k+b2. We com-
pute f0�u ,��, and f2�u ,�� from the secular determinant D
according to Eq. �2�,

f0�u,�� = g0g1g2 − �1
4�g0 + g1 + g2� + 2�1

6, �5a�

f2�u,�� = − �g0g1 + g1g2 + g0g2 + g1b2
2 − 3�1

4� , �5b�

where g0=�0
2− �kxc+u�2−b2

2 /4, g1=�0
2− �kxc+u−b1x�2, and

g2=g0. At K, we have

f0�0,�� = �g0 − �1
2�2�g0 + 2�1

2� = 0.

The first factor clearly indicates a doubly degenerate root,

�1,2
2 = b2

2/�3��0� − 3��b1�� = �E
2 ,

at the K point. The other root is �3
2=b2

2 / �3��0�+6��b1��.
Note ��b1��0 in this case.

The curvature 
 is computed via Eq. �3b� along MK for
part of the first band below �E,


 = −
1

u

f̃ + b2
2g1

f̃ + b2
2g0

, �6�

where f̃�u ,��=g0g1+g1g2+g0g2−3�1
4. One readily verifies

that g0=g1=�1
2 for the degenerate mode at �E �where u=0�.

Therefore, on the MK line, the curvature has the asymptotic
form 
→−1 /u as u→0. Furthermore, we note

�f0/�u = − u� f̃ + b2
2g0�;

�f0/�� = �2/����0
2 f̃ − 2�1

4�g0 + g1 + g2 − 3�1
2�� .

One readily verifies �f0 /��→const
u as u→0. Hence the
cancellation according to Eq. �4a� gives a nonvanishing vg at
K. Thus, within the DPT framework, a singularity of 
 with a
finite ng is analytically verified for this example.

Figure 2 shows that the values of 
 and ng obtained from
the DPT method agree well with the PWE method. The loga-
rithmic plot also reveals that the variation of 
 follows the
group index ng along most of the MK line except near K
�kxa=1 /3�, where a varnishing �f0 /�� breaks the correlation
between a singular 
 and a singular ng, as predicted. The
curvature in the entire BZ is plotted in Fig. 2 �inset� for the
lower branch �below E� of the first band. The large 
 values
on the BZ boundaries reflect the typical contour shape de-
picted in Fig. 1�c�, where the dispersion contour bends
abruptly across the BZ boundary. The curvature becomes
singular at high symmetry points M �kxa=0� and K. The
normalized curvature 2�
 /� for an ordinary medium is
around unity, but it can be several orders of magnitude

x

α
q0 nI

nb

na

y
(b)

θθθθ
  v g

(a)

ωE

1Aω

(c)

k0

FIG. 1. �Color online� A triangular lattice. �a� Photonic bands
for a structure: na=3.8, nb=1.33; and r=0.3a; lines: PWE method;
circles: DPT method. The two lowest bands have IRREPs E and A1

at K. �b� Schematic of a typical experimental configuration. �c� A
typical dispersion surface for the lower branch of the first band.
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higher in photonic crystals. Note the DPT is used to give an
intuitive expression of 
 for this example, it will not be em-
ployed in the derivation or calculation in the rest of this
work.

III. ANGULAR SENSITIVITIES OF A PHOTONIC
CRYSTAL

A. Derivation of the sensitivity formulas

The response of the mode energy flux direction �i.e., beam
direction� of a photonic crystal to a small perturbation of
wavelength or refractive index is of paramount interest to
many applications. To study this optical response, we need to
find the relationship between 
 and a measurable �extrinsic�
quantity in a typical experimental configuration illustrated in
Fig. 1�b�. The coupling condition for the input surface is
given by

nI� sin � = kx0 + u cos � − v sin � , �7�

where � is the angle of the group velocity at k0=kx0ex
+ky0ey with respect to the input interface. Here k0 is an ar-
bitrary point on an arbitrary dispersion contour. Consider
cases where the incident angle, �, is fixed and one varies the
wavelength or the refractive index of one constituent mate-
rial �for example, na�.

