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We study the suppression of electron localization due to the screening of disorder in a Hubbard-Anderson
model. We focus on the change of the electron localization length at the Fermi level within a static picture,
where interactions are absorbed into the redefinition of the random on-site energies. Two different approxima-
tions are presented, either one yielding a nonmonotonic dependence of the localization length on the interaction
strength, with a pronounced maximum at an intermediate interaction strength. In spite of its simplicity, our
approach is in good agreement with recent numerical results.
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I. INTRODUCTION

Understanding the interplay between disorder and
electron-electron interactions remains one of the major chal-
lenges in modern condensed matter physics, experimental
as well as theoretical. The research in this field has been
stimulated by the possible metallic behavior in two-
dimensional disordered interacting systems.1 A metallic
phase at zero temperature in two or less dimensions would
be in contrast to the prediction of the scaling theory of
Anderson localization.2 The possible existence of a metallic
phase, induced by interactions, is a long standing3 and still
controversial problem, discussed by many authors during the
last three decades.4

One of the ideas proposed and discussed by several au-
thors is that interactions lead to a partial screening of the
random potential and, thus, reduce the effect of localization.
In particular, the 2d disordered Hubbard model �the
Hubbard-Anderson model� has been studied, mostly numeri-
cally, and it was demonstrated that repulsive interactions can
have a delocalizing effect.5–11

In this paper, we present an analytical study of the screen-
ing effect, focusing on the case of strong disorder at zero
temperature, when the Hubbard-Anderson model is in the
regime of an Anderson insulator. Our approach is based on
an exact treatment of the atomic limit, followed by “switch-
ing on” the intersite hopping t, under the assumption that the
atomic-limit occupation numbers do not change. Let us em-
phasize that in our static approach, the interactions only
change the original on-site energies. Therefore, we are left
with a single-particle Anderson Hamiltonian, and the ques-
tion is how the localized single-particle states may change
due to the new, renormalized probability distribution of the
on-site energies. In this sense, the approach is close, although
not identical, to the Hartree-Fock treatment. A comparison of
both methods will be presented. Although this approach is
formulated for an arbitrary filling factor, it becomes inad-
equate close to half filling where magnetic effects dominate12

�such effects are not considered in our work�.
Furthermore, we will show that, for fixed disorder, the

localization length � is a nonmonotonic function of the Hub-
bard interaction energy U, with a maximum for some inter-

mediate value of U. This is because for strong interactions,
the Mott-Hubbard physics of interaction-suppressed hopping
dominates, leading to the formation of two disorder broad-
ened Hubbard bands with a reduced average density of states
at the Fermi level and, as a consequence, increasing effec-
tively the disorder strength. In spite of the simplicity of the
approach, the results are in good agreement with recent nu-
merical studies,5,7–10,13,14 in the appropriate range of param-
eters.

The evaluation of the localization length within our
present study is limited to one dimension. However, since the
competition of screening on the one hand and Mott-Hubbard
physics on the other hand operates in any dimension, the
nonmonotonic dependence of � on U should also hold in two
and three dimensions, as argued below.

II. ATOMIC-LIMIT APPROXIMATION

In this paper, we consider the Hubbard-Anderson model,
with on-site repulsion and on-site disorder, at zero tempera-
ture. The corresponding Hamiltonian

H = H0 + Hkin + He-e

= �
i,�

��i − ��ci�
† ci� − t �

�i,j�,�
ci,�

† cj� + U�
i

ni↑ni↓. �1�

As usual, ci�
† �ci�� denote fermion creation �destruction� op-

erators of an electron at site i with spin �, ni�=ci�
† ci�, t is the

nearest-neighbor hopping amplitude, U is the on-site repul-
sion, � is the chemical potential, and ��i� are the on-site
energies. The latter are assumed to be independent and uni-
formly distributed over the interval �− �

2 , �
2
	, with the disor-

der parameter �. To focus on the screening effect in the case
of strong localization, i.e., �� t, the interaction term will be
absorbed into the on-site energies, yielding a renormalized
distribution of the �i. This results in an effective single-
particle problem with a probability function pA��i� which is
derived as follows.