First, we analyze the wavelength perturbation. We notice

�u = � �u

��
�

v
�� + � �u

�v
�

�

�v + ¯ = � �u

��
�

v
�� + ¯ ,

�8�

where we have omitted terms of the order ��2, �v2, ���v,
and higher. The second term in Eq. �8� vanishes because we
have ��u /�v��=0 along a dispersion contour �constant-�
contour�. We also note that according to Eq. �7�, a perturba-
tion �� with a fixed value of � leads to

nI�� sin � = kx0 + �u cos � − �v sin �

around u=v=0. Note in the above equation, terms propor-
tional to �� vanish at u=v=0 and should not appear. By
virtue of Eq. �8�, one readily shows

�v
��

=
− 1

sin �
�nI sin � − � �u

��
�

v
cos �	 . �9�

Note the higher order terms omitted in Eq. �8� have vanish-
ing contributions in Eq. �9� in the limit ��→0; hence they
are not shown. The derivative ��u /���v is just the group
index, ng �note c=1 in this paper�. Also, by definition of the
curvature, we have ��� /�v�= �
�. Hence, by virtue of Eq. �9�,
the wavelength sensitivity is given by


 d�

d�

 = 
 d�

dv

dv
d�

 = 
 


cos �
�nI sin � − ng sin ��
 . �10�

Note �= �
2 −� �note Figs. 1�b� and 1�c� illustrate a case of

��0, ��0�.
Now we study the perturbation of refractive index. A per-

turbation of �na at a fixed � results in

�u

�na
cos � =

�v
�na

sin �

according to Eq. �7�. The refractive index sensitivity can be
calculated from d�

dna
= ��

�v
�v
�na

, which gives


 d�

dna

 = 
 


cos �
�sin �� �u

�na
�

�,v
	
 . �11�

Using the Jacobian determinants, one readily shows that

� �u

�na
�

�,v
= − � ��

�na
�

u,v
� �u

��
�

na,v
,

where the second term on the right side is just the group
index, ng �note c=1�. Now we find that the angular sensitiv-
ity to a refractive index perturbation �for a fixed incident
angle and fixed wavelength� is given by


 d�

dna

 = 
− 
 tan �� ��

�na
�

k
ng
 . �11��

One can compute ��� /�na�u,v���� /�na�k easily by varying
na in the photonic band calculation. Note that except for
angles �, �, and nI, other quantities in Eqs. �10� and �11�� are
intrinsic properties of a photonic crystal, independent of the
choice of the coordinate system and the crystallographic ori-
entation of the input surface. According to Eqs. �10� and
�11��, the sensitivities to wavelength and index perturbations
can be enhanced by a large dispersion surface curvature or
by a large group index. A key feature of Eqs. �10� and �11��
is that high sensitivities to wavelength and refractive index
perturbations are usually correlated, through common terms

 and ng.

B. Individual control of the curvature and the group velocity

However, it turns out that a large value of ng results in low
transmission, and therefore enhancing 
 is practically a better

FIG. 2. �Color online� The dispersion surface curvature and
group index on the MK line for the lower branch of the first band.
The inset plots log10� 2��
�

� +1� in the 1 BZ for this branch.
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approach to ultrahigh sensitivities. According to our previous
theory on surface coupling,24 the normalized transmission is
given by the ratio of the surface-normal component of the
Poynting vector Sy��emvg cos �,

T � �t�2�emvg cos � , �12�

where �em is the mode energy density and t is the complex
coupling amplitude24 of the mode in question. Typically, the
wavelength or refractive index varies over an ultranarrow
range �less than �1%� in high sensitivity cases, and �t� and
�em generally vary insignificantly across this range according
to our computation. For the modes in the nondegenerate
K-valley �IRREP A1� in Fig. 1�a�, the group velocity vg van-
ishes as the wavelength approaches the band edge at �A1

.
Thus the normalized transmission T is low, and T largely
follows the trend of small vg as shown in Fig. 3�b� in accor-
dance to Eq. �12�. High sensitivities, � d�

dna
�, shown in Fig. 3�a�

are achieved at the cost of low transmission. In contrast, the
symmetry-induced degeneracy limits vg to a nonvanishing
value around the degenerate K point �IRREP E� at �E. There-
fore the transmission remains high for most of the spectrum
as depicted in Fig. 4�b�.