In the atomic limit �t=0�, the ground state of the system

can be solved exactly for an arbitrary filling factor �=
Ne

N ,
where Ne, N are the numbers of electrons and lattice sites,
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respectively.9 The chemical potential � and the site-
dependent occupation numbers �ni�0 can be expressed as
functions of �, �, and U: All sites with on-site energies be-
low �−U are doubly occupied, all sites within ��−U ,�	 are
singly occupied, and all other sites are empty �see Fig. 1�.
Thus, the total occupation number of site i and the chemical
potential are, respectively,

�ni�0 = 
2 if �i 	 � − U

1 if � − U 
 �i 	 �

0 if �i � �
� �2�

and15

� = 

1
2 ��� − � + U� if � 
 1, U 
 ��

��� − 1
2� if � 
 1, U � ��

1
2 ��� − � + U� if � � 1, U 
 2� − ��

��� − 3
2� + U if � � 1, U � 2� − �� .

� �3�

The renormalized site energies depend on the site occupation
numbers and can be read off from the poles of the �time-
ordered� single-particle propagator,

Gi��
� =
�ni,��0�ni,−��0


 − ��i − � + U� − i0+ +
�ni,��0�1 − �ni,−��0�

 − ��i − �� − i0+

+
�1 − �ni,��0��ni,−��0


 − ��i − � + U� + i0+

+
�1 − �ni,��0��1 − �ni,−��0�


 − ��i − �� + i0+ . �4�

The first term in Eq. �4� corresponds to the doubly occupied
sites showing that these on-site energies are shifted by U.
The next two terms correspond to singly occupied sites. In
the absence of spin polarization, �ni,��0= �ni,−��0, half of
these on-site energies are again shifted by U whereas the
other half remain unchanged. Finally, the last term corre-
sponds to the unoccupied sites, whose energies also remain
unchanged. Combining Eqs. �3� and �4�, the rule for replac-
ing the bare site energy �i by a renormalized one is

�i � 

�i + U if �i 	 � − U

�i + U

�i

if � − U 
 �i 	 �

�i if �i � � .
� �each with probability of 1

2� �5�

For a weak to intermediate repulsion U, these shifts lead to a
raise of the lowest lying on-site energies toward the Fermi
level � resulting in a renormalized probability function
pA��� with a reduced width and modified shape �see Fig.
2�a�	.

In the atomic-limit approximation, the Hamiltonian �Eq.
�1�	 is replaced by the effective single-particle Anderson
Hamiltonian,

H = �
i�

��i − ��ci�
† ci� − t �

�i,j��
ci�

† cj�, �6�

with on-site energy probability function pA���, where the
two-particle interaction U enters only as a �screening� pa-
rameter in pA���. Note that, due to the asymmetry of pA���,
the average value of the renormalized on-site energies is

���A =� pA����d� =
1

2
�U . �7�

In deriving Eq. �6�, it was assumed that in the case of strong
disorder, the occupation numbers in the atomic ground state
�Eq. �2�	 are close to the occupation numbers �ni� in the true
ground state, with finite hopping amplitude t. This assump-
tion is based on the results from the single-particle theory of
localization,16 where it is known that for strong disorder, an
electron, once located at any site i, will stay at that site with
high probability. More precisely, the change of the occupa-
tion number of site i, ��ni�
�ni�− �ni�0, is of order t2 /�. The
same estimate holds if one considers hopping of a single
electron on the background of the other electrons, which are
assumed to be immobile. Furthermore, for strong disorder, a
perturbative expansion in t, around the atomic ground state
of Eq. �1�, is possible.17 Thus, with the same reasoning as in
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FIG. 1. Site occupation in the atomic ground state with doubly
occupied �black�, singly occupied �gray�, and empty states �white�.
�a� Weak interaction, �b� strong interaction for less than half filling
�i.e., �
1�, and �c� strong interaction for more than half filling ��
�1�.
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the noninteracting case, the leading self-energy corrections
are again only of second order.