To recapitulate, we note that the sensitivities to wave-
length and refractive index can be significantly enhanced if
any of the three terms, 
, ng, and 1 /cos �, is large in Eqs.
�10� and �11��. Unfortunately, the transmission given in Eq.
�12� is inversely proportional to the last two terms, leaving 

the only desired route for high sensitivities at low optical
loss.

For a numerical example, we set the transmission thresh-
old at 50%. This gives the maximum achievable � d�

d� ��3

103 deg /nm and � d�

dna
��3.5
104 deg near the degenerate

K point at �E in the first band, according to Fig. 4�a�.
Clearly, orders of magnitude higher sensitivities can be
achieved in a photonic crystal without severely suppressing
optical transmission. Here we are more interested in index
sensitivities for sensing and nonlinear optics applications.
These applications do not require the beam center shift to be
much larger than the beam width, and therefore are not lim-

ited by some issues found in wavelength demultiplexing
applications.10 Generally, it is easy to detect a minimum lat-
eral shift 10 �m of the beam center on the exit end of a
photonic crystal. Then a photonic crystal sensor only needs a
length �50 �m to resolve a refractive index change of
�na�0.001 with a sensitivity � d�

dna
��104 deg. A high � d�

dna
�

value may also significantly enhance certain nonlinear opti-
cal effects such as all optical switching and beam-steering7

or deflection based Q-switching, where a small �na can be
generated by a pump-control beam or by the signal beam
itself. Detailed discussion on applications is beyond the
scope of this paper.

IV. DISCUSSIONS

A. Intrinsic and extrinsic parameters

All quantities in Eqs. �10� and �11�� can be easily calcu-
lated in any coordinate system. For example, ��� /�na�u,v
���� /�na�k, the latter can be computed in a regular �kx ,ky�
coordinate system whose origin is at the BZ center, �. Also,

the well-known formulas, 
�
d2ky

dkx
2 /�1+ � dky

dkx
�2�3/2

and ng

=c / ��k��, can be employed to calculate 
 and ng in �kx ,ky�
coordinates. Indeed, it is straightforward to see that these
intrinsic quantities ��
�, ng, and ��� /�na�k� do not rely on the
choice of the coordinate systems. Note this statement is valid
only for those coordinate systems that can be related to
�kx ,ky� through a Euclidian transformation, which is suffi-
cient for all practical purposes. As long as the values of 
,
��� /�na�u,v, and ng are computed for each k point separately,
we will not compromise the rigor of Eqs. �10� and �11��.
More discussion on understanding the rigor of our method is
presented in Appendix B.

We call � and � extrinsic parameters because they are
related to how a photonic crystal is coupled on the surface.
The angle � should be determined as the angle of the group
velocity at the coupled k0 point with respect to the normal of
the photonic crystal surface. Therefore if we rotate the x,y

|dθ /dn |(deg)
v

g /c

T
ra

ns
m

is
si

on
A

ng
le

θ
(d

eg
) dθ/dn

θ

T

vg /c

(a)

(b)

FIG. 3. �Color online� Normalized transmission and sensitivities
for modes near the K-valley of the second band, �A1

a /2�c
�0.248, �=20.8°, n1=na.

|dθ
/dn |(deg)

v
g /cT

ra
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m
is

si
on

A
ng

le
θ

(d
eg

)

dθ/dn

θ

vg/c

T
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(b)

FIG. 4. �Color online� Normalized transmission and sensitivities
for modes near the degenerate �E mode of the first band,
�Ea /2�c�0.187, �=27.9°, nI=na.
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axes �but not lattice axes intrinsic to the photonic crystal�,
the angle � should not change.

Some further analysis helps understand the effects of in-
trinsic and extrinsic parameters. Once a coupling configura-
tion �including surface orientation, incident angle, and wave-
length� is given, the sensitivity values given in Eqs. �10� and
�11�� are determined, independent of the choice of the coor-
dinate system. On the other hand, consider two experiments
for the same photonic crystal lattice: �1� light impinges on a
surface having Miller indices �h1h2�= �10� at an incident
angle �1; and �2� light impinges on a surface having �h1h2�
= �23� at an incident angle �2. By coincidence we may
couple to the same �physical� k0 point on the dispersion sur-
face in these two experiments. Although the intrinsic param-
eters 
, ��� /�na�u,v, and ng are the same, the different extrin-
sic parameters cause entirely different angular sensitivity
values. In this sense, these angular sensitivities themselves
are also extrinsic quantities, which depend on the external
coupling conditions.