One measure of localization is the localization length �
which governs the exponential decay of the single-particle
wave functions ��r� at distances far away from its localiza-
tion center. It can be calculated from the probability for a
transition from site i to site j as18

−
1

��E�
= lim

�xi−xj�→�

log��Gij
R�E��2�

2�xi − xj�
, �8�

where Gij
R�E� is the retarded propagator for a particle with

energy E from site j to site i. In general, it is not possible to
deduce � from the probability distribution analytically, but in
case of a one-dimensional lattice, there exists a relatively
simple relation18 between � and �D�
��, the disorder aver-
aged density of states,

�−1�E� = �
−�

�

�D����log�E − ��d� . �9�

�Here and in the following, we choose units where t=1 and
measure � in units of the lattice spacing.�

In the strong disorder limit, �D���� can be replaced by
pA��+��, so that the inverse localization length at the Fermi
level �E=0� is given by

�−1 = �
−�

�

pA���log�� − ��d� . �10�

A plot of � as a function of U and �, for fixed disorder
strength �=15, is shown in Fig. 3�a�. It can be seen that for
each given filling factor, the localization length exhibits a
pronounced maximum. This maximum can be calculated to
appear at

U�
A =

�

3
��1 + 3��2 − �� − 1� �

�

2
��2 − �� + O��2�2 − ��2	 .

�11�

The reason for this nonmonotonic behavior is simple: A
weak to intermediate repulsion U changes the on-site energy
distribution from a rectangular distribution to a narrower one
by shifting low site energies toward the Fermi level �screen-
ing� �see Fig. 2�a�	. In contrast, a very strong on-site repul-
sion enhances the localization by a large broadening of the
probability density. Therefore, in between, there will be
some value U�

A for which the screening is optimal and the
localization length acquires a maximum. Such behavior is
expected, since a strong repulsion effectively suppresses
hopping processes and leads to an accumulation of spectral
weight in the upper Hubbard band.

In Fig. 4�a�, the localization length � is shown as a func-
tion of U for �= 1

2 �quarter filling�. A similar, nonmonotonic
behavior was also found in recent quantum Monte Carlo
simulations5,9,13,14 and a most recent statistical dynamical
mean field theory evaluation10 of the problem, where the
conductivity and the inverse participation ratio7 of a finite
system were calculated, respectively. Identifying a maximum
of conductivity with a maximum of localization length, we

−∆/2 ∆/2−∆/2 + U µ − U µ + Uµ

3/2∆

1/∆

pA(ε)

ε

(a)

ε

1/∆

pH(ε)

2/∆

−∆/2 + U−∆/2 µ − U/2 µ µ + U/2 ∆/2

(b)

FIG. 2. The renormalized on-site energy probability functions
�solid line� for weak repulsion U: �a� atomic-limit approximation
and �b� Hartree-Fock approximation. For comparison, also the
original function is shown �dashed lines�.

(a)

(b)

FIG. 3. �Color online� Localization length � at the Fermi level as
a function of repulsion U and lattice filling � for �=15: �a� atomic-
limit approximation and �b� Hartree-Fock approximation.
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find in all cases a good qualitative agreement with our re-
sults. Furthermore, we even find a reasonable quantitative
agreement with our results for the points of maximal delo-
calization, U�

A, Eq. �11�, and U�
H, defined in Eq. �17� below.

Thus, there is a strong correlation between the degree of
screening and the conductivity: optimal screening corre-
sponds to maximal conductivity. In addition, our analytical
results indicate that much of this physics of the nonmono-
tonic behavior can already be understood on the level of a
static screening approximation.

Our result appears to be at odds with the statement9 that
screening alone cannot account for the nonmonotonic behav-
ior of the conductivity. We will discuss this point in the next
section. For that discussion, we need the variance of the
renormalized on-site energies which is given by

�A
2 
 ��2�A − ���A

2

=
�2

12

1 − �̂Û + �̂Û2 + 3Û3, � 
 1, Û 
 �

1 − 2��Û + �̂Û2, � 
 1, Û � �

1 − �̂Û + �̂Û2 + 3Û3, � � 1, Û 
 2 − �

1 − 2�̃Û + �̂Û2, � � 1, Û � 2 − � ,
�
�12�

with

Û = U/�, �̂ = 3��2 − ��, �� = 3��1 − ��,

�̃ = 3� 1
4 − �� − 3

2�2	 . �13�

Here, �A
2 has a minimum at

U�
A = 


�

9
���̂2 + 9�̂ − �̂� for 1

3 � � �
5
3

�
�1 − ��

1 + �1 − ��
otherwise, � �14�

which can be seen in Fig. 4�b� for �= 1
2 and �=15.