The separation of extrinsic parameters and intrinsic pa-
rameters also allows us to see some interesting effects. Gen-
erally, a large intrinsic parameter 
 at a photonic band of
interest means that a photonic crystal is potentially highly
sensitive to both wavelength and refractive index perturba-
tions. However, the external coupling conditions, described
by the extrinsic parameters, could modify or even suppress
certain sensitivities actually observed. For example, if the
term nI sin �−ng sin � in Eq. �10� vanishes under a given
coupling configuration �or close to zero over a range of cou-
pling parameters�, it is possible to produce a device that has
a very high refractive index sensitivity and a relatively low
wavelength sensitivity in certain parameter ranges. This may
help enhance the bandwidth of certain devices. Further study
is needed to explore this possibility.

B. Effects of dimensionality and lattice types

The theory developed here can be extended to treat other
common lattices in 2D and 3D. We note that a similar sin-
gularity of 
 can occur for a square lattice, where the corre-
sponding BZ corner �M point� retains the C4v symmetry and
has one 2D irreducible representation. Therefore an ul-
tralarge curvature can appear with a nonvanishing vg for the
two most common 2D lattice types. Similar analysis can be
applied to the TE polarization. It can be proven from group
theory that symmetry-induced singularities of the dispersion
surface curvature at vg�0 can also exist for most common
3D lattices, such as simple-cubic, face-centered-cubic, and
body-centered-cubic lattices. The analysis will be similar in
spirit though more complicated in form because a surface in
3D has two principal curvatures.19 For many practical sce-
narios in 3D, effective 2D dispersion surfaces may be used,5

then the above 2D analysis remains applicable.
The phenomena discussed here do not exist in 1D photo-

nic crystals because all 1D point groups are Abelian and
have no degeneracy. For a 1D grating of the same period a,
its angular dispersion25 d�

d� � 1
a cos � is much lower

��0.2 deg /nm� for any reasonable value of �. The preceding
high d�

d� , d�
dna

values of the 2D lattice are obtained at ���

�70° with negligible contribution from the 1
cos � factor in

Eqs. �10� and �11��.
Note that our photonic crystal surface coupling theory24

has been extended to compute mode transmissions for 3D
photonic crystals26 and 1D gratings.27 Also note that in grat-
ing diffraction, the diffracted beam angle refers to the angle
outside the grating. For the original superprism effect, the
beam angle sensitivity refers to the angle inside the photonic
crystal. For some integrated devices,15 beam angles outside
the photonic crystal need not be sensitive and the sensitivity
is employed through the sensitive shift of the output position
on the exit surface. If the output angle sensitivity is ex-
ploited, then the output surface must not be parallel to the
input surface.12,14

C. Van Hove singularities and some other issues

We shall mention that Van Hove envisioned that a mini-
mum of one band and a maximum of another may “contact”
each other, and the Van Hove singularity will be weakened or
suppressed by “compensation.”28 In our case, it is straight-
forward to prove that the Van Hove singularity is virtually
absent29 at �E due to a nonvanishing vg, but the curvature 

exhibits a singularity. Note that one type of extreme aniso-
tropy near the � point was found to be associated with a
divergent Van Hove singularity for a 2D square lattice.30 The
curvature singularity discussed here comes with a suppressed
Van Hove singularity, and is a different, general phenom-
enon. Our Eq. �10� shows d�

d� �
 and may also shed new light
on some issues for 
=0.