So far, our calculations were restricted to one dimension
because a generalization of relation �9� to two or three di-
mensions is, in general, not possible. However, in the limit of
strong disorder, Gij�E� can be calculated in good approxima-
tion by taking into account only the direct path19 from i to j.
Therefore, Eq. �8� can be considered as a one-dimensional
problem, leading again to Eqs. �9� and �10�, respectively.
Hence, we conjecture that the general result, i.e., the non-
monotonic behavior of localization, holds also in two and
three dimensions.

III. SITE-DEPENDENT HARTREE-FOCK
APPROXIMATION

The second model which will be discussed in this paper is
the site-dependent Hartree-Fock approximation.6,9 In this
single-particle approximation, each site has a single renor-
malized energy level, given by

�i � �i +
U

2
�ni�0, �15�

which in Eq. �1� corresponds to the replacement,

Uni↑ni↓ → U��ni↑�ni↓ + �ni↓�ni↑� →
U

2
�ni��ni↓ + ni↑�

�
U

2
�ni�0�ni↓ + ni↑� . �16�

Here, the absence of any kind of magnetization was as-
sumed. Note that for a local, energy independent interaction
U, the Hartree and the Hartree-Fock approximations are
identical. The average on-site occupation �ni� was taken to be
the one of the atomic ground state, �ni�0 �Eq. �2�	, according
to the assumption of a stable atomic configuration.

As in the atomic-limit approximation, the shift of the oc-
cupied on-site energies leads to a renormalized distribution,
with probability function pH��� �Fig. 2�b�	. The screening
effect now is even more pronounced because all singly oc-
cupied states are shifted by U

2 yielding a smaller width and a
stronger increase of the probability to find a state around the
Fermi level. The resulting effective single-particle Hamil-
tonian is again given by Eq. �6�, however, with the probabil-
ity function pH���.

The corresponding plots for the localization length in
Hartree-Fock approximation are shown in Figs. 3�b� and
4�a�, respectively. Again, a pronounced maximum of � arises.
In this case, it is found at the value

(a)

(b)

FIG. 4. �a� Localization length � at the Fermi level, normalized
by its noninteracting value, as a function of the on-site repulsion U
for �=15 and �= 1

2 . �b� Variance of the renormalized on-site energy
distribution, also normalized by its noninteracting value. The solid
curves show the results for the atomic-limit approximation and the
dashed curves are the Hartree-Fock results.
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U�
H =

�

2
��2 − �� , �17�

which up to order O ��2�2−��2	 coincides with the result
from the atomic-limit approximation �Eq. �11�	. The increase
of the localization length is considerably more pronounced in
the Hartree-Fock approximation due to its narrower probabil-
ity distribution and especially its larger probability density
around the Fermi level. In both approaches, the effect of
screening becomes stronger with decreasing disorder. How-
ever, for small values of �, the stability of the atomic ground
state becomes doubtful.

The average and the variance of the renormalized on-site
energy distribution are, respectively,

���H = ���A =
1

2
�U , �18�

�H
2 =

�2

12

1 − �̂Û + �̂Û2, � 
 1, Û 
 �

1 − 2��Û + ��Û2, � 
 1, Û � �

1 − �̂Û + �̂Û2, � � 1, Û 
 2 − �

1 − 2�̃Û + �̃Û2, � � 1, Û � 2 − � ,
�

�19�

with the same abbreviations as in Eq. �13�. Its minimum is
found at the value

U�
H = 
�/2 if

2

3

 � 


4
3

� else.
� �20�

As mentioned above, it was argued in Ref. 9 that the picture
of screening would be too primitive to explain the nonmono-
tonic behavior and the evidence for a metallic state found in
the conductivity simulations by varying the repulsion
strength U. The argumentation was based on the observation,
which the variance was a featureless, monotonically decreas-
ing function of U around the transition point. Our results
show that this reasoning is generally not conclusive. Al-
though the static, single-particle treatment does not allow for
the occurrence of a metallic state, we find a strong enhance-
ment and nonmonotonic behavior of the localization length �
as function of U, whereas the variance is also only a mono-
tonically decreasing function around the point of maximal
delocalization. For strong disorder and a distribution which
is not characterized by a single parameter �like in the present
case, cf. Fig. 2�, there is no simple relation between � and the
variance �2. Especially for lower fillings, our results, Eqs.
�11�, �14� and �17�, �20�, respectively, show that the values of
U for which the maximum of � and the minimum of �2

occur, can be separated systematically. Moreover, we find
that the atomic-limit approximation and the Hartree-Fock ap-
proximation do yield close values of �, although the vari-
ances can differ strongly �see Fig. 4�.

In Ref. 8,13, the inverse participation ratio was calculated
as a function of the disorder strength �, and a nonmonotonic
behavior with evidence for a metallic state was found. It was
argued there that the screening picture would necessarily pre-

dict a monotonic increase of the inverse participation ratio
with increasing �, excluding screening as a possible expla-
nation. Our model, contrary to that statement, exhibits such
nonmonotonic behavior as well, as shown in Fig. 5, where
�−1 is plotted as a function of the disorder strength �, for
some fixed values of � and U. This nonmonotonicity is
caused by the crossover from the regime of disorder screen-
ing by interaction, ��U, to the regime of interaction-
reduced hopping, ��U, which is controlled by the param-
eter U /�. However, the exact position of the
nonmonotonicity depends also on t /�, �, and the probability
function.

IV. CONCLUSION

We examined the effect of static disorder screening by
on-site repulsion in the one-dimensional Hubbard-Anderson
model for strong disorder. We presented two different ap-
proximation schemes by absorbing the interactions into a
redefinition of the single-particle on-site energies. In both
approaches, a renormalized probability distribution with an
enhanced probability of finding site energies close to the
Fermi level was obtained. We calculated the localization
length at the Fermi energy for these single-particle problems
and found a pronounced maximum of the localization length
for some intermediate value of the repulsion strength. This
can be understood as a consequence of the fact that the in-
crease of the localization length � for small U �U
U�� and

(a)

(b)

FIG. 5. Inverse localization length �−1 as a function of � for �

= 1
2 and �a� U=7 in the atomic-limit approximation and �b� U=14 in

the Hartree-Fock approximation, respectively.
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the decrease of � for large U �U�U�� have different physical
origins, namely, disorder screening and reduced hopping, re-
spectively. Similarly, a change of the “bare” disorder �, for
fixed repulsion, resulted in a nontrivial, nonmonotic depen-
dence of the localization length on the disorder strength. In
contrast to the case of weak disorder, we found no significant
correlation between the variance of the effective on-site en-
ergy distribution and the localization length. Our results, es-
pecially in the case of the Hartree-Fock approximation, are in
qualitative and to some degree even quantitative agreement
with recent numerical studies. By our analytic approach, it
was possible to investigate the static screening effects sepa-
rately from dynamical �inelastic� processes.

We gave an argument that the same behavior should also
be found for strong disorder in two and three dimensions.20

In three dimensions, there might be an interesting possibility
of an interaction induced metal-insulator transition. Such a
possibility is based on the assumption that our results, ob-
tained in the strongly localized regime, can be extrapolated
up to the mobility edge. Under this assumption, a noninter-

acting Anderson-localized system, whose Fermi energy is
sufficiently close to the mobility edge, will become metallic
upon switching on interactions by shifting the mobility edge
across the Fermi level. Furthermore, when the interactions
exceed a certain strength, the system would reenter the insu-
lating phase in analogy to the nonmonotonic behavior of the
localization length in one dimension.21 �Let us emphasize
that throughout this paper, we do not discuss the case of half
filling, with its characteristic Mott’s physics.12,22� A similar,
and experimentally more relevant, effect could also happen
under a change of the bare disorder �, as suggested by Fig.
5, since the relevant dimensionless parameter is U /�.
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