Note that usually the dielectric function of a photonic
crystal is local and is considered accurately known. Hence
additional boundary conditions31 are not needed for a semi-
infinite photonic crystal even when multiple modes appear.
Other theoretical works on photonic crystal surface coupling
also do not invoke additional boundary conditions.32

In summary, we rigorously analyze the dispersion surface
curvature in 2D photonic crystals and discuss its relation to
angular sensitivities of a photonic crystal. The individual
contributions of the curvature and group index to the angular
sensitivities are separated. Furthermore, assisted by group
theory, we analytically show that symmetry induced degen-
eracy allows for high sensitivities without compromising op-
tical transmission in 2D and 3D photonic crystals, leading to
promising applications including sensing and nonlinear op-
tics. We also discuss the possibility of maximizing the refrac-
tive index sensitivity while suppressing the wavelength sen-
sitivity.
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APPENDIX A: DERIVATIVES IN A LOCAL
COORDINATE SYSTEM

By virtue of Eq. �2�, the total derivative of D with respect
to v along a constant-� contour is given by

0 = 
dD

dv



�

= �
j=0

	
�f j

�u

du

dv
v j + �

j=1

	

f j�u,��jv j−1. �A1�

At the origin of this local coordinate system �u ,v�, we
have v=0. Hence Eq. �A1� is reduced to

�f0

�u

du

dv
+ f1 = 0, �A2�

from which we obtain Eq. �3a�. Further differentiation of Eq.
�A1� with respect to v yields

0 = 
d2D

dv2 

�

= �
j=0

	 � �2f j

�u2 �du

dv
�2

v j +
�f j

�u

d2u

dv2v j	
+ �

j=1

	
�f j

�u

du

dv
jv j−1 + �

j=1

	
�f j

�u

du

dv
jv j−1

+ �
j=2

	

f j�u,��j�j − 1�v j−2. �A3�

Here the first two sums come from the differentiation of the
first sum in Eq. �A1�, the last two sums from the second sum
in Eq. �A1�. At the origin of this local coordinate system
�u ,v�, we have v=0, and du /dv=0. Hence Eq. �A3� is re-
duced to

0 =
�f0

�u

d2u

dv2 + 2f2, �A4�

from which we obtain Eq. �3b�. By considering the total
derivatives of D with respect to u and v along constant-v and
constant-u lines respectively, Eqs. �4a� and �4b� can be
proved similarly.

APPENDIX B: RIGOROUS NATURE OF THE
SENSITIVITY FORMULAS

To understand the rigorous nature of Eqs. �10� and �11��,
we point out some key features of our derivation. First, the
origin of the local coordinate system is an arbitrary point k0
�not necessarily a high symmetry point�. Second, in deriving
these relations, we have not assumed a finite Fourier series.
Third, the local expansion with respect to u ,v is rigorous at
k0 only. For another point k0�, no matter how close it is to k0,
another local expansion with another set of local coordinates
�u� ,v�� must be used. In this way, the rigor of Eqs. �10� and
�11�� is not compromised. Lastly, to compute the beam angle
change due to a finite change of refractive index, the rigorous
way is to integrate �� /�na given by Eq. �11�� over the finite
span of �na.

The preceding procedure that involves local coordinates
�u ,v�, although useful in understanding the rigor of Eqs. �10�
and �11��, is somewhat complicated in practical calculations.
Fortunately, we have simplified the sensitivity forms such
that all quantities in Eqs. �10� and �11�� can be easily calcu-
lated in any coordinate systems. The details have been dis-
cussed in Sec. IV A. Note that, in contrast, Eq. �11� involves
��u /�na��,v, which is much less intuitive for direct computa-
tion in any coordinate systems. As long as the values of 
,
��� /�na�u,v, and ng are computed for each k point individu-
ally, we will not compromise the rigor of Eqs. �10� and �11��.
Lastly, even though the equations given are rigorous, the
values of quantities such as � and cos � entering Eqs. �10�
and �11�� are usually approximated in numerical calculations
due to a finite cutoff of the series used in computing � and
the cosine function. Nonetheless, rigorous equations with
simple forms like Eqs. �10� and �11�� serve at least two im-
portant purposes. First, they single out a few key factors
�e.g., 
, ng� that affect sensitivities. Such physical insight
helps us easily identify the high sensitivity regimes of inter-
est and avoid an aimless search in a large design space. Sec-
ond, it provides a priori information of various quantities
near numeric singularities �e.g., singular 
�. Generally such a
priori information is invaluable in numeric calculations and
helps us design numeric schemes that are highly accurate,
reliable, and efficient near singularities.33 We have employed
at least 121 Fourier components to ensure better than 1%
convergence for sensitivities.34
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